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Abstract The Soil Conservation Service curve number
(SCS-CN) method, also known as the Natural Resources
Conservation Service curve number (NRCS-CN) method, is
popular for computing the volume of direct surface runoff for
a given rainfall event. The performance of the SCS-CN meth-
od, based on large rainfall (P) and runoff (Q) datasets of
United States watersheds, is evaluated using a large dataset
of natural storm events from 27 agricultural plots in India. On
the whole, the CN estimates from the National Engineering
Handbook (chapter 4) tables do not match those derived from
the observed P and Q datasets. As a result, the runoff predic-
tion using former CNs was poor for the data of 22 (out of 24)
plots. However, the match was little better for higher CN
values, consistent with the general notion that the existing
SCS-CN method performs better for high rainfall–runoff
(high CN) events. Infiltration capacity (fc) was the main ex-
planatory variable for runoff (or CN) production in study plots
as it exhibited the expected inverse relationship between CN
and fc. The plot-data optimization yielded initial abstraction
coefficient (λ) values from 0 to 0.659 for the ordered dataset

and 0 to 0.208 for the natural dataset (with 0 as the most
frequent value). Mean andmedian λ values were, respectively,
0.030 and 0 for the natural rainfall–runoff dataset and 0.108
and 0 for the ordered rainfall–runoff dataset. Runoff estima-
tion was very sensitive to λ and it improved consistently as λ
changed from 0.2 to 0.03.

Keywords Agricultural . Curve number . Initial abstraction
coefficient . India . Infiltration capacity

Introduction

Surface runoff is a function of many variables such as rainfall
duration and intensity, soil moisture, land use/land cover, soil
infiltration capacity, watershed slope etc. A number of models
exist in the literature that consider the effect of different vari-
ables on surface runoff. Among them, the lumped conceptual
models are quite useful for simple yet realistic analyses
(Mishra and Singh 2003). The Soil Conservation Service
curve number (SCS-CN) method (presently also known as
the Natural Resources Conservation Service curve number
(NRCS-CN) method) is widely used for predicting surface
runoff from small agricultural watersheds, primarily because
of its simplicity and the requirement of only two parameters
for runoff prediction (Ponce and Hawkins 1996), which are
the initial abstraction coefficient (λ) and the potential maxi-
mum retention (S) expressed in terms of curve number (CN).

In the course of continuous use of the SCS-CNmodel world-
wide, several modifications have been proposed in the literature
(Hawkins et al. 1985; Jain et al. 2006a; Mishra and Singh 2003;
Mishra et al. 2006a; Sahu et al. 2010b, 2012; Suresh Babu and
Mishra 2012;Woodward et al. 2002). These include the effect of
slope (Huang et al. 2006; Lal et al. 2015; Sharpley andWilliams
1990); improvement inλ (Hawkins et al. 2002; Jain et al. 2006b;
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Mishra and Singh 2004; Mishra et al. 2006b; Woodward et al.
2004;Yuan et al. 2014); the antecedentmoisture on a continuous
basis (Ajmal et al. 2015d, 2016; Durbude et al. 2011; Michel
et al. 2005; Sahu et al. 2007; Singh et al. 2015); and the ante-
cedent moisture for estimation of initial abstraction, Ia (Mishra
and Singh 2002; Mishra et al. 2006b; Sahu et al. 2012).

In practice, for ungauged watersheds, CNs are derived from
the well-known National Engineering Handbook (NEH) tables
using watershed characteristics such as hydrologic soil group
(HSG), land use and land condition, and antecedent moisture
condition (AMC). Empirical evidence however shows that the
use of CN values from the handbook’s chapter 4 (NEH-4) tables
normally over-designs the hydrological systems (Schneider and
McCuen 2005) and, therefore, use of CN values based on ob-
served rainfall (P) and runoff (Q) data (hereafter termed BP–Q^
data) is recommended (Ajmal et al. 2015a; Hawkins 1993). It has
been established that CN is not constant for a watershed, but
rather has a variable identity which varies with rainfall
(Hjelmfelt et al. 1982; McCuen 2002). For a set of observed
P–Q data, various approaches for determining CN have been
reported in the literature (Bonta 1997; Hjelmfelt 1980; Hauser
and Jones 1991; Hawkins 1993; Hawkins et al. 2002, 2009;
Sneller 1985; Van Mullem et al. 2002; Woodward et al. 2006;
Yuan 1933). Of late, some studies have examined the accuracy of
suchmethods (Ali and Sharda 2008;D’Asaro andGrillone 2012;
D’Asaro et al. 2014; Feyereisen et al. 2008; Schneider and
McCuen 2005; Stewart et al. 2012; Tedela et al. 2012) relative
to CN values in the NEH-4 tables (D’Asaro et al. 2014;
Fennessey 2000; Feyereisen et al. 2008; Hawkins 1984;
Hawkins and Ward 1998; Sartori et al. 2011; Stewart et al.
2012; Titmarsh et al. 1989, 1995, 1996; Tedela et al. 2012;
Taguas et al. 2015). However, in spite of wide-spread use
of all approaches, there is no agreed procedure for es-
timating CN from observed P–Q data (Soulis and
Valiantzas 2013) because none shows any particular ad-
vantage (Ali and Sharda 2008; Tedela et al. 2008).

An accurate assessment of the initial abstraction coefficient
(λ) is essential as it is one of the crucial parameters used in
watershed P–Q estimation. It largely depends on regional (i.e.
geologic and climatic factors) conditions of the watershed
(Mishra and Singh 2003; Ponce and Hawkins 1996); and con-
sists mainly of interception, infiltration, and surface depression
storage during the early parts of a storm (Taguas et al. 2015). The
standard assumption of λ= 0.2 in the original SCS-CN equation
has been frequently questioned by various researchers since its
inception (Aron et al. 1977; Baltas et al. 2007; Cazier and
Hawkins 1984; D’Asaro and Grillone 2012; D’Asaro et al.
2014; Elhakeem and Papanicolaou 2009; Fu et al. 2011;
Hawkins and Khojeini 2000; Hawkins et al. 2002; Mishra and
Singh 2004; Menberu et al. 2015; Shi et al. 2009; Woodward
et al. 2002, 2004; Yuan et al. 2014; Zhou and Lei 2011) for its
validity and applicability, invoking its critical examination for
practical applications. Many studies have indicated λ to be

variable from watershed to watershed and event to event—see
Table SI of the electronic supplementary material (ESM). Its
value of about 0.05 or less is said to be more practical for various
other parts of the world including the United States. Of late,
nonlinear Ia–S relations have also been suggested (Elhakeem
and Papanicolaou 2009; Jiang 2001; Jain et al. 2006a; Mishra
et al. 2004, 2006a). It is however of common experience that the
value of λ loses its significance as rainfall increases by a magni-
tude significantly higher than Ia, for which the existing SCS-CN
method was developed, which is because of generally high CN
(and low S) values for high and low rain events, respectively.
Alternatively, Ia is insignificant if P is high enough.

Evidently, only a few experimental studies have investigated
(1) CN values from NEH-4 tables compared to those based on
observed data and (2) the effect of λ on runoff prediction. No
systematic experimental effort appears to have been made for
Indian watersheds, which invokes a need for such study. Thus,
the objectives of this study are to (1) assess the rainfall−runoff
behaviour in study plots; (2) compare CN values from NEH-4
tables with those derived from observed data; (3) determine the
optimal λ and S (or CN) values by analyzing data from 27 plots;
(4) assess the performance of the traditional (λ= 0.2) SCS-CN
method; and (5) study λ sensitivity to runoff estimates.

SCS-CN method

The SCS-CN method consists of the following equations:

Q ¼ P−I að Þ2
P þ S−I að Þ for P > I a; otherwise Q ¼ 0 ð1Þ

whereQ (mm) is the direct surface runoff,P (mm) is the rainfall,
Ia is the initial abstraction (mm), and S (mm) is the potential
maximum retention. In Eq. (1), Ia is a fraction of S (i.e.
Ia = λS). Here, λ is the initial abstraction coefficient (λ = 0.2, a
standard value). The use of Ia = λS in Eq. (1) amplifies it as:

Q ¼ P−λSð Þ2
P þ S−λSð Þ for P > λS; otherwise Q ¼ 0 ð2Þ

S can be calculated from observed P–Q data as follows
(Hawkins 1973):

S ¼
2λP þ 1−λð ÞQf g−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λP þ 1−λð ÞQf g2−4 λPð Þ2 þ 4λ2QP

q� �
2λ2 ð3Þ

S can be transformed into CN, and vice versa by using the
following equation:

CN ¼ 25400

S þ 254ð Þ ð4Þ

In Eq. (4), S is in mm and CN is dimensionless.
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Materials and methods

Site description

The study was conducted in an experimental field located
at 29°50′09″ N and 77°55′21″ E, in Roorkee, district
Haridwar, Uttarakhand (India) (Fig. 1). This field is locat-
ed in the River Solani watershed, which is a sub-
watershed of the River Ganga. River Solani emerges from
the Shivalik range of the great Himalayas, which has three
main topographic zones—hills, piedmont, and flat terrain.
The study site is located in the flat terrain of the Solani
watershed at about 30–60 km south of the foothills of the
Himalayas and about 180 km north of New Delhi. The
average topographic elevation of the site is about 266 m
above mean sea level (amsl). The climate is humid sub-
tropical type with three pronounced seasons, summer,
monsoon and winter. In summer, the minimum and max-
imum monthly temperature values are generally 20 and
45 °C, respectively, whereas these are 10 and 27 °C, re-
spectively, in winter. Annual rainfall varies from 1,120 to

1,500 mm and mostly concentrates between mid-June and
mid-September, which is the monsoon season. The aver-
age annual potential evapotranspiration (PET) is of the
order of 1,340 mm and average humidity varies from 30
to 99 %.

The soil in Solani watershed is mainly comprised of
loam, loamy sand, sandy loams, and sandy clay. The
upper hilly area consists of sandy loam, whereas lower
flat terrain (where the study site is located) is dominated
by loam and loamy sand (Garg et al. 2013; Kumar et al.
2012). Forestland, bare soil, and vegetated land are the
main classes of land cover in the study area. Forest
cover is around 30 % of the total area especially in
the hilly part of the watershed and more than 50 % is
agricultural land in the lower flat terrain. A significant
portion of the land lies in an agricultural area with more
than 35 % of vegetal cover. Forests cover around 30 %
of the total area, especially in the hilly part of the wa-
tershed, and more than 17 % of the total land is fallow.
Sugarcane is the perennial crop and wheat, maize, potato and
pulses are the seasonal crops (Garg et al. 2013).

Fig. 1 Layout of experimental plots located near Roorkee, Uttarakhand, India
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Experiment setup and data collection

The selected agricultural field for the experimental work was
divided into plots of 22m length and 5mwidth. Four different
land uses were selected: sugarcane, maize, black gram and
fallow land. The plots were constructed in such a way that
each land use was represented with three different slopes (5,
3 and 1 %). The experimental work was conducted during
August 2012–April 2015 in which rainfall (P) and runoff
(Q) were monitored for a total of 27 experimental plots of
various slopes, land uses, and hydrologic soil groups (HSGs;
i.e. infiltration capacity). It is worth emphasizing that, for cul-
tivation of crops, normal agricultural practices of mixing soil,
seed selection etc. were followed throughout the study period.

The surface runoff generated from each plot was col-
lected in collection chambers of 1 m × 1 m × 1 m in size
and constructed at the outlet of each plot followed by a 3-
m-long conveyance channel intercepted by a multi-slot
divisor with five slots. The multi-slot devisors were used
to reduce the volume of runoff to be measured in the
collection chamber—in other words, it reduces the fre-
quency of chamber filling. The volume of flow collected
in these tanks when multiplied by 5 yielded the plot run-
off for a storm-event (during the past 24 hr). Rainfall was
recorded with the help of both a tipping bucket rain gauge
and a non-recording rain gauge installed at the study site.
The distribution of rainfall measured during the study pe-
riod is shown in Table 1. As seen from this table, 101
rainfall events were captured with the rainfall amount
varying from 0.5 to 93.8 mm, and only 42 events pro-
duced a significant amount of runoff for measurement.
Infiltration tests were conducted for each plot using a
double-ring infiltrometer (45/30) for identification of
HSGs (SCS 1972). The resulting infiltration capacity
(fc) and corresponding HSGs for different plots are shown
in Table 2.

Estimation of the curve number

NEH-4 table curve number

These CN values of a plot are designated as CNHT (HT refers
to the handbook tables). The representative class II (average)
antecedent moisture condition curve number, AMC II CN (or

CN2), values were derived from NEH-4 tables (SCS 1972) for
all the plots based on their land use, HSG, and vegetation
(Table 2).

Rainfall–runoff data based curve number

Firstly, event-wise CNs were derived for each plot using
Eqs. (3) and (4) (λ = 0.2). Secondly, S (or CN) (with λ = 0.2)
was estimated from observed P–Q data using least square (LS)
fit, i.e. by minimizing the sum of the squares of residuals
(Eq. 5; NRCS 1997) employing Microsoft Excel (Solver):

Xn
i

Qi−Qcið Þ2

¼
X

Qi−
P−λSð Þ2

Pþ 1−λð ÞSð Þ

" #( )2

⇒Minimum ð5Þ

Here, Qi (mm) and Qci (mm) are respectively the observed
and predicted runoff for storm event i and n is the total number
of storm events. These CN values of a plot are designated as
CNLSn and CNLSo for natural and ordered datasets, respective-
ly. The natural P–Q data consist of the actual observed dataset.
In ordered data series, the observed P and Q values were first
sorted separately and then realigned using a common rank-
order basis to form a new set of P–Q pairs of an equal return
period, in which runoff Q is not necessarily matched with that
due to original rainfall P (Ajmal et al. 2015a; D’Asaro and
Grillone 2012; Hawkins 1993; Hawkins et al. 2009; Lal et al.
2015; Soulis and Valiantzas 2013).

To derive λ values, both S and λ were optimized as before,
consistent with the work of Hawkins et al. (2002), using both
natural and ordered data consisting of only large storm events
with a (arbitrary) P >15 mm criterion to avoid a biasing effect,
but to retain a sufficient number of P–Qdata for analysis. Only
plots having at least 10 observed P–Q events were considered
for the optimization study. Notably, model fitting yields only
one value of λ from all P–Q events of the plot. The CN values
(CNHT, CNLSn, and CNLSo) thus estimated are taken to
correspond to the average antecedent moisture condition
(AMC-II) of the plot. For wet (AMC-III) and dry (AMC-
I) conditions, these CN values were adjusted using
Eqs. (6) and (7), respectively, as follows (Hawkins et al.
1985):

Table 1 Rainfall characteristics during the study period (August 2012–April 2015)

Rainfall (mm)

0–10 10–20 20–30 30–40 40–50 50–60 60–70 70–80 >80

No. of events 58 9 13 5 6 4 2 3 1

No. of events generating runoff 5 4 13 5 6 4 2 3 –
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CNIII ¼ CNII

0:427þ 0:00573CNII
ð6Þ

CNI ¼ CNII

2:281−0:01281CNII
ð7Þ

In order to determine AMC of a rainfall event used in a
runoff prediction, 5-day antecedent rainfall (P5) was used as
follows: AMC-I ifP5 < 35.56mm in the growing season orP5
< 12.7 mm in the dormant season, AMC-II if 35.56 ≤ P5 ≤
53.34 mm in the growing season or 12.70 ≤ P5 ≤ 27.94 mm
in the dormant season, and AMC-III if P5 > 53.34 mm in the
growing season or P5 > 27.94 mm in the dormant season
(Ajmal et al. 2015a, b, c; Mays 2005).

Table 2 Summary of runoff plot characteristics and CN values derived using the least-square method (LSM) and National Engineering Handbook
tables (used partial dataset excluding P < 15 mm)

Plot No. Land use Slope
(%)

Infiltration capacity
(mm/hr)

HSGa No. of events n NEH-4 Table
CNHT

LSM (λ = 0.20) LSM (optimized λ)

Natural
CNLSn

Ordered
CNLSo

Natural data Ordered data

CNLSDn λ CNLSDo λ

1 Sugarcane 5 7.36 B 15 81 79.93 81.01 70.79 0.0334 81.87 0.2276

2 Sugarcane 3 8.77 A 15 72 80.09 81.41 77.00 0.1244 89.17 0.6590

3 Sugarcane 1 6.51 B 15 81 81.51 82.75 70.30 0.0002 80.23 0.1267

4 Fallow 5 12.10 A 10 76 75.05 76.16 62.61 0.0204 80.74 0.3513

5 Fallow 3 6.15 B 10 85 75.52 76.99 59.91 0.000 66.61 0.0245

6 Fallow 1 10.28 A 10 76 70.87 71.94 60.86 0.0631 76.63 0.3174

7 Maize 5 4.24 B 10 78 82.19 82.46 74.91 0.0314 76.17 0.0455

8 Maize 3 5.52 B 10 78 80.24 80.39 80.49 0.2079 80.98 0.2192

9 Maize 1 2.82 C 10 85 84.81 85.04 81.89 0.0999 83.60 0.1443

10 Blackgram 5 15.22 A 10 66 82.06 82.83 79.07 0.1141 87.13 0.4213

11 Blackgram 3 13.82 A 10 66 78.38 79.16 73.13 0.0879 79.09 0.1966

12 Blackgram 1 5.66 B 10 77 78.95 80.01 69.93 0.0328 77.81 0.1412

13 Sugarcane 5 25.50 A 13 67 74.49 74.74 56.94 0.0003 57.21 0.0000

14 Sugarcane 3 10.18 A 13 67 78.5 79.72 64.47 0.0000 67.69 0.0000

15 Sugarcane 1 14.90 A 13 67 76.05 77.10 61.23 0.0002 62.22 0.0000

16 Maize 5 10.25 A 11 67 77.97 78.59 62.39 0.0000 64.06 0.0000

17 Maize 3 26.90 A 11 67 75.49 75.94 58.13 0.0001 58.65 0.0001

18 Maize 1 22.05 A 11 67 82.26 82.92 70.93 0.0000 75.77 0.0415

19 Blackgram 5 21.50 A 11 58 64.73 67.47 38.72 0.0000 42.16 0.0000

20 Blackgram 3 19.40 A 11 58 73.07 74.79 55.95 0.0000 56.11 0.0000

21 Blackgram 1 18.50 A 11 58 77.88 78.96 61.92 0.0000 64.30 0.0000

22 Fallow 5 22.92 A 13 74 69.61 71.43 46.21 0.0000 51.12 0.0001

23 Fallow 3 7.90 A 11 74 68.90 72.23 45.80 0.0000 55.11 0.0001

24 Fallow 1 19.80 A 13 74 70.59 73.76 51.79 0.0000 54.66 0.0001

25 Sugarcane 5 2.68 C 10 88 90.33 90.59 85.36 0.0000 85.97 0.0000

26 Sugarcane 3 3.50 C 10 88 86.84 87.19 79.03 0.0000 79.88 0.0000

27 Sugarcane 1 3.10 C 10 88 84.62 85.27 74.56 0.0000 76.17 0.0000

Mean 73.44 77.83 78.92 65.72 0.0302 70.78 0.1080

Median 74.00 78.38 79.16 64.47 0.0001 76.17 0.0001

Standard deviation 9.12 5.85 5.27 11.93 0.0527 12.68 0.1665

Maximum 88.00 90.33 90.59 85.39 0.2079 89.17 0.6590

Minimum 58.00 64.73 67.47 38.72 0.0000 42.16 0.0000

Skewness 0.00 −0.15 0.00 −0.41 2.0189 −0.51 1.8609

a HSGs (hydrologic soil groups) are mainly determined by infiltration capacity: A > 7.26 mm/hr; 3.81 < B < 7.26 mm/hr; 1.27 <C < 3.81 mm/hr;
D < 1.27 mm/hr
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Performance evaluation

Performance of the existing SCS-CN model (Eq. 2) with tradi-
tional λ = 0.2 was compared with that employing an average
λ = 0.030 value derived from the 27 natural P–Q plot-datasets
(Table 2). The average is considered instead of the median as the
former yielded the smallest standard error (Fu et al. 2011). Here,
it is notable that all runoff-producing rainfall events only were
used in analyzing the performance of λ = 0.03 over traditionally
used λ = 0.20. The effect of variation in λ on CNs (or runoff) has
been evaluated using data from five randomly selected plots (i.e.
plots 1, 5, 12, 16 and 17 from Table 2). In addition, the relative
change in estimated runoff with progressive changes in the λ-
value was also analyzed as follows:

ΔQi ¼
Qci−Qcað Þ
Qca

� 100 ð8Þ

whereΔQi is the relative change of runoff at step i, andQci and
Qca are respectively the estimated runoff at step i and step a.
Initially, λ = 0.2 was fixed for step a and then reduced by 10 %
at each step down to 0.02, and runoff was estimated at each step
using Eq. (2). The average CNLSo (=78.92) was estimated from
event-based CNs of the 27-plotdata (Table 2) and was used for
the S computation in Eq. (4). P = 30 mm was used in Eq. (2)
due to its having the highest frequency of occurrence (Table 1).

Statistical analysis

The goodness of fit was evaluated using the coefficient of
determination (R2), root mean square error (RMSE), Nash-
Sutcliffe efficiency coefficient (NSE; Nash and Sutcliffe
1970), number of times nt that the observed variability is
greater than the mean error, and percent bias (PBIAS). R2 is
expressed as:

R2 ¼

Xn
i¼1

Qi−Q
� �

Qci−Qc

� �
Xn
i¼1

Qi−Q
� �2Xn

i¼1

Qci−Qc

� �2" #0:5

0
BBBBB@

1
CCCCCA

2

ð9Þ

where Qi (mm) and Qci (mm) are respectively the observed

and predicted runoff for storm event i,Qc (mm) is the average
of predicted runoff for all storm events, n is the total number

of storm events, and Q (mm) is the average of observed
runoff for all storm events. R2 > 0.6 is considered as ac-
ceptable for satisfactory agreement between observed and
predicted variables (Moriasi et al. 2007; Santhi et al.
2001; Van Liew et al. 2003).

NSE has been widely used to evaluate hydrological models
(Ajmal et al. 2015a, b, c; EI-Sadek et al. 2001; Fentie et al.

2002; Sahu 2007; Sahu et al. 2007, 2010a; Shi et al. 2009;
Yuan et al. 2014) and is expressed as follows:

NSE ¼ 1−

Xn
i¼1

Qi−Qcið Þ2

Xn
i¼1

Qi−Q
� �2

0
BBBB@

1
CCCCA ð10Þ

According toMotovilov et al. (1999), Moriasi et al. (2007),
Lim et al. (2006), Parajuli et al. (2007, 2009), Santhi et al.
(2001) , 0 .75 NSE ≤ 1.0 indica tes very good f i t ;
0.65 NSE ≤ 0.75, good fit; 0.50 NSE ≤ 0.65, satisfactory fit;
and NSE ≤ 0.50 indicates an unsatisfactory fit. RMSE (Ajmal
et al. 2015c; Deshmukh et al. 2013; Jain et al. 2006b; Mishra
et al. 2004, 2006a; Sahu et al. 2007, 2010a) is defined as:

RMSE ¼ 1

n

Xn
i

Qi−Qcið Þ2
 !1=2

ð11Þ

and nt is expressed as (Ritter and Muñoz-Carpena 2013):

nt ¼ SD

RMSE
−1 ð12Þ

where SD is the standard deviation. nt ≥ 2.2 indicates very good
agreement; 1.2 ≤ nt < 2.2 implies good; 0.7 ≤ nt < 1.2 shows sat-
isfactory; and nt < 0.7 indicates an unsatisfactory fit.

Percent bias (PBIAS) measures average tendency of the
estimated data to be larger or smaller than their observed data
(Ajmal et al. 2015c; Gupta et al. 1999;Moriasi et al. 2007) and
is expressed as:

PBIAS ¼

Xn
i¼1

Qi−Qcið Þ � 100

Xn
i¼1

Qi

2
66664

3
77775 ð13Þ

PBIAS indicates whether the method is consistently over-
predicting or under-predicting—positive values indicate mod-
el underestimation, and negative values overestimation
(Gupta et al. 1999; Moriasi et al. 2007; Yuan et al. 2014),
while for perfect agreement, PBIAS = 0. According to
Archibald et al. 2014; Donigian et al. 1983; Moriasi et al.
2007; Singh et al. 2004; Van Liew et al. 2003, PBIAS <
±10 % indicates very good fit; ±10 % ≤ PBIAS < ±15 %,
good; ±15 % ≤ PBIAS < ±25 %, satisfactory; and PBIAS ≥
±25 %, unsatisfactory fit.

To evaluate the improvement in performance of the modi-
fied model over the existing one, the r-statistic (Nash and
Sutcliffe 1970; Ajmal et al. 2015d; Ajmal et al. 2016;
Senbeta et al. 1999) is used and it is expressed as:
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r ¼ NSE2−NSE1ð Þ
1−NSE1ð Þ � 100 ð14Þ

where NSE1 and NSE2 are the efficiencies due to the
existing model and modified models, respectively.
r > 10 % indicates significant improvement of the mod-
ified model (Senbeta et al. 1999).

In this study, performance evaluation is primarily based on
R2, NSE, nt, and PBIAS for individual plot data and then the
arithmetic means of 27 values are taken as a rough estimate for
the overall performance evaluation. The Kolmogorov-
Smirnov test was used to assess the normality of data, and
the non-parametric Kruskal-Wallis test to assess the signifi-
cance level. Statistical analysis was carried out using SPSS
version 20.0 (IBM 2011), and Microsoft Excel 2007
(Solver) was used for the least square fitting.

Results and discussion

Variation of rainfall threshold for runoff generation (I)

As in the aforementioned, the P–Q analysis is based on 42
natural P–Q events of the plots of different slopes, land uses,
and HSGs observed during August 2012–April 2015 (i.e.
three crop-growing seasons)—August 2012−May 2013,
June 2013−May 2014, and June 2014−April 2015—at the
experimental farm in Roorkee, India (Table 1). A total of 11,
18, and 13 runoff-producing events were captured during
the first, second, and third years, respectively. In this study,
the lowest rainfall value was 5.6 mm, which generated run-
off in a year, whereas the highest rainfall of 17.6 mm did not
generate runoff in another year, during which the highest
storm rainfall was 75.8 mm.

The runoff initiation threshold, also known as rainfall
threshold for runoff generation, was determined for each
plot from daily P–Q data. Table 3 gives an overview of
rainfall threshold (I) values and slope (m/m) of P–Q
curves for all plots. As seen, both vary considerably
among plots. The highest I was observed for the plots
having HSGs A. In contrast, the lowest I was observed
for the plots having HSGs C, whereas I for HSG B was in
between HSGs A and C; thus, HSG (or indirectly soils
infiltration capacity) seems to play a major role in con-
trolling I in the plots.

Variation of mean runoff coefficient (Rcm)

As seen from the preceding, the concept of I is also supported
by response of runoff to rainfall, i.e. runoff coefficient which
followed a similar pattern as I. The mean runoff coefficient
(Rcm) was higher for the plots having HSGs C followed by B

and A (Table 3). This pattern for Rcm was followed by nearly
all the plots with few exceptions (i.e. plots 12 and 21); Rcm of
the plots ranged from 0.093 to 0.473.

Runoff coefficients (Rc) for individual rainfall events also
varied considerably from less than 0.005 to over 0.60, depend-
ing on the nature of the event and plot type. The Kolmogorov-
Smirnov test revealed that event-wise Rc for all individual
plots was not normally distributed. The non-parametric
Kruskal-Wallis test revealed a statistically significant differ-
ence between events Rc of all 27 study plots.

Relation among Q, P and θ

Correlations of the runoff (Q) and Rc with rainfall (P) and
previous-day soil moisture (θ) (%) were determined for each
plot separately and the results are shown in Table 4. As seen,
non−linear variation of Rc with P is similar to the variation of
Q with P, but the correlation between Rc and P is much lower
than that between Q and P. An example of a non-linear

Table 3 Rainfall threshold (I, mm) and slope of the rainfall–runoff
curve along with mean runoff coefficient (Rcm) for each plot

Plot No. n R2 Slope (m/m) (−) Intercept I (mm) Rcm

1 38 0.728 0.375 2.798 7.50 0.177

2 38 0.661 0.383 3.051 7.90 0.161

3 38 0.755 0.406 2.849 6.80 0.197

4 33 0.735 0.319 2.183 6.70 0.120

5 33 0.730 0.327 1.925 6.00 0.159

6 33 0.692 0.250 1.181 7.60 0.093

7 33 0.904 0.450 2.968 6.60 0.202

8 33 0.864 0.413 3.009 7.20 0.157

9 33 0.891 0.515 3.457 6.20 0.220

10 33 0.790 0.449 3.174 6.80 0.166

11 33 0.801 0.372 2.677 7.20 0.135

12 33 0.784 0.380 2.563 6.60 0.169

13 26 0.883 0.259 2.239 9.00 0.191

14 26 0.747 0.317 2.002 6.60 0.282

15 26 0.791 0.279 1.994 7.40 0.232

16 24 0.767 0.323 3.032 9.60 0.203

17 24 0.852 0.281 2.751 10.00 0.170

18 24 0.777 0.420 4.056 9.50 0.252

19 24 0.666 0.148 0.913 6.20 0.132

20 24 0.769 0.245 1.833 7.60 0.194

21 24 0.708 0.313 2.512 8.10 0.229

22 26 0.716 0.186 1.084 6.00 0.173

23 24 0.476 0.187 1.036 5.60 0.176

24 26 0.593 0.197 1.088 5.60 0.184

25 11 0.739 0.492 0.442 1.80 0.473

26 11 0.783 0.458 2.412 5.00 0.335

27 11 0.687 0.396 2.200 5.20 0.284
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relation betweenQ and P, and between Rc and P, for plot Nos.
1, 8, and 11 are shown in Fig. 2. The P–Q relationship was
statistically significant (p < 0.05) for all the plots. The highest
correlation was observed in plot 8 (maize land use), with a
coefficient of determination (R2) of 0.980; the poorest
(R2 = 0.411) was in plot 23 (fallow land use). In contrast, θ
did not correlate well with Q as well as did Rc in the study
plots (Fig. 3), for R2 ranging from 0.028 to 0.391.
Theoretically, higher θ means higher Q (or Rc); however, in
the present study, Q is largely controlled by P, consistent with
the findings of Nadal-Romero et al. (2008), Rodríguez-Blanco
et al. (2012), Scherrer et al. (2007), and Zhang et al. (2011),
rather than θ.

Effect of land use, infiltration capacity, and plot slope onQ
(or Rc)

The effects of land use, infiltration capacity (fc), and slope on
Q (or Rc) were also tested individually for their significance.

To this end, plots located in the same land use, HSG, and slope
were grouped separately to check their significance among
studied variables. Since the data distribution fails to pass the
normality test for all three of the individual groups (i.e. land
use, HSG, and slope), the non-parametric Kruskal-Wallis test
was used to test the significance level, whereby the results are
shown in Table 5. The test revealed that land uses did not
show any significant difference in Rc except sugarcane, which
produced significantly (p < 0.05) higher Rc than blackgram
and fallow land uses. In the case of HSGs, however, HSG C
had significantly higher Rc than did B and A, but B and A did
not differ from each other. In addition, slope did not show
any effect on Rc as all three groups of slope were insig-
nificantly different from each other. Thus, Rc (or Q) is
more significantly influenced by infiltration capacity (fc)
of soil rather than land uses or slopes. As shown in
Fig. 4a, mean runoff (Qm) produced at the study plots
was significantly (R2 = 0.269; p < 0.01) influenced by soil
permeability, described by infiltration capacity (fc). With

Table 4 Coefficients of
determination (R2) of daily runoff
(Q, mm) and runoff coefficients
(Rc) with daily rainfall (P, mm)
and previous-day soil
moisture (θ, %)

Plot No. n R2 with respect to runoff (Q) R2 with respect to runoff coefficient (Rc)

P θ P θ

1 18 0.722* 0.075 0.415* 0.066

2 18 0.680* 0.056 0.431* 0.057

3 18 0.727* 0.048 0.438* 0.056

4 12 0.729* 0.028 0.552* 0.097

5 12 0.692* 0.187 0.409** 0.120

6 12 0.719* 0.188 0.483** 0.031

7 13 0.940* 0.152 0.519* 0.029

8 13 0.980* 0.115 0.742* 0.035

9 13 0.922* 0.208 0.606* 0.218

10 13 0.805* 0.035 0.646* 0.064

11 13 0.843* 0.070 0.593* 0.055

12 13 0.786* 0.153 0.375** 0.078

13 13 0.814* 0.034 0.140 0.346

14 13 0.558* 0.219 0.185 0.167

15 13 0.600* 0.080 0.148 0.228

16 11 0.737* 0.090 0.460** 0.344

17 11 0.820* 0.055 0.342 0.295

18 11 0.769* 0.093 0.451** 0.322

19 11 0.621* 0.079 0.313 0.284

20 11 0.639* 0.113 0.261 0.458

21 11 0.641* 0.037 0.359 0.231

22 13 0.435** 0.061 0.079 0.136

23 11 0.411** 0.124 0.364** 0.365

24 13 0.516* 0.391 0.381** 0.395

25 11 0.828* 0.071 0.605* 0.318

26 11 0.812* 0.053 0.688* 0.219

27 11 0.722* 0.387 0.616* 0.518

* significant at 0.01 level; ** significant at 0.05 level
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an increase in fc, Qm decreased logarithmically, and vice
versa.

P–Q data based CN determination

First, event-wise CN values were derived for individual plots
using Eqs. (3) and (4) (with λ = 0.20). The derived CNs from
all 27 plots were comparable. The Kolmogorov-Smirnov test
revealed event-wise CNs for all individual plots to be normal-
ly distributed. The Student t-test for equality of means re-
vealed a statistically significant difference between event
CNs of all 27 study plots.

The effect of land use, infiltration capacity (fc), and slope
on event-wise CNs was also studied using similar analysis (or
tests) as discussed previously for Rc. As seen from Table 5,
land uses did not show any significant difference in CNs ex-
cept sugarcane, which produced significantly (p < 0.05)
higher CNs than blackgram and fallow land uses.
Furthermore, slope also did not show any effect on CNs as
all three slope groups (i.e. 5, 3, and 1 %) were statistically
insignificant. In the present study, CNs are seen to be influ-
enced by the infiltration capacity (fc) of soil because all three

groups of soil (i.e. A, B and C) exhibited significantly differ-
ent CNs.

CNs were also estimated for 27 plots for both natural
and ordered datasets using optimization (Eq. 5), and the
results are presented in Table 2. As shown, CNs for
study plots ranged widely from 64.73 to 90.33 and
67.47 to 90.59 for natural and ordered datasets, respec-
tively. All 27 CNs, when combined into one group,
were found to be normally distributed when tested using
the Kolmogorov-Smirnov test.

As already analyzed, fc is the main explanatory var-
iable for runoff production in the study plots. An in-
verse relationship between CN and fc for all 27 study
plots was also detected with significant correlation
(R2 = 0.461, p < 0.01; Fig. 4b). The results from this
analysis (Fig. 4b) support the applicability of NEH-4
tables where CNs decline with fc (or HSG).

Comparison of CNHT, CNLSn, and CNLSo

TheNEH-4 curve numbers (CNHT) are compared with those due
to both natural and ordered P–Q datasets observed on 27 plots
(Table 2). CNHT ranged from 58 (plots 19, 20, and 21) to 88

Fig. 2 Plots showing relationship of a runoff (Q, mm) and b runoff coefficient (Rc) with rainfall (P, mm) for plot Nos. 1, 8 and 11

Fig. 3 Plots showing relationship of a runoff (Q, mm) and b runoff coefficient (Rc) with previous-day soil moisture (θ) (%) for plot Nos. 1, 8 and 11
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(plots 25, 26, and 27). The optimized values of CNLSn ranged
respectively from 64.73 (plot 19) to 90.33 (plot 25), and CNLSo

from 67.47 to 90.59 for ordered dataset. Both CNLSn and CNLSo

values were higher than CNHT (Table 2). As seen in Fig. 5a,
CNHT and CNLSn do not compare well, as 17 out of 27 CNLSn

values are higher than those for CNHT; and both exhibited a
greater difference for values lower than 75; however, the differ-
ence diminishes with increasing values. The group of CNHT

lower than 75 shows a higher PBIAS (= −12.84 %) than the
group of CNHT higher than 75 (= 1.03 %). Overall, pair-wise
comparison showed a significant difference (p < 0.05) existing

betweenCNHTandCNLSnmeans. Such an inference is consistent
with the general notion that the existing SCS-CN method per-
forms better for high P–Q (or CN) events.

From Fig. 5b, CNHTwith CNLSo compare similar to that in
Fig. 5a; however, PBIAS of the group of CNHT lower than 75
is = −14.87 % compared to 0.12 % for the group higher than
75. From Fig. 5c, CNLSo values are seen to be higher than

Table 5 Mean event runoff coefficient (Rc) and CNs for the groups of different land uses, HSGs and slopes

Land uses group HSG group Slope group

Land use type Rc CN n HSG Rc CN n Slope (%) Rc CN n

Sugarcane 0.245 a 83.66 a 126 A 0.178 a 80.26 a 210 5 0.200 a 81.99 a 115

Black gram 0.170 bc 80.99 bc 72 B 0.179 a 82.99 b 87 3 0.194 a 81.88 a 113

Maize 0.200 bca 82.40 bca 72 C 0.323 b 88.00 c 46 1 0.195 a 82.09 a 115

Fallow 0.151 c 79.67 c 73 – – – – – – – –

Within one group, variables with no letter (alphabet, a, b, c) in common have significantly different Rc or CN at the 0.05 significance level (based on the
Kruskal-Wallis test)

Fig. 4 Relationship of a mean runoff (Qm, mm) and b curve number
(CN), antecedent moisture conditions II (AMC II), with infiltration
capacity (fc, mm/hr) of soil for all 27 agricultural plots

Fig. 5 CN comparison for a CNLSn vs CNHT, b CNLSo vs CNHT, and c
CNLSn vs CNLSo
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those for CNLSn, which is consistent with that reported else-
where (Ajmal et al. 2015a; D’Asaro and Grillone 2012;
D’Asaro et al. 2014; Hawkins et al. 2009; Stewart et al.
2012). CN values derived for individual plots using ordered
datasets differ from 0.15 to 3.22 CN compared with those
derived from natural data (Table 2). The trend between
CNLSo and CNLSn allows a conversion as follows:

CNLSo ¼ 0:005 CNLSnð Þ2 þ 0:163 CNLSn þ 37:449;

R2 ¼ 0:990; SE ¼ 0:552 CN

ð15Þ

Table S2 of the ESM shows the performance statistic used
to test the accuracy of all three sets of CNs, with respect to
CNHT, CNLSn, and CNLSo for the data of 24 plots (plots 1–24
of Table 2). Plot Nos. 25–27 were excluded from comparison
due to unavailability of their corresponding P5 data. Both NSE
and R2 show the estimated runoff based on all three CNs to be
poorly matching (except for a few plots) the observed runoff.
In general, CNLSo performed the best of all, and CNLSn better
than CNHT. The reason for CNHT to have performed the
most poorly is that these are the generalized values de-
rived from small watersheds of the United States for high-
magnitude P–Q events (or high CN values). As seen from
Table S2 of the ESM, for 15 out of 24 plots, a simple
mean of the observed runoff was a better estimate (due to
negative NSE values) than that due to CNHT, the estimates
of which reasonably correlated (NSE > 0.50) with observed
runoff for only two plots. Similarly, the mean of the ob-
served runoff series was a better estimate for 8 out of 24
plots than that due to CNLSn or CNLSo; while the runoff
estimated by CNLSn and CNLSo was reasonably close
(NSE > 0.50) to the observed runoff for 5 and 9 plots,
respectively.

From Fig. 5a,b, Table 2 and Table S2 of the ESM, it is
evident that the general agreement between CNHT and
CNLSn or CNLSo is poor, which is consistent with that reported
elsewhere (D’Asaro et al. 2014; Fennessey 2000; Feyereisen
et al. 2008; Hawkins 1984; Hawkins and Ward 1998; Sartori
et al. 2011; Stewart et al. 2012; Titmarsh et al. 1989, 1995,
1996; Tedela et al. 2012; Taguas et al. 2015). As an alternative
to CNHT, the best CN-values based on the highest R

2, NSE (or
lowest RMSE; from Table S2 of the ESM) are suggested for
each of the 24 plots. As seen, CNLSo ranked first for 20 out of
24 plots, whereas each of CNHT and CNLSn ranked first on
only 2 plots. Therefore, CNLSo is suggested as a preference
over CNHT for use in areas with similar plot characteristics
and climatic conditions.

Derivation of λ

From Table 2, the optimized λ-values derived for both natural
(ranging from 0 to 0.208) and ordered (ranging from 0 to
0.659) P–Q datasets are seen to vary widely from plot to plot

with 0 as the most frequent value. The cumulative frequency
distribution of λ-values for both datasets shows that λ-values
are larger for ordered data, the distribution is skewed, and
most λ-values (26 for natural and 21 for ordered P–Q datasets
out of total 27) are less than the standard λ = 0.20 value. The
respective mean and median λ-values are 0.030 and 0 for
natural, and 0.108 and 0 for ordered data, quite less than
0.20 but consistent with those reported elsewhere (Ajmal
et al. 2015a; Baltas et al. 2007; D’Asaro and Grillone 2012;
D’Asaro et al. 2014; Elhakeem and Papanicolaou 2009; Fu
et al. 2011; Hawkins and Khojeini 2000; Hawkins et al. 2002;
Menberu et al. 2015; Shi et al. 2009; Yuan et al. 2014; Zhou
and Lei 2011). In addition, the existence of a Ia–S rela-
tionship for different plots was also investigated using
all the data of 27 plots. In contrast to the existing no-
tion, Ia when plotted against S (Fig. 6), exhibited no
correlation for both natural and ordered datasets, which
is consistent with the findings of Jiang (2001).

Performance evaluation of the proposed model

Table 6 shows the performance indices (R2, NSE, RMSE,
nt and PBIAS) for fitting of Eq. (2) with λ = 0.20 (existing
SCS-CN method i.e. M1) and λ = 0.030 (proposed meth-
od i.e. M2). As seen from the table, the runoff estimates

Fig. 6 Relationship between Ia and S for data from the 27 plots for a
natural and b ordered data

(15)
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with λ = 0.030 (M2) provide larger NSE and lower RMSE
for 26 out of 27 plots than those due to λ = 0.20 (M1).
Based on NSE, performance of the existing SCS-CN
method (M1) is seen to be unsatisfactory, satisfactory,
good, and very good for the data of 12, 5, 3, and 7 plots
out of 27 plots, respectively. On the other hand, the per-
formance of the proposed method (M2) is unsatisfactory, sat-
isfactory, good, and very good on 8, 5, 5 and 9 plots out of 27
plots, respectively. Based on the mean values of NSE, M2
performed satisfactorily (NSE = 0.565) compared to M1
(NSE = 0.392).

The positive PBIAS values resulting for both the
methods indicate that the existing SCS-CN method
(i.e. M1) underestimated the average runoff; however,
these values for M2 were much lower than those due
to M1, ind i ca t ing an improvemen t in mode l

performance. M1 performance was unsatisfactory, satis-
factory, good, and very good as regards the data of 6,
10, 1, and 9 plots out of 27 plots, respectively. On the
other hand, M2 performance was unsatisfactory, satisfac-
tory, good, and very good on 4, 4, 6 and 13 plots out
of 27 plots, respectively; thus, based on the mean
PBIAS values , M2 per formance was good (=
10.78 %), whereas M1 performed satisfactorily (=
16.90 %). For further analysis based on nt, M1 exhibit-
ed satisfactory or good performance regarding 11 out of
27 plots. The performance improved for 16 plots when
M2 was used. The improved M2 model performance is
also supported by the higher r-value. As shown in
Fig. 7, the significant improvement in NSE (or r) using
the M2 model was observed in 26 out of the 27 study
plots. In contrast, the runoff predictions by M2 model

Table 6 Performance statistics for runoff estimation using Eq. (2) with λ = 0.20 (model M1) and λ = 0.030 (model M2; used all runoff producing
events)

Plot No. n Existing SCS-CN method (λ = 0.20) (model M1) Proposed method (λ = 0.030) (model M2) r
(%)

CN R2 NSE nt PBIAS
(%)

RMSE
(mm)

CN R2 NSE nt PBIAS
(%)

RMSE
(mm)

1 18 76.16 0.701 0.626 0.69 20.04 4.71 63.65 0.739 0.726 0.03 10.22 4.04 26.74

2 18 75.24 0.695 0.657 0.76 17.17 4.62 62.29 0.721 0.718 0.97 6.16 4.19 17.78

3 18 78.91 0.634 0.556 0.55 18.78 6.05 68.03 0.666 0.648 0.94 10.68 5.38 20.72

4 12 68.01 0.899 0.875 1.97 −0.78 2.00 51.67 0.985 0.979 0.74 11.52 0.83 83.20

5 12 67.09 0.507 0.341 0.29 23.46 4.44 51.13 0.731 0.627 6.16 33.18 3.34 43.40

6 12 65.25 0.941 0.890 2.17 −41.82 1.59 45.58 0.966 0.966 0.72 2.11 0.89 69.09

7 13 82.84 0.925 0.918 2.65 7.48 3.52 75.46 0.928 0.928 4.69 −1.47 3.29 12.20

8 13 80.84 0.969 0.969 4.97 1.20 2.10 72.66 0.960 0.952 2.91 −10.80 2.64 −54.84
9 13 82.80 0.936 0.928 2.88 8.55 3.27 75.41 0.941 0.941 3.76 −0.33 2.93 18.06

10 13 77.11 0.890 0.875 1.95 11.59 3.33 66.42 0.909 0.910 3.33 1.65 2.83 28.00

11 13 74.93 0.856 0.849 1.69 8.64 3.43 62.95 0.873 0.873 2.48 −0.73 3.14 15.89

12 13 74.91 0.766 0.738 1.04 17.17 4.48 63.00 0.792 0.788 1.93 8.37 4.03 19.08

13 13 74.49 0.808 0.509 0.49 21.91 3.81 60.85 0.810 0.724 1.27 11.09 2.86 43.79

14 13 78.50 0.407 −0.217 −0.06 23.26 7.45 67.44 0.419 0.096 0.98 17.33 6.42 25.72

15 13 76.05 0.518 −0.015 0.03 24.58 5.98 63.41 0.532 0.299 0.09 16.08 4.97 30.94

16 11 77.97 0.612 0.468 0.46 16.72 5.80 66.46 0.624 0.598 0.24 7.63 5.13 24.44

17 11 75.49 0.804 0.679 0.85 18.97 3.73 62.45 0.812 0.796 0.65 6.47 2.98 36.45

18 11 82.26 0.657 0.608 0.68 8.48 6.61 73.69 0.661 0.655 1.32 2.93 6.20 11.99

19 11 67.48 0.415 −0.390 −0.11 45.43 4.44 50.26 0.480 0.136 0.79 25.33 3.50 37.84

20 11 73.70 0.489 −0.089 0.00 33.27 5.68 59.67 0.517 0.282 0.13 20.13 4.61 34.07

21 11 77.80 0.440 0.152 0.14 23.24 7.18 66.13 0.456 0.347 0.24 14.85 6.30 23.00

22 13 69.61 0.330 −0.718 −0.21 39.32 5.26 53.13 0.362 −0.151 0.30 24.22 4.31 33.00

23 11 69.63 0.127 −0.554 −0.16 46.94 7.11 53.76 0.161 −0.178 −0.03 29.67 6.19 24.20

24 13 70.59 0.155 −0.676 −0.20 38.47 6.66 54.49 0.189 −0.228 −0.03 25.20 5.70 26.73

25 11 90.36 0.675 0.484 0.46 7.84 6.57 86.50 0.678 0.554 −0.06 7.41 6.11 13.57

26 11 86.84 0.716 0.622 0.71 7.38 5.08 80.88 0.731 0.690 0.57 5.54 4.61 17.99

27 11 84.62 0.606 0.499 0.48 8.98 5.42 77.05 0.628 0.584 0.88 6.54 4.94 16.97

Mean 76.28 0.647 0.392 0.93 16.90 4.83 64.24 0.677 0.565 1.36 10.78 4.16 28.45
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were debased (r ≤ 0) in only one plot. Overall, as seen
from Table 6 and Fig. 7, M2 performed better than M1.

Sensitivity of λ to CN and runoff

This sensitivity analysis was carried out using the data
of only 5 plots. To this end, as shown in Fig. 8, for a
plot dataset and a given λ-value, S (or CN) was
optimised using Eq. (2). As seen, the rising trends are
similar to each plot. In general, CN is seen to increase
with λ, which is due to the fact that for the given P–Q
data, an increase in λ would require an increase in CN
(or decrease in S) to obtain the same Q-value for a
given P. Furthermore, variation in CN narrows down
with increasing λ-values.

To indicate the most appropriate λ-value, variation of
NSE with λ was plotted (Fig. 9). In general, NSE
showed a decreasing trend with λ for all five plots, con-
sistent with the findings of Woodward et al. (2004) and
Yuan et al. (2014), which implies that a low λ-value

provides a better prediction of runoff, and vice versa.
To show the sensitivity of λ to runoff (using Eq. 8),
for a given CN = 78.92 and P = 30 mm, the estimated
runoff increased by 165 % when λ decreased (by
90 %) from 0.2 to 0.02.

Conversion of CN0.20 to CN0.030

The existing NEH-4 CNs are based on a λ value equal
to 0.20; therefore, a transformation of CNs from λ =
0.20 to λ = 0.030 is imperative before using λ = 0.030
in runoff modeling. To this end, an empirical conversion
equation, based on direct least squares fitting of 27
plots with natural datasets for converting CNs associat-
ed with λ = 0.20 (CN0.20) to λ = 0.030 (CN0.030), is pro-
posed as follows:

S0:030 ¼ 0:614 S0:20ð Þ1:248;R2 ¼ 0:995;

SE ¼ 0:035 mm

ð16Þ

In Eq. (16), maximum potential retention (S) is in mm and
S0.030 = S0.20 at 7.148 mm or CN0.20 = 97.268. The ratio of
S0.030 to S0.20 (i.e. S0.030/S0.20) was seen to be inversely related
to the mean ratio of Q to P (i.e. Rcm). The substitution of
Eq. (16) into the definition of CN yields

CN0:030 ¼ 25400
.

254þ 0:614 25400
.
CN0:20−254

� �1:248� �
ð17Þ

The applicability of Eq. (16) (or Eq. 17) to prediction of runoff
using the NEH-4 tables curve number (CNHT) is also investigat-
ed. To this end, the estimated NEH-4 CNs (or CNHT0.20) based
on plot characteristics for 24 plots (1–24 plots of Table 2) were
first converted to CNHT0.030, and then employed for runoff
estimation as shown in Table S3 of the ESM, along with R2,
NSE, and RMSE. As seen, CNHT0.030 from Eq. (16) estimates
the runoff more accurately than did CNHT0.20. Besides, the r-Fig. 8 Variation in CNs (AMC II) with λ for data from five plots

Fig. 7 The cumulative frequency distribution of improvement using the r
criterion

Fig. 9 Variation in NSE with λ

(16)
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statistic (Fig. 7) also shows the use of Eq. (16) to have signif-
icantly improved NSE in 22 out of 24 study plots.

Limitations of the study

The results of this study are limited to the experimental
boundaries such as plot size, slopes, soils, agricultural
land uses, and climatic conditions. Replication of such a
study for a wider range of physical and climatic settings is
imperative for indicating its broader applicability. In this
regard, an automation of measurement of data may further
help refine the results of the present study which is based
on manual data collection.

Conclusions

The following conclusions can be drawn from the study:

1. Compared to land use and slope, infiltration capacity (fc)
is the main explanatory variable for runoff (or CN) pro-
duction in the study plots.

2. CN is inversely related to infiltration capacity (fc), which
supports the applicability of CNs from the NEH-4 tables
declining with fc (or HSG).

3. P–Qderived CNs are higher than those fromNEH-4 tables.
However, these are closer for higher CN values, which is
consistent with the general notion that the existing SCS-CN
method performs better for high P–Q (or CN) events.

4. Mean and median λ-values are respectively 0.030 and 0
for natural P–Q data, and 0.108 and 0 for ordered P–Q
data. λwas greater than 0.20 for only one natural plot data
and six ordered plot data.

5. Runoff estimation improves as λ decreases, for 26 out of
27 plots by changing λ-value from 0.20 to 0.030.

6. There exists a relationship between CN0.20 (λ = 0.20) and
CN0.030 (λ = 0.030), useful for CN conversion for field
application.
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Appendix: Notation

Ia Initial abstraction (mm)
Rcm Mean runoff coefficient of plot
Rc Event runoff coefficient
λ Initial abstraction coefficient

P Rainfall (mm)
Q Observed runoff (mm)
Qm Mean observed runoff of plot (mm)
Qc Predicted runoff (mm)
CN0.20 Curve number associated with λ = 0.20
CN0.030 Curve number associated with λ = 0.030
NEH National engineering handbook
NSE Nash-Sutcliffe efficiency coefficient
CNHT Curve number derived from NEH-4 tables
S Maximum potential retention (mm)
θ Previous day soil moisture (%)
HSG Hydrologic soil group
P5 5-day antecedent rainfall (mm)
fc Infiltration capacity (mm/hr)
CNLSn Curve number derived from P–Q data set using

least square method (λ = 0.2) for natural data
series

CNLSo Curve number derived from P–Q data set using
least square method (λ = 0.2) for ordered data
series

CNLSDn Curve number derived from P–Q data set using
least square method (optimized λ) for natural
data series

CNLSDo Curve number derived from P–Q data set using
least square method (optimized λ) for ordered
data series

CNHT0.20 NEH-4 tables CN associated with λ = 0.20
CNHT0.030 NEH-4 tables CN associated with λ = 0.03
I Rainfall threshold for runoff generation (mm)
n Number of event (or observation)
nt Statistic used for performance evaluation
r Statistic used for showing the improvement in

NSE
R2 Coefficient of determination
RMSE Root mean square error (mm)
PBIAS Percent bias (%)
SD Standard deviation (mm)
SPSS Statistical Package for the Social Sciences
SE Standard error of estimate (mm)
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