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Abstract Non-Darcian flow to a partially penetrating well in
a confined aquifer with a finite-thickness skin was investigat-
ed. The Izbash equation is used to describe the non-Darcian
flow in the horizontal direction, and the vertical flow is de-
scribed as Darcian. The solution for the newly developed non-
Darcian flow model can be obtained by applying the lineari-
zation procedure in conjunction with the Laplace transform
and the finite Fourier cosine transform. The flow model com-
bines the effects of the non-Darcian flow, partial penetration of
the well, and the finite thickness of the well skin. The results
show that the depression cone spread is larger for the Darcian
flow than for the non-Darcian flow. The drawdowns within
the skin zone for a fully penetrating well are smaller than those
for the partially penetrating well. The skin type and skin thick-
ness have great impact on the drawdown in the skin zone,
while they have little influence on drawdown in the formation
zone. The sensitivity analysis indicates that the drawdown in
the formation zone is sensitive to the power index (n), the
length of well screen (w), the apparent radial hydraulic con-
ductivity of the formation zone (Kr2), and the specific storage
of the formation zone (Ss2) at early times, and it is very sensi-
tive to the parameters n,w andKr2 at late times, especially to n,
while it is not sensitive to the skin thickness (rs).

Keywords Analytical solutions . Groundwater flow . Izbash
equation . Partially penetrating well . Skin effect

Introduction

Non-Darcian flow, which describes a non-linear relationship
between the specific discharge and hydraulic gradient, often
occurs for cases with high flow velocities, or in low-
permeability media under very low velocities (e.g. Sen 1989,
1990, 2000; Moutsopoulos and Tsihrintzis 2005; Mathias
et al. 2008; Wen et al. 2011; Houben 2015a). Obviously, the
flow near a pumping well is likely to be non-Darcian when the
pumping rate is relatively large and Darcy’s law becomes
invalid. The Forchheimer (1901) equation and Izbash (1931)
equation are most commonly used to quantify the relationship
between the specific discharge and hydraulic gradient for non-
Dracian flow, and it was found that both equations can de-
scribe non-Darcian flow verywell (Bordier and Zimmer 2000;
Chen et al. 2003; Moutsopoulos et al. 2009; Sedghi-Asl et al.
2014; Chen et al. 2015; Houben 2015a). Up to now, a series of
(semi-)analytical solutions for non-Darcian flow to a pumping
well have been conducted on the basis of these two equations.
For instance, Sen (1989, 1990) obtained analytical solutions
on the basis of Forchheimer flow for an infinitesimal well or a
large diameter well in confined aquifers by using the
Boltzmann transform method. Sen (2000) also derived a tran-
sient drawdown solution for Izbash flow toward a fully pene-
trating well of infinitesimal radius in a confined aquifer by
using Boltzmann transform as well. Recently, Wen et al.
(2008a, 2008b, 2013) have done much work on Izbash non-
Darcian flow to a fully penetrating pumping well in different
aquifer systems and some approximate solutions have been
obtained by using the Laplace transform associated with a
linearization approximation. It has been proven that the
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linearization procedure can lead to an underestimation of the
drawdown at early times, but works quite well at late times
(Wen et al. 2008a, b). A careful review of the existing
(semi-)analytical solution for the non-Darcian flow to a
pumping well indicates that the analytical methods of the
Boltzmann transform and the linearization procedure have
been used to solve such non-Darcian flow models. However,
it has been proven that the Boltzmann transform is not math-
ematically rigorous (Mathias et al. 2008;Wen et al. 2011). The
linearization procedure might be a good choice for such non-
Darcian problems, although it has some limitations for the
early-time solutions (Wen et al. 2009, 2013).

For Darcian flow to a partially penetrating well with a
constant rate, a variety of (semi-) analytical solutions are avail-
able to analyze the effect of partial penetration on the draw-
down in different aquifer systems. For instance, Yang et al.
(2006) developed an analytical solution for the constant-flux
pumping test in a confined aquifer with a partially penetrating
well. Malama et al. (2008) derived a semi-analytical solution
for flow toward a partially penetrating well pumped at a con-
stant rate in a leaky unconfined aquifer. Feng and Zhan (2015)
derived a semi-analytical solution for flow toward a partially
penetrating well pumped at a constant rate in a leaky confined
aquifer. Most of the previous studies about groundwater flow
to a partially penetrating well are based on the flow being
Darcian. Although Wen et al. (2013, 2014) derived approxi-
mate analytical solutions for Izbash non-Darcian flow to a
partially penetrating well of an infinitesimally small radius
or a large diameter in a confined aquifer, research related to
non-Darcy flow to a partially penetrating well is still quite
limited.

In addition to the non-Darcian effect, another issue which
should be considered for the groundwater flow to a pumping
well is the skin effect. The well skin is usually developed
outside the wellbore because of the well construction
(Novakowski 1989; Park and Zhan 2002; Chang and Chen
2002; Yeh and Yang 2006; Yeh and Chang 2013; Houben
2015b). In general, the well skin can be classified into two
types, the infinitesimal skin and finite thickness skin. The
thickness of the well skin cannot be neglected (Novakowski
1989; Yang and Yeh 2007; Pasandi et al. 2008; Yang et al.
2014). In this case, the skin zone should be treated as a differ-
ent formation zone with individual hydrodynamic properties
and thickness. The flow to a constant-flux pumping well in an
aquifer, considering finite thickness skin, has been extensively
investigated (Yeh et al. 2003; Perina and Lee 2006; Pasandi
et al. 2008; Chiu et al. 2007). For instance, Yeh et al. (2003)
developed a closed-form analytical solution for a fully pene-
trating constant-flux pumping well in a two-zone confined
aquifer. Chiu et al. (2007) derived an analytical solution of
the drawdown for flow toward a partially penetrating well in
a confined aquifer system while treating the skin as a finite
thickness zone. Wen and Wang (2013) developed an

approximate analytical solution for radial non-Darcian flow
to a fully penetrating well in a leaky aquifer with wellbore
storage and skin effect, and also developed a finite difference
solution to compare with the approximate analytical solution.

A careful check of the previous literature easily determines
that most of the research focused on the non-Darcian flow to a
fully penetrating well, while research on the non-Darcian flow
to a partially penetrating well is quite limited. Meanwhile,
note that most of the studies on groundwater flow towards a
constant-rate pumping well in an aquifer while considering the
finite-thickness skin, were based on the assumption of Darcian
flow. Only a few researchers (Wen and Wang 2013) studied
the non-Dracian flow to a well considering the effect of finite
thickness skin. In reality, all of the non-Darcian flow effect,
well partial penetration, and the skin effect are of vital impor-
tance and should be considered when analyzing the non-
Darcian flow to a partially penetrate well pumped at a constant
rate. The purpose of this study is to extend previous work
(Wen et al. 2013) and obtain an available analytical solution,
taking simultaneously the effects of non-Darcian flow, partial
penetration, skin type and skin thickness into account in a
confined aquifer system.

In this study, a new mathematical model is developed. The
flow in the horizontal direction is assumed to be non-Darcian.
The flow velocity in the vertical direction is relatively small
and the vertical flow is assumed to be Darcian (Wen et al.
2013). The Laplace domain approximate solution is derived
by using the linearization approximation proposed by Wen
et al. (2008a), associated with the Laplace transforms and
the finite Fourier cosine transform. The effects of the power
index in the Izbash equation, well partial penetration, skin
type and skin thickness on the drawdowns were analyzed in
this study. Additionally, a sensitivity analysis was made to
study the degree of sensitivity of the drawdown to the major
parameters of the aquifer and well configuration.

Mathematical model and solution

A schematic diagram summarizing the parameters of this
study is shown in Fig. 1. The horizontal flow near the
pumping well is assumed to non-Darcian. Both the horizontal
flow and the vertical flow should be considered in partially
penetrating wells and a finite-thickness skin is assumed to
exist around the wellbore. The other assumptions are: (1) both
the skin zone and the formation are homogeneous and isotro-
pic, the formation zone is of infinite-extent and with a constant
thickness, and the skin zone has uniform finite thickness
around the wellbore; (2) the pumping well is partially pene-
trating the aquifer with a finite radius; (3) the pumping rate is
constant; and (4) the whole system is hydrostatic before the
pumping starts.
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Based on the aforementioned assumptions, the governing
equations for the skin and formation zones can be established
as follows (Sen 1989; Wen et al. 2013):

∂qr1 r; z; tð Þ
∂r

þ qr1 r; z; tð Þ
r

þ ∂qz1 r; z; tð Þ
∂z

¼ Ss1
∂s1 r; z; tð Þ

∂t
; rw≤r≤rs ð1Þ

∂qr2 r; z; tð Þ
∂r

þ qr2 r; z; tð Þ
r

þ ∂qz2 r; z; tð Þ
∂z

¼ Ss2
∂s2 r; z; tð Þ

∂t
; rs≤r < ∞ ð2Þ

in which the subscripts 1 and 2 denote the skin and
formation zones, respectively; r is the distance from
the center of the pumping well [m]; t is the pumping
time [h]; z is the vertical coordinate [m]; Ss is the spe-
cific storage of the aquifer [m−1], qr(r, z, t) and qz(r, z,
t) are the specific discharge in the horizontal and verti-
cal plane [m h−1], respectively; s(r, z, t) is the draw-
down; rw is the radius of pumping well [m]; rs is the
outer radius of the skin [m].

The initial conditions can be expressed as:

s1 r; z; 0ð Þ ¼ s2 r; z; 0ð Þ ð3Þ

The outer boundary condition for the formation at an infi-
nite distance is:

s2 ∞; z; tð Þ ¼ 0 ð4Þ

The boundary conditions at the top and bottom of the aqui-
fer in the vertical direction are:

∂s1 r; 0; tð Þ
∂z

¼ ∂s2 r; 0; tð Þ
∂z

¼ ∂s1 r;L; tð Þ
∂b

¼ ∂s2 r; L; tð Þ
∂z

¼ 0

ð5Þ

The boundary condition for the horizontal specific discharge
along the screen is assumed uniform and can be written as:

qr1 rw; z; tð Þ ¼ −
Q

2πrw l−dð Þ U z−dð Þ−U z−lð Þ½ �; 0≤z≤L ð6Þ

whereQ is the pumping rate [m3 h−1], d and l denote the top and
bottom vertical coordinates of the screen [m], respectively, L is
the thickness of confined aquifer [m], U (·) is the unit step func-
tion, andU (z – d) equals one when z is larger than d, otherwise,
U (z – d) is zero.

The drawdown and the flux at the interface between the
formation zone and the skin zone are continuous, respectively.
This requires that:

s1 rs; z; tð Þ ¼ s2 rs; z; tð Þ ð7Þ
and

qr1 rs; z; tð Þ ¼ qr2 rs; z; tð Þ ð8Þ

In order to make the problem mathematically tractable, the
Izbash equation is employed to describe the horizontal flow in
the skin and formation zones:

qr1 qr1j jn1−1 ¼ − −qr1ð Þn1 ¼ Kr1
∂s1 r; z; tð Þ

∂r
ð9Þ

and

qr2 qr2j jn2−1 ¼ − −qr2ð Þn2 ¼ Kr2
∂s2 r; z; tð Þ

∂r
ð10Þ

where, n1, n2, Kr1 and Kr2 are empirical parameters, which
are treated as constants here. n is used to reflect the effect
of non-Darcian flow, and the range of n is from 1 to 2 for
non-Darcian flow with relatively high velocities, demon-
strating both the viscous flow regime and the inertial flow
regime (Bordier and Zimmer 2000; Moutsopoulos et al.
2009). Obviously, the Izbash equation agrees with
Darcy’s law in the case of n1 = n2 = 1, and Kr1 and Kr2

become the hydraulic conductivity. Thus, Kr1 and Kr2 can
be considered as the apparent radial hydraulic conductivity
of the skin and formation zone, respectively. In this study,
the variable γ is defined to reflect the ratio between the
apparent radial hydraulic conductivity of the formation
zone and the quasi radial hydraulic conductivity of the skin
zone. If the apparent radial hydraulic conductivity of the
skin zone is smaller than that of the formation zone, the
well skin is defined as a positive skin under non-Darcian

Fig. 1 Schematic diagram of the partially penetrating well and aquifer
configurations (r is the distance from the center of the pumping well, rw is
the radius of the pumping well; rs is the radius of the skin zone. Q is the
pumping rate, L is the thickness of the confined aquifer, and d and l denote
the top and bottom vertical coordinates of the screen, respectively.)
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flow conditions, which is similar to the studies about the
skin effect under Darcian flow conditions, and in this case,
γ is larger than one. The reverse case is defined as a
negative skin with γ smaller than one. In addition, it
should be noted that the negative sign is shown in Eqs.
(9) and (10) because the direction of the radial flow and
the r-axis is opposite.

Darcy’s law is used to describe the vertical direction flow in
the skin and formation zones, and can be written as:

qz1 ¼ Kz1
∂s1 r; z; tð Þ

∂z
ð11Þ

and

qz2 ¼ Kz2
∂s1 r; z; tð Þ

∂z
ð12Þ

where Kz1 and Kz2 are the vertical hydraulic conductivity of
the skin and formation zone [m h−1], respectively.

Substituting Eq. (9) and (11) into Eq. (1), one can obtain:

Kr1

n1 −qr1ð Þn1−1
∂2s1 r; z; tð Þ

∂r2
þ Kr1

r −qr1ð Þn1−1
∂s1 r; z; tð Þ

∂r
þ Kz1

∂2s1 r; z; tð Þ
∂z2

¼ Ss1
∂s1 r; z; tð Þ

∂t
rw≤r≤rs ð13Þ

Notably, the term −qr1ð Þ n1−1 makes Eq. (13) non-
linear. However, the linearization procedure proposed
by Wen et al. (2008a) can be used to approximate the
non-linear term efficiently, which has been proven to
work extremely well at late times and it will underesti-
mate the drawdowns at early times (Wen et al. 2009).
With the similar linearization approximation, the nonlin-
ear term can be approximated as follows:

−qr1ð Þn1−1≈ Q

2πrL

� �n1−1
ð14Þ

This approximation means the flow rate at any cylindrical
cross section is regarded as the pumping rateQ. Obviously, this
assumption is valid unless the flow approaches steady state,
indicating that the storage release is completed. At early times,
the fact is that the flow rate at any cylindrical cross section is
less than the pumping rate Q. In other words, such a lineariza-
tion procedure ignores the storage release of the aquifer, conse-
quently, it will underestimate the drawdowns at early times as
found by Wen et al. (2009). Many studies (e.g. Wen et al.
2008a, b, 2013) have proven the error might be acceptable or
negligible under some circumstances especially for the relative
large pumping time. With this, Eq. (1) reduces to:

∂2s1 r; z; tð Þ
∂r2

þ n1
r

∂s1 r; z; tð Þ
∂r

þ Kz1n1
Kr1

Q

2πrL

� �n1−1 ∂2s1 r; z; tð Þ
∂z2

¼ Ss1n1
Kr1

Q

2πrL

� �n1−1 ∂s1 r; z; tð Þ
∂t

; rw≤r≤rs ð15Þ

Similarly, Eq. (2) can be simplified as:

∂2s2 r; z; tð Þ
∂r2

þ n2
r

∂s1 r; z; tð Þ
∂r

þ Kz2n2
Kr2

Q

2πrL

� �n2−1 ∂2s2 r; z; tð Þ
∂z2

¼ Ss2n2
Kr2

Q

2πrL

� �n2−1 ∂s2 r; z; tð Þ
∂t

; rs≤r < ∞ ð16Þ

Applying Eqs. (9) and (14) to Eq. (6), and then utilizing the
Laplace transform, the Fourier cosine transform and the line-
arization method to deal with it, the boundary condition Eq.
(6) can be expressed as:

∂s1 rw;ωN; pð Þ
∂r

¼ −
1

pKr1

Q

2πrw l−dð Þ
� �n1

F d; lð Þ; 0≤z≤L ð17Þ

in which p is the Laplace variable, F (d, l) = [sin(ωNl) –
sin(ωNd)]/ωN, and ωN is the Fourier variable (ωN = Nπ/L,
N = 1,2,3,…). Similarly, the continuity conditions required at
the interface between the skin zone and the formation in
Laplace domain can be written as:

s1 rs;ωN; pð Þ ¼ s2 rs;ωN; pð Þ ð18Þ
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and

∂s1 rs;ωN; pð Þ
∂r

¼ γ
Q

2πrs l−dð Þ
� �n1−n2 ∂s2 rs;ωN; pð Þ

∂r
ð19Þ

Applying the Laplace transform and the finite Fourier co-
sine transform to Eqs. (15) and (16) while considering the
initial condition Eq. (3), the governing flow equation in the
skin zone and formation zone can be rewritten as:

∂2s1 r;ωN; pð Þ
∂r2

þ n1
r

∂s1 r;ωN; pð Þ
∂r

¼ δ1r
1−n1s1 r;ωN; pð Þ; rw≤r≤rs; ð20Þ

and

∂2s2 r;ωN; pð Þ
∂r2

þ n2
r

∂s2 r;ωN; pð Þ
∂r

¼ δ2r
1−n2s2 r;ωN; pð Þ; rw≤r≤rs; ð21Þ

where δ1 ¼ Kz1n1ω2
N þ Ss1n1p

� �
Q=2π½ l−dð Þ� n1−1=Kr1and

δ2 ¼ Kz2n2ω2
N þ Ss2n2p

� �
Q=2πð l−dð ÞÞ n2−1=K r2. After a se-

ries of mathematical derivations, one can obtain the solutions
in the Laplace domain, which can be expressed as:

s1 r;ωN; pð Þ ¼ r
1−n1
2

1

pKr1

Q

2πrw l−dð Þ
� �n1

F d; lð Þ ϕ1

ϕ0
I 1−n1
3−n1

2

3−n1
r
3−n1
2

ffiffiffiffiffi
δ1

p� �
þ ϕ2

ϕ0
K 1−n1

3−n1

2

3−n1
r
3−n1
2

ffiffiffiffiffi
δ1

p� �� �
ð22Þ

and

s2 r;ωN; pð Þ ¼ r
1−n2
2

1

pKr1

Q

2πrw l−dð Þ
� �n1 ϕ

ϕ0

K 1−n2
3−n2

2

3−n2
r
3−n2
2

ffiffiffiffiffi
δ2

p� �

K 1−n2
3−n2

2

3−n2
rs

3−n2
2

ffiffiffiffiffi
δ2

p� � F d; lð Þ ð23Þ

with

ϕ1 ¼
ffiffiffiffiffi
δ1

p
K 2

3−n1

2

3−n1
r
3−n1
2

s

ffiffiffiffiffi
δ1

p� �
K 1−n2

3−n2

2

3−n2
r
3−n2
2

s

ffiffiffiffiffi
δ2

p� �
−γr

n1−n2
2

s

ffiffiffiffiffi
δ2

p
� Q

2π l−dð Þ
� �n1−n2

K 2
3−n2

2

3−n2
r
3−n2
2

s

ffiffiffiffiffi
δ2

p� �
K 1−n1

3−n1

2

3−n1
r
3−n1
2

s

ffiffiffiffiffi
δ1

p� �
ð24Þ

ϕ2 ¼
ffiffiffiffiffi
δ1

p
I −2
3−n1

2

3−n1
r
3−n1
2

s

ffiffiffiffiffi
δ1

p� �
K 1−n2

3−n2

2

3−n2
r
3−n2
2

s

ffiffiffiffiffi
δ2

p� �
þ γr

n1−n2
2

s

ffiffiffiffiffi
δ2

p
� Q

2π l−dð Þ
� �n1−n2

K 2
3−n2

2

3−n2
r
3−n2
2

s

ffiffiffiffiffi
δ2

p� �
I 1−n1
3−n1

2

3−n1
r
3−n1
2

s

ffiffiffiffiffi
δ1

p� �
ð25Þ

ϕ0 ¼ r1−n1w

ffiffiffiffiffi
δ1

p
ϕ2K 2

3−n1

2

3−n1
r
3−n1
2

w

ffiffiffiffiffi
δ1

p� �
−ϕ1I −2

3−n1

2

3−n1
r
3−n1
2

w

ffiffiffiffiffi
δ1

p� �� �
ð26Þ

ϕ ¼ rs
n2−n1

2 ϕ1I 1−n1
3−n1

2

3−n1
rs

3−n1
2

ffiffiffiffiffi
δ1

p� �
þ ϕ2K 1−n1

3−n1

2

3−n1
rs

3−n1
2

ffiffiffiffiffi
δ1

p� �� �
ð27Þ

Furthermore, applying the inverse finite Fourier trans-
form to Eqs. (22) and (23), the drawdown in the Laplace

domain solutions for skin and formation zones can be
obtained as

s1 r; z; pð Þ ¼ r
1−n1
2

l−d
pKr1L

Q

2πrw l−dð Þ
� �n1 ϕ

0
1

ϕ
0
0

I 1−n1
3−n1

2

3−n1
r
3−n1
2

ffiffiffiffiffi
δ
0
1

q� �
þ ϕ

0
2

ϕ
0
0

K 1−n1
3−n1

2

3−n1
r
3−n1
2

ffiffiffiffiffi
δ
0
1

q� �" #

þ r
1−n1
2

2

pKr1L
� Q

2πrw l−dð Þ
� �n1X∞

N¼1

ϕ
0
1

ϕ
0
0

I 1−n1
3−n1

2

3−n1
r
3−n1
2

ffiffiffiffiffi
δ1

p� �
þ ϕ

0
2

ϕ
0
0

K 1−n1
3−n1

2

3−n1
r
3−n1
2

ffiffiffiffiffi
δ1

p� �" #
F d; lð Þcos ωNzð Þ

ð28Þ
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and

s2 r; z; pð Þ ¼ r
1−n2
2

l−d
pKr1L

Q

2πrw l−dð Þ
� �n1 ϕ0

ϕ
0
0

K 1−n2
3−n2

2

3−n2
r
3−n2
2

ffiffiffiffiffi
δ
0
2

q� �

K 1−n2
3−n2

2

3−n2
rs

3−n2
2

ffiffiffiffiffi
δ
0
2

q� � þ r
1−n2
2

2

pKr1L
� Q

2πrw l−dð Þ
� �n1X∞

N¼1

ϕ
0

ϕ
0
0

K 1−n2
3−n2

2

3−n2
r
3−n2
2

ffiffiffiffiffi
δ2

p� �

K 1−n2
3−n2

2

3−n2
rs

3−n2
2

ffiffiffiffiffi
δ2

p� � F d; lð Þcos ωNzð Þ ð29Þ

in which F (d, l) = [sin(ωNl) – sin(ωNd)]/ωN, Kv(·) and
Iv(·) is the second kind of modified Bessel function with
order of v; the superscript ′ shown in variables δ1

′ , δ2
′ ,

ϕ′, ϕ0
′ , ϕ1

′ , ϕ2
′ represents the condition of ωN =0 for the

related variables. The numerical Laplace inversion meth-
od of Stehfest (1970a, b) is employed in this study to

obtain the solutions in the time domain, which has been
successfully applied in similar studies such as Wen
et al. (2008a, b, 2013) for non-Darcian flow in confined
aquifers.

If the pumping well is fully penetrating (l1 = L and d1 = 0),
Eqs. (28) and (29) become

s1 r; z; pð Þ ¼ r
1−n1
2

1

pKr1

Q

2πrwL

� �n1 ϕ
0
1

ϕ
0
0

I 1−n1
3−n1

2

3−n1
r
3−n1
2

ffiffiffiffiffiffi
δ
0
1

q� �
þ ϕ

0
2

ϕ
0
0

K 1−n1
3−n1

2

3−n1
r
3−n1
2

ffiffiffiffiffiffi
δ
0
1

q� �" #
ð30Þ

and

s2 r; z; pð Þ ¼ r
1−n2
2

1

pKr1

Q

2πrwL

� �n1 ϕ
0

ϕ
0
0

K 1−n2
3−n2

2

3−n2
r
3−n2
2

ffiffiffiffiffiffi
δ
0
2

q� �

K 1−n2
3−n2

2

3−n2
rs

3−n2
2

ffiffiffiffiffiffi
δ
0
2

q� � ð31Þ

the superscript — shown in variables δ
0
1, δ

0
2, ϕ

0
, ϕ

0
0, ϕ

0
1, ϕ

0
2

represents the condition of l1 = L and d1 = 0 for the related
variables. Equations. (30) and (31) are the same as the solution
obtained by Wen and Wang (2013) for non-Darcian flow to a

fully penetrating well in a confined aquifer considering the
effect of the finite-thickness skin.

When n1 and n2 are equal to one, the flow becomes Darcian,
then the solution Eqs. (28) and (29) can be reduced to:

s1 r; z; pð Þ ¼ Q

4πT2

1

p

2T2

rwT1

φ
0
1

φ0
0

I0 r
ffiffiffiffiffi
δ
0
3

q� �
þ φ

0
2

φ0
0

K0 r
ffiffiffiffiffi
δ
0
3

q� �� �
þ Q

4πT2

1

p

4T2

l−dð ÞrwT1

�
X∞
n¼1

φ1

φ0
I0 r

ffiffiffiffiffi
δ3

p	 

þ φ2

φ0
K0 r

ffiffiffiffiffi
δ3

p	 
� �
F d; lð Þcos ωNzð Þ

ð32Þ

and

s2 r; z; pð Þ ¼ Q

4πT 2

1

p

2πT 2

rwT 1

φ
0

φ0
0

K0 r
ffiffiffiffiffi
δ
0
4

q� �

K0 rs

ffiffiffiffiffi
δ
0
4

q� �
2
664

3
775þ Q

4πT2

1

p

4T 2

l−dð ÞrwT1

X∞
n¼1

φ
0

φ0
0

K0 r
ffiffiffiffiffi
δ4

p� �
K0 rs

ffiffiffiffiffi
δ4

p� � F d1; l1ð Þcos ωNzð Þ ð33Þ

in which δ3 = α1ωN
2 + β1p, δ4 = α2ωN

2 + β2p, δ3
′ = β1p and

δ4
′ = β2p ; the Greek letter φ replaces the Greek letter ϕ in
variables ϕ, ϕ0, ϕ1, ϕ2, ϕ′, ϕ0

′ , ϕ1
′ , ϕ2

′ under the condition of
n1 = n2 = 1 for the related variables. Equations (32) and (33)
are the same as the solutions obtained by Chiu et al. (2007) for
Darcian flow to a partially penetrating well in a confined aqui-
fer with a finite thickness skin.

Results and discussion

The default values are given as n1 = n2 = n, rw = 0.2 m, Kz1 =
Kz2 = 0.01 m/h, Kr2 = 0.1 (m/h)1/n, Ss1 = Ss2 = 0.001 m−1, Q =
100 m3/h and L = 20 m. These values are reasonable for aqui-
fers which are composed of coarse sand (Bear 2007;Wen et al.
2013). In order to check whether non-Darcian flow occurs or
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not near the pumping well under such flow conditions, the
Reynolds number was calculated approximately. According
to Bear (2007), the Reynolds number can be expressed as:

Re ¼ Vd

ν
ð34Þ

in which V is the velocity [m h−1], d is the average size of the
media [m] and v is the kinematic viscosity of water [m2 h−1].
The flow velocity at the face of the well screen can be approx-
imated by V =Q/(2πrww) = 78. 5 m/h. From Eq. (34), where
the value of v is chosen to be 3.6 × 10−3 m2/h (Sen 1989) and
the average size of the media is chosen to be 4.55 mm
(Moutsopoulos et al. 2009), one can obtain a Reynolds num-
ber of 99.2 at the face of the well. Such a large Reynolds
number indicates that non-Darcian flow is likely to occur in
the vicinity of the pumping well (Bear 2007).

Effect of aquifer and well configuration parameters
on drawdown

In this section, mainly the influence of the power index n, well
partial penetration, the skin type and the skin thickness on the
drawdown are discussed. Firstly, the impacts of the power
index n value and the length of well screen w on the draw-
down for the positive skin case are shown in Fig. 2. The other
parameters used in Fig. 2 are rs = 0.6 m, t =100 h, z = 15 m,
w = 10 m, 15 m and 20 m, and n = 1, 1.2 and 1.5, respectively.
Note that the case of n =1 corresponds to the solution for the
Darcian flow case, and the case of w = 20 m for a fully pene-
trating well with (non-)Darcian flow are included in this fig-
ure. As shown in Fig. 2, the drawdowns nearby the pumping
well for the non-Darcian case are larger than those for the
Darcian case; and the effect of n is gradually decreasing from
the skin zone to formation zone and disappears at the region
where the distances are relatively far away from the pumping
well. It was also found that a larger n leads to a smaller draw-
down at late times and results in a smaller influence zone of
pumping. A large n might lead to a greater recharge from the
area where drawdowns are far away from the pumping well at
late times when the flow approaches a quasi steady state; thus,
a smaller drawdown is seen at late times. Similar results were
also found and explained in detail by Wen et al. (2013). In
addition, from Fig. 2, one can see that the drawdowns for the
fully penetrating well case are smaller than those of the par-
tially penetrating well at the same distance at the region where
they are close to the pumping well. This is because a longer
well screen can transmit water more powerfully; thus, a small-
er drawdown will be found at late times.

Figure 3 shows the effect of different skin cases on the
drawdown with rs = 0.6 m, t =100 h, n = 1.2, l = 15 m, d = 5
m, z = 15 m, and γ = 0.2, 0.5, 1, 2 and 5, respectively. Note
that the case of γ = 1 refers to the solution without the skin; the

drawdown curves for the system with a positive skin are rep-
resented by γ = 2 and 5, while γ = 0.2 and 0.5 f refer to a
system with a negative skin. As shown in Fig. 3, the draw-
down in the skin zone for the positive skin case is remarkably
larger than that for the no skin case, while the drawdown in the
skin zone for a negative skin case is smaller than that for a no
skin case. This is because the positive skin has smaller hy-
draulic conductivity than that of the original formation zone,
and the recharge from the formation zone is slower; thus, a
larger drawdown was found. In contrast, the hydraulic con-
ductivity of a negative skin is larger than without skin, and a
smaller drawdown will occur inside the well at late times, as
reflected in Fig. 3. Furthermore, it can be seen clearly that the
drawdowns in the formation zone are the same whatever the
skin type, so the effect of skin type on the drawdown in the
formation zone can almost be neglected; the sensitivity anal-
ysis in the following section illustrates this point.

The effect of the skin thickness on the drawdown for neg-
ative skin (γ = 0.5) is depicted in Fig. 4. The other parameters
are given as n = 1.2, l = 15m, d = 5m, z = 15m, and rs = 0.4 m
and 0.8 m. The case for no skin has also been depicted in this
figure as a reference. It is shown in Fig. 4a that the drawdown
in the skin zone is smaller than that of the no skin case when
t = 10 h, and a thicker skin results in a smaller drawdown in
the skin zone for the negative skin case than that of no skin
case. For the negative skin case, the hydraulic conductivity of
the skin zone is larger than that of a formation zone. A larger
thickness of the negative skin case means the water can pass
through more quickly, so a smaller drawdown can be seen in
Fig. 4a. A reverse result for the positive skin case can be found
in Fig. 4b. In addition, the effect of skin thickness on draw-
down in the formation zone can also be neglected.

Fig. 2 The effect of power index n and well partial penetration w on the
drawdown for negative skin with γ = 0.5
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Sensitivity analysis

Sensitivity analysis is often used to evaluate the influence of
aquifer parameters on aquifer drawdown. A method of the
normalized sensitivity analysis proposed by Huang and Yeh
(2007) is adopted in this study. For a given parameter, the
normalized sensitivity of the parameter can be defined as:

X
0
i; j ¼ Pj

∂Oi

∂P j
; ð35Þ

in which Xi,j
′ respects the normalized sensitivity of the j-th

parameter (Pj) at the i-th time and Oi respects the dependent
variable of the drawdown. In order to approximate the partial

Fig. 5 The drawdown in the formation zone sensitivity to parameters n,
w, Kz1, Kr1, Ss1, rs, Kz2, Kr2, Ss2, and rw for the negative skin case

Fig. 6 The drawdown in the formation zone sensitivity to parameters n,
w, Kz1, Kr1, Ss1, rs, Kz2, Kr2, Ss2, and rw for the positive skin case

Fig. 3 The effect of different skin cases on the drawdown with γ = 0.2,
0.5, 1, 2 and 5 when t = 100 h

Fig. 4 The effect of skin thickness on the drawdown for different
pumping time: a negative skin with γ = 0.5; b positive skin with γ = 2
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derivative in Eq. (35), a finite difference formula adopted by
Huang and Yeh (2007) is used as:

X
0
i; j ¼ Pj

∂Oi

∂P j
¼ Pj

Oi P j þΔP j

� �
−Oi P j

� �
ΔPj

; ð36Þ

in whichΔPj is a small increment andΔPj =10
−2 × Pj in this

study.
Figures 5 and 6 show the drawdown in the formation zone

(r = 6 m) sensitivity to parameters n, w, Kz1, Kr1, Ss1, rs, Kz2,
Kr2, Ss2, and rw for the negative skin case (γ = 0.5) and the
positive skin case (γ = 2), respectively. The other parameters
used in Figs. 5 and 6 are n = 1.5, l = 15 m, d = 5 m, rs = 0.6 m.
The features of these two figures are almost the same. It was
found that the drawdown is not sensitive toKz1,Kr1, Ss1 and rw
no matter what the skin type is, whereas in contrast, the draw-
down is sensitive to n, w, Kr2, and Ss2 at early times; and it is
very sensitive to the parameters n, w, and Kr2 at late times,
especially to the power index n. Moreover, the skin thickness
rs has little impact on drawdown in the formation zone during
the entire pumping period.

Conclusions

A new semi-analytical solution for non-Darcian flow toward a
partially penetrating constant rate pumping well taking ac-
count of the finite-thickness skin effect has been developed
via a lineation method in combination with the Laplace trans-
form and the finite Fourier cosine transform. The solution is
different from similar investigations by previous researchers
in considering the jointed effects of non-Darcian flow, well
partial penetration, skin type and skin thickness. Both the
drawdowns within the skin zone and formation zone are ana-
lyzed under different conditions; furthermore, the sensitivity
analysis is applied to help in assessing how the drawdowns
respond to the change in aquifer and well configuration pa-
rameters. The main conclusions of this study are:

1. The depression cone induced by pumping had a larger
spread for the Darcian flow than that for non-Darcian
flow. The drawdowns within the skin zone for a fully
penetrating well are smaller than those for the partially
penetrating well.

2. The skin type and skin thickness have great impact on the
drawdown in the skin zone, while they have little influ-
ence on drawdown in the formation zone.

3. The parameters rs and rw have little influence on draw-
down compared to the other parameters no matter what
the skin type is.

4. The drawdownwithin the formation zone is sensitive to n,
w, Kr2, and Ss2 at early times and it is very sensitive to the

parameters n,w, andKr2 at late times, both for the negative
skin case and positive skin case.

Acknowledgements This research was partially supported by the
National Natural Science Foundation of China (Grant Numbers:
41372253, 41521001), and the Fundamental Research Funds for the
Central Universities, China University of Geosciences (Wuhan) (Grant
Number: CUG140503). We also would like to thank the editor (Prof.
Maria-Theresia Schafmeister), the associate editor (Dr. Georg J.
Houben), the technical editorial advisor (Mrs. Sue Duncan) and two
anonymous reviewers for providing valuable comments and suggestions
in improving this manuscript.

References

Bear J (2007) Hydraulics of groundwater. McGraw-Hill, Dover, New
York

Bordier C, ZimmerD (2000)Drainage equations and non-Darcianmodel-
ling in coarse porous media or geosynthetic materials. J Hydrol
228(3):174–187. doi:10.1016/S0022-1694(00)00151-7

Chang CC, Chen CS (2002) An integral transform approach for a mixed
boundary problem involving a flowing partially penetrating well
with infinitesimal well skin. Water Resour Res 38(6). DOI: 10.
1029/2001WR001091

Chen C, Wan J, Zhan H (2003) Theoretical and experimental studies of
coupled seepage-pipe flow to a horizontal well. J Hydrol 281:159–
171

Chen YF, Hu SH, Hu R, Zhou CB (2015) Estimating hydraulic conduc-
tivity of fractured rocks from high-pressure packer tests with an
Izbash’s law-based empirical model. Water Resour Res 51:2096–
2118. doi:10.1002/2014WR016458

Chiu PY, Yeh HD, Yang SY (2007) A new solution for a partially pene-
trating constant-rate pumping well with a finite-thickness skin. Int J
Numer Anal Methods Geomech 31(15):1659–1674

Feng Q, Zhan H (2015) On the aquitard–aquifer interface flow and the
drawdown sensitivity with a partially penetrating pumping well in
an anisotropic leaky confined aquifer. J Hydrol 521:74–83

Forchheimer PH (1901) Wasserbewegung durch Boden [Movement of
water through soil]. Zeitschr Ver Deutsch Ing 49:1736–1749, and
50:1781–1788

Houben GJ (2015a) Review: Hydraulics of water wells—flow laws and
influence of geometry. Hydrogeol J. doi:10.1007/s10040-015-1312-
8

Houben GJ (2015b) Review: Hydraulics of water wells—head losses of
individual components. Hydrogeol J. doi:10.1007/s10040-015-
1313-7

Huang YC, Yeh HD (2007) The use of sensitivity analysis in on-line
aquifer parameter estimation. J Hydrol 335(3–4):406–418

Izbash SV (1931) O filtracii v kropnozernstom materiale [Groundwater
flow in the material kropnozernstom]. Izv. Nauchnoissled, Inst.
Gidrotechniki (NIIG), Leningrad

Malama B, Kuhlman KL, Barrash W (2008) Semi-analytical solution for
flow in a leaky unconfined aquifer toward a partially penetrating
pumping well. J Hydrol 356(1–2):234–244

Mathias SA, Butler AP, Zhan H (2008) Approximate solutions for
Forchheimer flow to a well. J Hydraul Eng 134:1318–1325

Moutsopoulos KN, Tsihrintzis VA (2005) Approximate analytical solu-
tions of the Forchheimer equation. J Hydrol 309:93–103

Moutsopoulos KN, Papaspyros NE, Tsihrintzis VA (2009) Experimental
investigation of inertial flow processes in porous media. J Hydrol
374(3–4):242–254

Hydrogeol J (2016) 24:1287–1296 1295

http://dx.doi.org/10.1016/S0022-1694(00)00151-7
http://dx.doi.org/10.1029/2001WR001091
http://dx.doi.org/10.1029/2001WR001091
http://dx.doi.org/10.1002/2014WR016458
http://dx.doi.org/10.1007/s10040-015-1312-8
http://dx.doi.org/10.1007/s10040-015-1312-8
http://dx.doi.org/10.1007/s10040-015-1313-7
http://dx.doi.org/10.1007/s10040-015-1313-7


Novakowski KS (1989) A composite analytical model for analysis of
pumping tests affected bywell bore storage and finite thickness skin.
Water Resour Res 25(9):1937–1946

Park E, Zhan H (2002) Hydraulics of a finite-diameter horizontal well
with wellbore storage and skin effect. AdvWater Resour 25(4):389–
400

Pasandi M, Samani N, Barry DA (2008) Effect of wellbore storage and
finite thickness skin on flow to a partially penetrating well in a
phreatic aquifer. Adv Water Resour 31(2):383–398

Perina T, Lee TC (2006) General well function for pumping from a
confined, leaky, or unconfined aquifer. J Hydrol 317(3–4):239–260

Sedghi-Asl M, Rahimi H, Salehi R (2014) Non-Darcy flow of water
through a packed column test. Transp Porous Media 101(2):215–
227

Sen Z (1989) Nonlinear flow toward wells. J Hydraul Eng 115(2):193–
209

Sen Z (1990) Non-linear radial flow in confined aquifers toward large-
diameter wells. Water Resour Res 26(5):1103–1109

Sen Z (2000) Non-Darcian groundwater flow in leaky aquifers. Hydrol
Sci J 45(4):595–606

Stehfest H (1970a) Algorithm 368 numerical inversion of Laplace trans-
forms. Commun ACM 13(1):47–49

Stehfest H (1970b) Remark on algorithm 368: numerical inversion of
Laplace transforms. Commun ACM 13(10):624–625

Wen Z, Wang Q (2013) Approximate analytical and numerical solutions
for radial non-Darcian flow to a well in a leaky aquifer with wellbore
storage and skin effect. Int J Numer Anal Methods Geomech 37:
1453–1469

Wen Z, Huang G, Zhan H (2008a) An analytical solution for non-Darcian
flow in a confined aquifer using the power law function. AdvWater
Resour 31(1):44–55

Wen Z, Huang G, Zhan H (2008b) Non-Darcian flow to a well in an
aquifer–aquitard system. Adv Water Resour 31(12):1754–1763

Wen Z, Huang G, Zhan H (2009) A numerical solution for non-Darcian
flow to a well in a confined aquifer using the power law function. J
Hydrol 364:99–106

Wen Z, Huang G, Zhan H (2011) Non-Darcian flow to a well in leaky
aquifers using the Forchheimer equation. Hydrogeol J 19:563–572

Wen Z, Liu K, Chen X (2013) Approximate analytical solutions for non-
Darcian flow toward a partially penetrating well in a confined aqui-
fer. J Hydrol 498:124–131

Wen Z, Liu K, Zhan H (2014) Non-Darcian flow toward a larger-diameter
partially penetrating well in a confined aquifer. Environ Earth Sci
72:4617–4625

Yang SY, Yeh HD (2007) On the solutions of modeling a slug test per-
formed in a two-zone confined aquifer. Hydrogeol J 15:297–305

Yang SY, Yeh HD, Chiu PY (2006) A closed form solution for constant
flux pumping in a well under partial penetration condition. Water
Resour Res 42(5). doi:10.1029/2004WR003889

Yang SY, Huang CS, Liu CH, Yeh HD (2014) Approximate solution for a
transient hydraulic head distribution induced by a constant-head test
at a partially penetrating well in a two-zone confined aquifer. J
Hydraul Eng 140. doi:10.1061/(ASCEHY.1943-7900.0000884)

Yeh HD, Chang YC (2013) Recent advances in modeling of well hydrau-
lics. Adv Water Resour 51:27–51

Yeh HD, Yang SY (2006) A novel analytical solution for a slug test
conducted in a well with a finite-thickness skin. Adv Water Resour
29:1479–1489

Yeh HD, Yang SY, Peng HY (2003) A new closed-form solution for a
radial two-layer drawdown equation for groundwater under
constant-flux pumping in a finite-radius well. Adv Water Resour
26(7):747–757

1296 Hydrogeol J (2016) 24:1287–1296

http://dx.doi.org/10.1029/2004WR003889
http://dx.doi.org/10.1061/(ASCEHY.1943-7900.0000884)

	Non-Darcian flow to a partially penetrating well in a confined aquifer with a finite-thickness skin
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Introduction
	Mathematical model and solution
	Results and discussion
	Effect of aquifer and well configuration parameters on drawdown
	Sensitivity analysis

	Conclusions
	References


