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Abstract Analytical formulae are proposed to describe
the first-order temporal evolution of the head in large
groundwater systems (such as those found in North Africa
or eastern Australia) that are subjected to drastic modifi-
cations of their recharge conditions (such as those in
Pleistocene and Holocene times). The mathematical model
is based on the hydrodynamics of a mixed-aquifer system
composed of a confined aquifer connected to an uncon-
fined one with a large storage capacity. The transient
behaviour of the head following a sudden change of
recharge conditions is computed with Laplace transforms
for linear one-dimensional and cylindrical geometries.
This transient evolution closely follows an exponential
trend exp(−t/τ). The time constant τ is expressed analyt-
ically as a function of the various parameters characteriz-
ing the system. In many commonly occurring situations, τ
depends on only four parameters: the width ac of the main
confined aquifer, its transmissivity Tc, the integrated
storage situated upstream in the unconfined aquifer
M=Suau, and a curvature parameter accounting for
convergence/divergence effects. This model is applied to
the natural decay of large aquifer basins of the Sahara and
Australia following the end of the mid-Holocene humid
period. The observed persistence of the resource is
discussed on the basis of the time constant estimated with
the system parameters. This comparison confirms the role
of the upstream water reserve, which is modelled as an
unconfined aquifer, and highlights the significant increase
of the time constant in case of converging flow.
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Introduction

In many parts of the world, especially where rainfall is
scarce, surface water reserves (rivers, lakes or near-surface
water bodies) are insufficient to satisfy human needs.
Then, fresh groundwater resources from deep aquifers
may offer an alternative supply. When these resources are
exploited at a rate larger than their current recharge, their
reserves will decrease more or less rapidly (Custodio 2002).
Therefore, the understanding and quantification of processes
associated with the recharge and discharge of these deep
aquifers are essential for predicting and planning their
exploitation (Scanlon et al. 2006).

The intensive exploitation of deep groundwater re-
serves is relatively recent (at most 50–100 years). Prior to
human intervention, the recharge of groundwater systems
had been modified by climate changes that occurred
during the early Holocene or Pleistocene (Sonntag et al.
1980; Edmunds 2009). These changes in recharge
conditions were particularly strong in arid and semi-arid
areas of North-West to North-East Africa and in Eastern
Australia. In the Sahara, the so-called BAfrican Humid
Period^ (AHP) at the beginning of the Holocene was
characterized by greater rainfall than currently. This is
confirmed by many biological and archaeological obser-
vations and by isotopic records (Gasse 2000; Taylor et al.
2009; Lézine et al. 2011). The present intense aridity of
the Sahara is interpreted as the result of a rapid
hydrological change which occurred some 4,000 years
ago (Kröpelin et al. 2008; Krinner et al. 2012). The same
phenomenon was detected in East Australia (Love et al.
1994) indicating a possible worldwide trend.

Large variations in average rainfall (and therefore of
recharge) induce modifications in the behaviour of deep
groundwater systems but with a time lag as a consequence
of the internal transient behaviour of such systems in
response to changes of boundary conditions (Edmunds
1999). The quantification of this transient behaviour is
fundamental in explaining or predicting the time required
by the hydraulic system to adjust to the new boundary
conditions. The aim of this study is to evaluate quantita-
tively the time constant that characterizes the duration of
this transient state.

To this end, the modification of the relevant boundary
conditions is assumed to be instantaneous. Prior to this
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modification, the system is assumed to be at equilibrium.
Once the modification has taken place, the hydrodynamic
system evolves toward a new equilibrium. This evolution
can generally be approximated by a functional dependence
in time of the form exp(−t/τ) where the time constant τ
characterizes the transient duration.

The time constant τ is a function of the various
physical parameters of the aquifer system. The simplest
case is that of a one-dimensional (1-D) confined homoge-
neous aquifer where one end has a prescribed input flux
due to recharge, and the other end is at a prescribed head.
Initially the head presents a linear equilibrium profile. If at
t=0, the prescribed flux becomes null, i.e. the recharge is
suddenly set to 0, the system evolves toward a new
equilibrium profile where everywhere the head equals the
prescribed head at the output. The transient evolution of
the hydraulic head may be computed analytically as a
solution of the diffusion equation. It can be shown
(Domenico and Schwartz 1998) that the time constant τ
is given by:

τ ¼ 4a2

π2D
ð1Þ

where a is the length of the aquifer and D its hydraulic
diffusivity (ratio of its transmissivity T to its storage
coefficient S).

This classical expression was generalized by Rousseau-
Gueutin et al. (2013) to account for a more complex
situation inspired by the structure of the Great Artesian
Basin (GAB) in Australia. Their model is a one
dimensional (1-D) mixed-aquifer system composed of
two contiguous compartments. The upper compartment is
an unconfined aquifer (subscript u), recharged by rainfall
and with a relatively large storage coefficient. The
discharge takes place at the end of the lower compartment
which is a confined aquifer (subscript c) with the same
transmissivity as the unconfined one. Starting from an
assumed initial condition, the hydraulic head relaxes
toward equilibrium in an (almost) exponential way. The
time constant τ of this relaxation is a function of the
geometrical properties (lengths au and ac), storage
coefficients (Su and Sc) and transmissivity T (assumed to
apply to both compartments). Moreover, for values of the
storage parameters such that auSu is larger than acSc, the
parameter Sc has a negligible influence and the expression
of the time constant reduces to:

τ ≈
auacSu

T
ð2Þ

This study aims to further discuss the conditions under
which this formula or alternative ones can be used. The
previous approach by Rousseau-Gueutin et al. (2013) is
generalized by introducing alternative assumptions on the
geometry (1-D along the horizontal direction, or cylindri-
cal), or by using different values of hydraulic parameters
and initial and boundary conditions.

Sonntag (1986) already developed similar arguments
for interpreting the transient behaviour of the large
Nubian Sandstone Aquifer (NSA) in North Africa. His
study is based on the use of elementary harmonic
solutions of the time-dependant diffusion equation for
the head. Both linear 1-D cases and a cylindrical
geometry (cylindrical mountain or depression) are
considered. The present study differs from Sonntag’s
by the precise definition of initial conditions, by the
use of a more realistic geometry and by the assump-
tion of abrupt changes in recharge/discharge conditions
allowing the use of Laplace transforms (Carslaw and
Jaeger 1959).

In the present study, a generic model sketching the
major features of some large aquifers of arid or semi-
arid basins in North Africa and Australia is proposed.
It is based on the observation of three geographic
areas where large-scale characterization of aquifer
behaviour are available: the North Western Sahara
Aquifer System (NWSAS; Ould Baba Sy 2005; OSS
2003), the Nubian Sandstone Aquifer (NSA; Heinl and
Brinkmann 1989), and the Great Artesian Basin in
Australia (GAB; Rousseau-Gueutin et al. 2013). Using
the same type of mathematical development, a set of
models corresponding to various assumptions is pro-
posed to describe the time evolution of the head in
aquifers subjected to a sudden recharge variation. The
time evolution of the head is obtained as a series of
exponential terms decreasing with time. The first term of the
series is strongly dominant which justifies the definition of a
single time constant, expressed analytically as a function of a
minimum number of parameters.

Formulation of a generic model: geometric
and hydraulic parameters

The simplified generic model is based on reference
examples of large aquifer basins with horizontal
dimensions in the range 500–1,500 km such as
NWSAS, NSA and GAB. A simplification of the
structures described in the available monographs makes
it possible to distinguish three zones in these large
aquifer basins:

1. A recharge zone associated with the relief which
generally bounds part of the basin. This relief receives
(and has received in the past) a great amount of rainfall
and generates high hydraulic heads in contiguous
aquifers (Fig. 1a).

2. A large deep aquifer layer assimilated to a homoge-
neous and confined aquifer whose geometry can be
greatly simplified (1-D in the horizontal direction or
with a cylindrical symmetry).

3. An outlet zone where discharge occurs. This outlet may
be either the sea or a surface-water body (lake, river,
swamp) or a humid zone where evapotranspiration
maintains a constant level.
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In more detail:

1. The recharge zone of any of the referenced basins is
actually part of their mountainous borders: the Atlas
Mountain for the NWSAS, the Enedi for the NSA and the
Great Dividing Range for the East GAB. In arid and semi-
arid regions, these mountainous zones are considered as
the water towers of neighbouring basins (Viviroli et al.
2003, 2007) due to orographic meteorological effects
(Chavez et al. 1994; Wilson and Guam 2000).

Infiltration of runoff water in the foothills, in particular
during floods (Chavez et al. 1994), is the main recharge of
deeper aquifers. The connexion may be local on the
outcrops of the deep aquifers as illustrated in Fig. 1b
where the outcrops of deep aquifers form several-km
wide strips such as occurs in NWSAS on the southern
side of the Atlas Mountain (Ould Baba Sy 2005).
Alternatively, the deep aquifer can be recharged through
a wide, superficial water-table aquifer with a large extent
(50–300 km) beginning at the front of the mountain
range. This case is illustrated in Fig. 1c and would apply
to NSA and GAB.

In any case, the recharge zone can be assimilated to an
unconfined aquifer characterized by its geometry (width
au), its hydraulic parameters (storage parameter Su and
transmissivity Tu) and its recharge rate (in fact the
variation of this rate). For such an unconfined aquifer,
the specific yield Su (or effective porosity) is in the range
of 10−2 – 10 −1 for most porous or fractured sedimentary
rocks. Conversely, the transmissivity Tu—defined as the
product of the permeability by the saturated thickness—is
poorly known and will be parameterized in the model.

2. The large deep aquifers which occupy most of North
Africa and East Australia have a wide horizontal range
(up to 1,500 km) and a considerable vertical thickness

(several hundred m) ensuring their hydraulic continuity.
In the NWSAS of Algeria, two such aquifers are well
known: the BContinental Intercalaire confined aquifer
(CI)^ comprising formations from Middle Jurassic to
Lower Cretaceous and the BComplexe Terminal (CT)^
with Upper Cretaceous to Miocene formations (Ould
Baba Sy 2005). Both aquifers are considered confined or
semi-confined. In North East Africa, the aquifer system of
NSA corresponds to Lower Cretaceous formations with a
horizontal continuity over 500 km from the Ennedi and
Tibesti mountains down to the Mediterranean Sea
(Thorweilhe and Heinl 2002; Hesse et al. 1987) and it is
confined in its northern part. In East Australia, the GAB,
which occupies more than 20 % of the continent, is a
multilayer aquifer where the flow runs mainly from the
Great Dividing Range in a south-western direction
through a more than 1,300-km wide area. It is confined
over most of its extent (Rousseau-Gueutin et al. 2013).

In the generic model, the deep aquifer is schematized
by a confined aquifer with width ac on the order of 500–
1,500 km and homogeneous hydraulic properties: trans-
missivity Tc and storage coefficient Sc. Estimates of these
parameters are available for the three basins under study.
They are summarized in Table 1 and present quite a good
consistency for the order of magnitude of Tc and Sc.

3. The natural outlets where these aquifers discharge are
situated either in the sea or on the continental crust as
springs or recharge of wadis (e.g. Oued Rhir in the
NWSAS), surface-water bodies or chotts (i.e. playas)
and swampy areas with low topography and a high
evaporation rate (oases and humid areas with vegeta-
tion such as NSA).

The model describes the natural evolution of the
system, characterized by its specific time constant,
when its recharge is submitted to external variations;
therefore, artificial withdrawals for irrigated agriculture
and domestic uses are not specifically taken into
account. Moreover, a single outlet is assumed and
corresponds to a condition of prescribed head.

This simple geometry and the parameters defined in the
preceding are the generic elements for computing the time
constant. The basic model developed in the next section
corresponds strictly to Fig. 1a. It consists of a mixed-
aquifer system: its upper part is the recharge zone and its
lower part is driving the flow toward the outlet. Then it is
shown that, under certain conditions, it is possible to
replace the recharge zone of this 1-D model by a boundary
condition. Furthermore, the possible importance of hori-
zontally convergent or divergent flow is studied in a
following section, which describes discharge of a reser-
voir–aquifer system with cylindrical axial symmetry.

Time constant for the discharge of a 1-D mixed
aquifer

The 1-D mixed aquifer model (Fig. 1a) has two compo-
nents: the first one with width au is the recharge zone and

Fig. 1 Simplified scheme of the assumed 1-D aquifer system. a
Schematic cross-section of a mixed aquifer: its upper part with width au
is unconfined and receives the rainfall recharge, and its lower part with
width ac is confined down to the outlet. b Detail of the upstream
recharge zone in the case where it corresponds to the surface outcrop of
the aquifer. c Case where the upstream aquifer has a relatively wide
dimension
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the second one with width ac is the deep aquifer driving
the flow toward the outlet. Both aquifers are assumed
homogeneous but they differ by the values of the
hydraulic parameters (transmissivity, specific yield and
storage coefficient). Before the initial time t=0, the head
results from a stable equilibrium between an infiltration in
the recharge zone and a discharge at the extremity of the
deep aquifer. At time t=0, the recharge is modified (for
example it reduces to 0) and a transient evolution toward a
new equilibrium occurs. This is a generalization of the
model developed by Rousseau-Gueutin et al. (2013) with
the possibility of using different transmissivities and more
realistic initial values.

Making use of the Dupuit’s approximation (Marsily
1986), and assuming that in the unconfined aquifer at the
recharge zone, variations of the saturated thickness can be
neglected so that its transmissivity is constant, the
hydraulic head h(x,t) then satisfies a linear 1-D diffusion
equation in both aquifers, with different hydraulic param-
eters. The previous study by Rousseau-Gueutin et al.
(2013) using a numerical model to check the influence of
a constant saturated thickness has shown that this
approximation is satisfactory.

Here, contrary to Rousseau-Gueutin et al. (2013), the
two components of the aquifer (0<x<au and au<x<au+
ac=a) are characterized by their own transmissivities Tu,Tc;
but, as proposed by these authors, they have their own
storage coefficients Su, Sc as well as their diffusivity
coefficients Du=Tu/Su,Dc=Tc/Sc.Su>>Sc and the differences
between the two components can be characterized by
different ratios such as:

r ¼
ffiffiffiffiffiffiffiffiffiffiffi
T cSc
TuSu

r
ð3Þ

f ¼
ffiffiffiffiffiffiffiffiffiffi
TuSc
T cSu

r
¼

ffiffiffiffiffiffi
Du

Dc

r
ð4Þ

from which:

r f ¼ Sc
Su

and
r

f
¼ T c

Tu
ð5Þ

The boundary conditions are that the head is null at the
outlet and that upstream of the recharge zone, at x=0, the

flux is null (∂h/∂x=0). Moreover, at the limit between the
two aquifers (x=au), the head is continuous as well as the
hydraulic flux. Therefore:

Tu
∂h
∂x

0; tð Þ ¼ 0

h a; tð Þ ¼ 0
h− au; tð Þ ¼ hþ au; tð Þ
Tu

∂h−

∂x
au; tð Þ ¼ T c

∂hþ

∂x
au; tð Þ

ð6Þ

where the superscripted symbols−/+ are relative to aquifers u/c.
Initially (t≤0), the head is at equilibrium under recharge

to the upper aquifer and discharge occurs at x=a. Let B be
the recharge rate for 0<x<au. The equilibrium equations
for the head write:

Tu
∂2h
∂x2

þ B ¼ 0 for 0 < x < au ð7Þ

T c
∂2h
∂x2

¼ 0 for au < x < au þ ac ð8Þ

The solution which satisfies the boundary conditions
(Eq. 6) is:

h0 xð Þ ¼ B
a2u − x2

2Tu
þ auac

T c

� �
for 0 < x < au ð9Þ

h0 xð Þ ¼ Bau
a − x

T c
for au < x < au þ ac ð10Þ

When at time t=0, the recharge suddenly stops, the
system tends toward a new equilibrium where h(x,+∞)=0.
This evolution is described by a diffusion equation assuming
B=0 and the same boundary conditions (Eq. 6). The time-
dependant hydraulic head then satisfies for t>0:

Su
∂h
∂t

¼ Tu
∂2h
∂x2

for 0 < x < au ð11Þ

Sc
∂h
∂t

¼ T c
∂2h
∂x2

for au < x < au þ ac ð12Þ

with the boundary conditions (Eq. 6) and the initial
conditions (Eqs. 9–10).

Table 1 Parameters characterizing the major confined aquifers of three basins

Basin name ac (km) Tc (m
2s−1) Sc Reference

NSA 500 6·10−3 2·10−4–3·10−2 Heinl and Brinkmann 1989
Sonntag 1999; OSS 2003

NWSAS 1,000–2,000 10−3–10−2 10−4–2·10−3 OSS 2003
Ould Baba Sy 2005

GAB 1,500 5·10−3–10−2 2·10−4–5·10−3 Rousseau-Gueutin et al. 2013
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As proposed by Carslaw and Jaeger (1959), it is useful
to replace this problem by a Bcomplementary^ one where
the solution, called g(x,t), has an initial condition g(x,0)=0
everywhere. g(x,t) is assumed to obey the same boundary
conditions (Eq. 6) but now, for t>0, it is subjected to a
recharge B for 0<x<au. The equations for this comple-
mentary problem write:

Su
∂g
∂t

¼ Tu
∂2g
∂x2

þ B for 0 < x < au ð13Þ

Sc
∂g
∂t

¼ T c
∂2g
∂x2

for au < x < au þ ac ð14Þ

It is easy to show that the initial head h(x,t) is related to
g(x,t) by:

h x; tð Þ ¼ h0 xð Þ−g x; tð Þ ð15Þ

This stratagem based on linearity and homogeneity of
both equations and boundary conditions, allows a much
easier solution. Moreover, it can be used to compute the
evolution of the potential for any sudden change of
recharge conditions. Assume that at t=0 the recharge
suddenly changes from B to B’, then the transient solution
for the hydraulic head h(x,t) can be expressed as a
function of the solution g(x,t) of Eqs. (11–12) by:

h x; tð Þ ¼ h0 xð Þ þ g x; tð ÞB
0−B
B

ð16Þ

The mathematical solution of the Bcomplementary^
g(x,t) is developed in Appendix 1. Taking into account
Eq. (15), the full solution of the initial problem is
expressed as:

h x; tð Þ ¼ 2B

SuDc

X∞
n¼1

rsin βnau= fð Þcos βnx= fð Þexp −β2
nDct

� �
β3
n ac þ aur= f þ ac r2−1ð Þcos2 βnau= fð Þ½ �

for 0 < x < au ð17Þ

h x; tð Þ ¼ 2B

SuDc

X∞
n¼1

cos βnauð Þsin βn a−xð Þð Þexp −β2
nDct

� �
β3
n ac þ au=r f þ au r2−1ð Þcos2 βnacð Þ=r f½ �

for au < x < a ð18Þ

In these expressions, βn is the nth real and positive root
of the equation:

Δ βð Þ ¼ rcos acβð Þcos auβ= fð Þ−sin acβð Þsin auβ= fð Þ ¼ 0 ð19Þ

Therefore the hydraulic head h(x,t) is expressed as a series
of exponential functions of time such as ∑Rn(x)exp(−t/τn)

where τn is given by τn=1/(Dcβn
2). For a given time t, the

successive terms Rn(x)exp(−t/τn) of this series rapidly
decrease with n. In practice, the series can be reduced
to its first term R1(x)exp(−t/τ1). This simplification is
quantitatively justified as illustrated in Fig. 2a which
compares, for several truncations, the profile of the head,
once normalized to its initial value at x=au, i.e. from
Eqs. (9–10) normalized by auacB/Tc. For several values
of t (t=0, t=τ1, 2τ1) and several ratios of the hydraulic
parameters, the first term of the series is compared to
more complete series (up to order n=5). From Fig. 2a, it
is justified to retain only the first term: this is verified for
the case Tu=Tc and will be later confirmed for more
general cases. Therefore the full solution h(x,t) given by
Eqs. (17–18) can be replaced by:

h x; tð Þ ≈ 2B

SuDc

rsin β1au= fð Þcos β1x= fð Þexp −β2
1Dct

� �
β3
1 ac þ aur= f þ ac r2−1ð Þcos2 β1au= fð Þ½ �

for 0 < x < au ð20Þ

h x; tð Þ ≈ 2B

SuDc

cos β1auð Þsin β1 a−xð Þð Þexp −β2
1Dct

� �
β3
1 ac þ au=r f þ au r2−1ð Þcos2 β1acð Þ=r f½ �

for au < x < a ð21Þ

Within the limits of this simplification, Eqs. (20–21)
describe the exponential decrease with time of the head as
exp(−t/τ1) with a time constant τ1=1/Dc.β1

2. As stated in
the previous, the value of β1 is the first positive root of
Eq. (19) but it can be given an approximate analytical
expression based on a limited development of Δ(β) in the
vicinity of β=0. A second-order Taylor series development
in β of Eq. (19) yields the first root of Δ(β)=0 as:

β2
1 ≅

r

auac= f þ r a2u= f
2 þ a2c

� �
=2

� �
¼ 1

Su=Sc auac þ T c=Tuð Þa2u=2
� �þ a2c=2

ð22Þ

and the corresponding time constant:

τ1 ¼ 1

Dcβ
2
1

≅
acauSu
T c

þ a2u
2Du

þ a2c
2Dc

ð23Þ

This expression is similar to that given by Rousseau-
Gueutin et al. (2013) with differences related to the fact
that here Tu≠Tc. The time constant τ1 given by Eq. (23) is
expressed as a sum of three terms which have different
values depending on the geometric and hydraulic param-
eters. The two last terms of Eq. (23) reflect the contribution
by the unconfined (subscripts u) and the confined part
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(subscript c), respectively. The first term of Eq. (23) is a
cross-contribution by u and c and will be shown to be the
dominant contribution for the cases of interest.

The relative importance of the three terms in
Eq. (23) can be assessed as shown in Table 3
(Appendix 1) which compares the relative contribu-
tions by the three terms of Eq. (23) for a wide range
of aquifer parameters. It appears that, for Sc/ Su in the
range 10−4 – 10−2, the last term of Eq. (23) is
relatively negligible (less than 5 % of the sum) for
any Tc/ Tu or au/ac. Moreover, when Tc≤Tu, the first
term of Eq. (23) is clearly dominant (above 80 % of
the sum). It should be noted that for Tc=Tu and Sc<<
Su the time constant Eq. (23) reduces to τ1~(Su / Tc) au
(ac+au/2) which is exactly the formula proposed by
Rousseau-Gueutin et al. (2013); however, a new aspect
demonstrated by the present work is that the conduc-
tivity ratio Tc/Tu appears as a relatively important
parameter, as illustrated in Fig. 2b,c.

The effect of this transmissivity difference can be
assessed as follows: when Tc/Tu<1, the hydraulic head
along the unconfined aquifer (0<x<au) as illustrated by
Fig. 2b is almost constant. In other words, for Tc<Tu, the
unconfined aquifer is playing the role of reservoir with a
hydraulic head that is constant with x and which is
feeding the neighbouring confined aquifer. Conversely,
when Tc/Tu>1, as illustrated in Fig. 2c, the hydraulic
head in the unconfined aquifer presents, near the position
x=au, a strong gradient due to the low transmissivity of
the neighbouring confined aquifer.

The unconfined aquifer is assumed to model the
relatively elevated margins of the main confined aquifer
and its actual hydraulic transmissivity is difficult to
assess (Chavez et al. 1994; Viviroli et al. 2003, 2007).
Nevertheless, it seems plausible that this recharge zone
has a transmissivity at least equal to that of the deeper
confined aquifer, i.e. that Tu≥Tc. If this is the case, the
unconfined aquifer can be modelled as a simple reservoir as
developed in the next section.

From the mixed 1-D model to the discharge
of a reservoir–aquifer system

As illustrated in Fig. 3, this 1-D model is obtained from
the previous one in the case of very large Tu. Then, lateral
variations of the head h(x,t) in the unconfined aquifer can
be neglected and the upper aquifer is reduced to a
reservoir, or tank, of width au and storage capacity Su
connected to the lower confined aquifer. A single
parameter M=Suau now characterises the integrated stor-
age capacity of the reservoir. For t<0, the recharge still
occurs for 0<x<au so that the hydraulic head of the
reservoir is the same as that of the neighbouring confined
reservoir at x=au. This is accounted for by the boundary
condition at x=au: the flux entering the confined aquifer is
equal to the rate at which the water mass inside the tank
decreases, i.e. Mh=Suauh. Mathematically, this is a
boundary condition of the third type (or Fourier condition)

prescribed at x=au as a linear relation between the time
derivative of h(x,t) for t>0 and its space derivative:

M
∂h au; tð Þ

∂t
¼ T c

∂h x; tð Þ
∂x

				
x¼au

ð24Þ

Before the initial time t=0, the assumed hydraulic head
in the system results from an equilibrium between the
recharge at rate B in the tank (for 0<x<au) and the
discharge at the end of the confined aquifer, at x=au+ac. In
the confined aquifer, the initial head varies linearly from
h=h1 at x=au to h=0 at x=au+ac and the value h(au,0)=h1 is
related to the initial recharge rate B by:

h1 ¼ Bacau
T c

ð25Þ

At t=0, the recharge suddenly stops and the tank feeds
the confined aquifer until it is completely depleted. The
evolution of the head toward a new equilibrium is
obtained as the solution of the diffusion equation using
Laplace transforms as explained in Appendix 2. This
solution for h(x,t) is shown to be:

h x; tð Þ ¼ 2h1
X ∞

n¼1

sin βn a−xð Þð Þexp −Dcβ
2
nt

� �
a2cβ

2
nsin βnacð Þ 1þM=Scac þ Mβn=Scð Þ2

h i
ð26Þ

where βn is the nth positive root of the equation in β:

Δ βð Þ ¼ cos βacð Þ− βacð Þ M

Scac
sin βacð Þ ¼ 0 ð27Þ

As in the previous case, the first term (n=1) of the
series Eq. (26) is highly dominant so that this series can be
truncated to yield:

h x; tð Þ≅2h1
sin β1 a−xð Þ½ �exp −Dcβ

2
1t

� �
a2cβ

2
1sin β1acð Þ 1þM=Scac þ Mβ1=Scð Þ2

h i
ð28Þ

which describes the exponential decrease of h(x,t). Further-
more, a linear development of Δ(β) in the vicinity of β=0
shows that the first root β1of Eq. (27) can be approximated by:

β1≅
1

ac
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2þM= Scacð Þ½ �p ð29Þ

As shown in Table 4 of Appendix 2, this approximation
appears to be satisfactory to within 5% as long asM/(Scac)>1.
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According to these results, for any x, the head h(t)
decreases exponentially toward 0 as exp(−t/τ) where the
time constant τ is:

τ ¼ 1

Dcβ
2
1

≅
a2c
Dc

1=2þM= Scacð Þ½ � ¼ a2c
2Dc

þ acauSu
T c

ð30Þ

On the basis of this formula, it is interesting to discuss the
implication of the various hydraulic parameters on the order

of magnitude of the time constant τ. When the integrated
storageM=Suau of the upper unconfined aquifer is negligible
compared to that of the confined one (Scac) then τ≈ac2/2Dc.
This is consistent to within 20 % with the exact solution for
an isolated confined layer given in Eq. (1). When using
parameters relevant to this confined aquifer (Tc~10

2 m2s−1,
Sc~10

4 implyingDc~10
2 m2s−1 and ac ~500 km), one obtains

τ~40 years which is a very low value.
Compared to this basic configuration of an isolated

confined aquifer, the storage capacity due to the uncon-
fined aquifer drastically increases the estimated value of τ
as implied by the second term of Eq. (30). In fact, the case
where Suau >>Scac is quite realistic, since Su is on the
order of 0.1 which greatly exceeds Sc ~10−4. Assuming
au~100 km and ac~500 km results in M/Scac ~200 and a
value of τ on the order of 15,000 years. This is well above
the estimate neglecting the unconfined storage. With such
assumptions, Eq. (30) reduces to:

τ ≅
acM

T c
¼ acauSu

T c
ð31Þ

which is similar to Eq. (2).

2-D effects: discharge of a reservoir–aquifer
system with cylindrical symmetry

In the two previous sections, a 1-D model was assumed,
which implies that, on average, the velocity vector is
everywhere parallel to x. The present section deals with
two-dimensional (2-D) effects due to converging or
diverging flow prescribed by the basin geometry. For this
study, the reservoir–aquifer system of Fig. 3 is extended

Fig. 2 Evolution of the hydraulic head for unconfined-confined
aquifers with au=0.3, ac=1 (ac+au=1.3), a ratio of specific storage Su/
Sc=10

2 and three ratios of transmissivity: a Tu/Tc =1, b Tu/Tc =10, and
c Tu/Tc =0.1. The various curves correspond to three values of time
(0,τ/2, τ) and to various approximations. The head is initially at
equilibrium between its recharge for 0<x<0.3 ac and discharge at
x=ac+au. The three curves labelled hEqu, h1(t=0) and h12345(t=0)
correspond to the true value and to two approximations for the initial
head using either the first root β1 or the five first ones. The curves
labelled h1(tau/2) and h12345(tau/2) illustrate two approximations for
h(x,τ/2), and those labelled h1(tau) and h12345(tau) the corresponding
approximations for h(x,τ). In most cases, the various approximations
are practically indistinguishable.

Fig. 3 Reservoir/confined-aquifer system. a Schematic cross-
section of the system. The confined aquifer with width ac stands
for au<x<ac+au. The outlet is at x=ac+au and the limit x=au is
connected to a reservoir with width au and storage Su . b
Corresponding evolution of the hydraulic head in the reservoir and
in the confined aquifer.
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by rotation around a vertical axis. With respect to Fig. 3,
this vertical axis is fixed either at x<0 in order to study a
divergent flow or at x>ac+au for the convergent one. Such
geometries are quite similar to those proposed by Sonntag
(1986) for the study of NSA (his models of a cylindrical
mountain or cylindrical depression).

Diverging flow: model of an Bisland^ or Bcylindrical
mountain^
This model requires a radial coordinate r which measures
the distance with respect to the vertical axis of symmetry
(at r=0). A topographic height (or Bisland^) surrounds the
axis. The central area 0<r<R, or part of it, serves as a
reservoir where the recharge takes place by precipitation,
seepage, etc. This central reservoir is loading a radially
diverging confined aquifer which occupies the area:
R<r<R+ac. The outlet of the aquifer is at r=R+ac. The
model is represented on Fig. 4. Of course, the model does
not need to be fully cylindrical; a Bslice^ of the cylinder,
like a slice of pizza, is sufficient.

The unconfined aquifer, where rainfall contributes to the
recharge, is located along a circular zone defined by
R – au<r<R. Its specific yield is Su and its width along the
radial distance is au with au ranging from 0 to R. For au=0,
the reservoir comprises the whole circle r<R and the surface-
integrated water reserve is given by Suπ R2. The specific case
considered here assumes au<<R so that the reservoir forms a
ring of small width au with an integrated water surface
reserve given by Su2π Rau or a volume reserve Su2π Rhau.

The reservoir is connected to the external confined
aquifer beginning at r=R. The decrease rate of the
reservoir volume compensates the input flux into the

surrounding aquifer. The boundary condition at r=R in the
confined aquifer is a linear relation between the time
derivative of the head and its normal derivative at r=R:

2πRSuau
∂h R; tð Þ

∂t
¼ 2πRT c

∂h r; tð Þ
∂r

				 r ¼ R

or, with M=Suau:

M
∂h R; tð Þ

∂t
¼ T c

∂h r; tð Þ
∂r

				 r ¼ R ð32Þ

(The case of a reservoir using the whole surface r<R
may be dealt with by defining M as SuR/2 instead of Suau).
The other boundary condition corresponds to the outlet
(fixed head) prescribed at r=R+ac; therefore, h(R+ac,t)=0.

The confined aquifer in the area R<r<R+ac is charac-
terized by Tc (its transmissivity) and Sc (its storage
coefficient), whence Dc =Tc/Sc is its diffusivity. Since the
flow is radial, the hydraulic head h(r,t) satisfies the
diffusion equation in cylindrical coordinates.

T c

r

∂
∂r

r
∂h
∂r

� �
¼ Sc

∂h
∂t

ð33Þ

The initial hydraulic head of the confined aquifer is the
result of an equilibrium between the prescribed recharge
condition Eq. (32) at r=R and its discharge at r=R+ac
prescribing h=0. The general solution of the steady-state
cylindrical equation (i.e. corresponding to Eq. (33) with

Fig. 4 Schematic cross-section and 3-D view of the model used for a divergent flow. a The evolution of the head in the aquifer along a
radial direction or from the initial condition when recharge was occurring in the reservoir for R – au<r<R. b A perspective view of the
symmetrical model with divergent flow (from r=0). The outlet is at r=R+ac
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∂h/∂t=0) which satisfies h(R)=h1 and h(R+ac)=0 is now
logarithmic in r and can be written:

h rð Þ ¼ h1
ln Rþ acð Þ−ln rð Þ
ln Rþ acð Þ−ln Rð Þ ð34Þ

The constant h1 (the initial head) is a function of the
rainfall-seepage rate B:

h1 ¼ B
auR

T c
ln

Rþ ac
R

� �
ð35Þ

From this initial solution, the transient evolution can
now be calculated as a solution of Eq. (33) using the same
techniques. This solution is developed in Appendix 3 as:

h r; tð Þ ¼ h1
X ∞

n¼1
exp



−Dcβ

2
nt
�
kn rð Þ ð36Þ

where kn(r) is a function depending on Bessel functions J0,
J1,Y0, andY1, andβn is the nth positive root of the equation inβ:

J0 βnR½ �Y0 βn Rþ acð Þ½ �−J0 βn Rþ acð Þ½ �Y0 βnR½ �f g þ
J0 βn Rþ acð Þ½ �Y1 βnR½ �−J1 βnR½ �Y0 βn Rþ acð Þ½ �f g ¼ 0

ð37Þ

The first root β1 of this equation is approximated by
expanding it when β is in the vicinity of 0. This yields:

β1≅
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 M

ScR
� 1

2

� �
ln

Rþ ac
R

� �
þ Rþ acð Þ2−R2

4R2

" #vuut
ð38Þ

and the corresponding time constant:

τ ¼ 1

Dcβ
2
1

≅
a2c
Dc

1þ 2R=ac
4

� R=acð Þ2 1

2
−

M

ScR

� �
ln 1þ ac=Rð Þ

� 

ð39Þ

When ac<<R, the cylindrical geometry approaches that
of a 1-D case. In this case, the expression of τ given by
Eq. (39) may be expanded as a function of ac/R:

τ→τ lim≅
a2c
Dc

1−ac=3R
2

þ M

Scac
1−ac=2Rð Þ

� �
ð40Þ

This expression is quite similar to Eq. (30) which applies
to the 1-D model; the difference is that the first term is
multiplied by (1 – ac/3R) and the second one by (1 – ac/2R).
Compared to the model of parallel flow in the previous
section, the divergent nature of the flow results in a decrease
of the time constant τ as can be expected intuitively.

The limiting case where M>>ScR deserves attention.
When the upstream storage of water is dominant, Eq. (39)
reduces to:

τ ≅ ln
ρ
R


 �SuauR
T c

þ ρ2−R2

4Dc
ð41Þ

where ρ=R+ac is the radius of the outlet. Moreover, if ρ/R
is large enough so that ln(ρ/R) is at least on the order of 1,
Eq. (41) becomes:

τ ≅ ln
ρ
R


 �SuauR
T c

¼ ln
Rþ ac

R

� �
SuauR

T c

ð42Þ

The latter expression presents some analogy with the
corresponding asymptotic one (Eq. 30) valid for the 1-D
case: Eq. (42) involves R instead of ac for Eq. (31) but τ
decreases when ac/R increases.

Converging flux: model of a Blake^ or Bcylindrical
depression^
This is the convergent version of the axially symmetric
model. In this case, the recharge margins with high
topography are located at r=R along the external limits
of the basin, whereas the outlet lies closer to its centre
at r=ρ=R – ac, (with ac<R). Between these two
structures, for R – ac<r<R, a convergent flow occurs
in the main confined aquifer, with transmissivity Tc
and storage coefficient Sc over a width ac as shown in
Fig. 5. The reservoir associated with the recharge zone
is a narrow (au<<R) circular fringe (R<r<R+au) which
is hydraulically connected to the main confined aquifer.
The integrated storage capacity of this reservoir is
characterized by the parameter M=Suau.

In the aquifer, the head satisfies a diffusion equation
similar to Eq. (33), the difference being the boundary
conditions. The prescribed conditions at the reservoir–
aquifer limit arise from the assumptions of head continuity
and conservation of mass, which yields, at r=R:

M
∂h R; tð Þ

∂t
¼ −T c

∂h r; tð Þ
∂r

				 r ¼ R ð43Þ

At the outlet, the boundary condition is h(R – ac,t)=0.
(Note that the assumption ac=R would be misleading
because for such convergent flow, the hydraulic head at
r=0 would be undefined). The general solution of the steady-
state cylindrical equation (i.e. corresponding to Eq. (33) with
∂h/∂t=0) which satisfies h(R)=h1 and h(R-ac)=0, is:

h rð Þ ¼ h1 rð Þ ln R−acð Þ−ln rð Þ
ln R−acð Þ−ln Rð Þ ð44Þ
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and h1 can be expressed as a function of the recharge rate
and hydraulic parameters:

h1 ¼ B
auR

T c
ln

R

R−ac

� �
ð45Þ

Starting from this initial solution, the transient evolu-
tion is calculated as a solution of Eq. (33) as developed in
Appendix 3 and yields:

h r; tð Þ ¼ h0
X ∞

n¼1
exp



−Dcβ

2
nt
�
kkn rð Þ ð46Þ

where kkn(r) is also a function depending on Bessel
functions J0, J1,Y0, and Y1, and βn is the nth positive root
of the equation in β:

Δ βð Þ ¼ −J0 βnR½ �Y0 βn R−acð Þ½ � þ J0 βn R−acð Þ½ �Y0 βnR½ �f gþ
J0 βn R−acð Þ½ �Y1 βnR½ �−J1 βnR½ �Y0 βn R−acð Þ½ �f g ¼ 0

ð47Þ

As previously, the first root β1 of this equation may be
approximated by:

β1≅
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 M

ScR
þ 1

2

� �
ln

R

R−ac

� �
þ R−acð Þ2−R2

4R2

" #vuut
ð48Þ

corresponding to a time constant:

τ ¼ 1

Dcβ
2
1

≅
a2c
Dc

1−2R=ac
4

� R=acð Þ2 1

2
þ M

ScR

� �
ln 1−ac=Rð Þ

� 
ð49Þ

For ac<<R, the expression of τ obtained by expanding
Eq. (49) as a function of ac/R approaches that of the 1-D case:

τ→τ lim≅
a2c
Dc

1þ ac=3R

2
þ M

Scac
1þ ac=2Rð Þ

� �
ð50Þ

With respect to the 1-D model, the first term of τ is
multiplied by (1+ac/3R) and the second term by (1+ac/2R).
Therefore, the convergent flow is associated with an increase
of the time constant τ as has already been suggested.

In the case where M>>ScR, Eq. (49) reduces to:

τ ≅ ln
R

ρ

� �
SuauR

T c

þ ρ2−R2

4Dc
ð51Þ

where ρ=R – ac is the radius of the outlet (ρ<R).
Moreover, if R/ρ is large enough so that ln(R/ρ) is at least
of the order of 1, Eq. (51) becomes:

τ ≅ ln
R

ρ

� �
SuauR

T c

¼ ln
R

R−ac

� �
SuauR

T c

ð52Þ

which is analogous to Eq. (42) in the case of divergent
flow. However, in this case, the logarithmic factor

Fig. 5 Schematic cross-section and three-dimensional (3-D) view of the model used for a convergent flow. a The evolution with time of
the head in the aquifer along a radial direction, from the initial condition when recharge was occurring in the reservoir. b A perspective
view of the symmetrical model of convergent flow (toward r=0). The outlet is at r=R – ac and the reservoir lies within R<r<R + au
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becomes very large when ac tends toward R, i.e. when the
radius of the outlet becomes negligible.

Conclusion on convergence–divergence effects
The whole set of results concerning the effects of
divergence/convergence on the time constant is summa-
rized in Fig. 6, where the time constants τ οbtained for
various models of flow (diverging, parallel and converg-
ing) are presented. The ordinate is the time constant τ
normalized to the basic parameter Dc/ac

2 and the abscissa
is the ratio ac/R which characterizes the curvature of the
system. The various curves correspond to various values
of the normalized storage capacity M/(Scac). The abscissa
ac/R=0 corresponds to the 1-D model, with parallel flow,
the abscissa ac/R>0 to a diverging flow and, by conven-
tion, the abscissa ac/R<0 to a converging flow. In the latter
case, the parameter ac/R ranges from 0 (no convergence)
to −1; the last value corresponds to the limit where ac→
│R│ so that the head has a singular behaviour. Figure 6
confirms that the flow divergence induces a decrease of τ
as a function of the curvature, which is unlimited since ac/
R is not limited. However, the convergence results in a
very significant increase of τ, which may even be very
large when the size of the outlet tends toward 0. For a
small curvature (ac/R close to 0), the slope of the
normalized τ as a function of │ac/R│ follows the
previously predicted trends with a slope of −1/3 for low
M/Scac and −1/2 for large M/Scac.

Discussion and application

The obtained formulas are now applied to actual
transient phenomena occurring in the selected basins.

Since the presented models are based on many
simplifications, only first-order phenomena are consid-
ered, with particular attention to the hydraulic param-
eters and the large-scale geometry of the systems.

The large aquifer basins of North Africa and East
Australia received, during the early Holocene, abundant
rainfall which stopped around 4,000 years BP resulting
in the present arid climate (Gasse 2000; Taylor et al.
2009; Lézine et al. 2011). This drastic decrease in
rainfall and recharge for a period of 4,000 years and the
recent withdrawals of groundwater for agricultural use
are clearly responsible for the critical piezometric falls
observed in some deep aquifers (e.g. Besbes and
Horriche 2007 for the NWSAS). However, these
observations are hardly significant at the regional scale.
In fact, local drawdowns of piezometric levels observed
in areas of intense withdrawal are clearly associated
with local pumping effects: their apparent time constant
τ (defined as τ=h/(∂h/∂t), i.e. assuming an exponential
decay of h(t)) is on the order of 100 years. This is
much smaller than the time constant associated with
recharge variations.

If one assumes that no rainfall has recharged these
deep aquifers for about 4,000 years, the fact that they
are not completely depleted indicates that their time
constant τ is on the order of several thousand years.
Alternatively, it has been proposed that some modern
rainfall-recharge is still occurring even though it is
much weaker than it was at the beginning of the
Holocene (Ould Baba Sy 2005; Gonçalvez et al.
2013). In any case, the time constant defined in the
present study is still valid since it represents a sudden
modification of the recharge rate, no matter if the final
state tends toward a complete drought. In this case, τ
would characterize the evolution from an initial Bvery
rainy^ situation to a Bless rainy^ one.

As stated in the definition of the generic model, the
confined aquifers of the large basins NWSAS, NSA and
GAB are characterized by the following parameters:
Tc~10

3–102 m2s−1, Sc~10
4 and ac ~500 km. Assuming

that these confined aquifers are not connected to any
unconfined aquifer operating as a reservoir, then from
Eq. (1), their time constant τ would be in the range 40–
400 years, i.e. much less than the 4,000 years of the
beginning of dry conditions. Therefore, without modern
recharge, these aquifers would be depleted.

As noted previously, the value of τ drastically
increases when the main confined aquifer is connected
to an upstream unconfined one with a much larger
storage capacity. According to Eq. (30), valid for Tu≥Tc,
the presence of an unconfined layer characterized by
Suau=5 Scac is sufficient to multiply the previous τ
value by a factor of about 11. This factor can easily be
obtained: assuming Sc~10

4 and ac~500 km, even a
narrow reservoir with au~2.5 km and Su~10

1 would be
sufficient.

Therefore, the presence of an upstream unconfined
aquifer coupled with the recharge zone plays a major
role for maintaining the head in the whole basin during

Fig. 6 Chart of the normalized correction applied to the time
constant in the divergent and convergent cases. The curves
show the reduced value of τ (normalized by ac

2 /Dc) as a
function of the curvature of the reservoir zone, characterized by
ac/R: by convention ac/R<0 is a convergent flux. The curves are
parameterized by the normalized storage of the reservoir M/Scac
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periods on the order of 1–10 ka. In the cases of NSA
(Heinl and Brinkmann 1989) and GAB (Habermehl
1980), relatively large unconfined aquifers with widths
in the range 50–200 km, connected to the main
confined one, have been observed. For NWSAS, the
CI and CT main aquifers present many outcrops at the
periphery of the basin (such as the Atlas Mountain
range) with widths on the order of a few tens of km
(Ould Baba Sy 2005). These narrow outcrops may
behave as potential reservoirs where recharge occurred
in the past and still continues.

Another important geometrical factor resulting in a
larger τ value is the convergence of hydraulic flows which
affects many basins, as shown by present piezometric
maps. In the CI aquifer of NWSAS groundwater flows
converge on the Gulf of Gabes in South Tunisia (Besbes
and Horriche 2007). In Australia, a concentration of
groundwater flows toward Lake Eyre occurs in the
endorheic GAB basin (Habermehl 1980). The confined
aquifer of NSA also presents converging features toward
the Gulf of Syrte (Heinl and Brinkmann 1989). Such
convergent geometry can be modelled by the cylindrical
model for converging flow (Fig. 5). Assume that the
discharge zone which represents the outlet has a radius of
100 km; if the main aquifer has a width ac=500 km, the
radius where the recharge zone is active becomes
R=600 km. This leads to a ratio ac/R=− 0.8 to –0.9, with
a minus sign according to the convention used in Fig. 6.
For such a ratio, a convergence-induced multiplicative
factor of around 3–4 applies to τ, as can be seen in Fig. 6.
This significantly contributes to the durability of the
system. Therefore, the evaluation of the time constant of
large aquifer basins suggests that their geometry and
structure explain why they are still discharging water
when they have been subjected to arid conditions for more
than 4,000 years. Moreover, this evaluation is not
modified by the possible contribution of a small modern
rainfall recharge.

The concept of time constant can also be applied to a
previous transient phenomenon: the onset of the Bgreen
Sahara^. At the beginning of the Holocene, the currently
arid Sahara was much wetter than today (Gasse 2000;
Taylor et al. 2009; Lézine et al. 2011). From about 12,500
to 6,000 years BP, its lowlands contained many freshwater
bodies now almost completely dried out (this wet phase
was followed by the current dry period which occurred
around 4,000 years BP). During this humid event, a time-
lag on the order of 3,000 years has been shown to have
existed between the onset of the wet period and the
maximum development of freshwater bodies. The chro-
nology is based on the interpretation of many palaeo-
hydrology observations at the scale of the whole Sahara
(Lézine et al. 2011) and of high-quality data in specific
areas such as Lake Yoa in Northern Chad (Grenier et al.
2009). A likely explanation is that this time-lag reflects the
delayed contribution of groundwater to the near-surface-
water bodies, i.e. the time necessary for the recharge of
deep aquifers (starting at the onset of the humid period) to
reach the outlets. The time constant computed here for

application to the discharge of large Saharan basins may
also be applied to their recharge. A time-lag of several
thousand years between the onset of the humid period and
their maximum extent is indeed consistent with the
estimated time constant.

This study can be used to give a first-order estimate of
the natural decay time of the hydraulic head. In many
instances, unconfined aquifers provide a major contribu-
tion to water reserves and can be assimilated to reservoirs.
A quite robust Eq. (31) was obtained for the case where
the unconfined reservoir-like aquifer has an integrated
storage capacity M=Suau much larger than Scac: the time
constant τ reduces to τ~M ac/Tc=S uauac/Tc, which does
not depend any more on Sc and Tu. Realistic evaluations of
ac, au and Tc are often available and Su is related to the
local porosity (another possibility is to make use of
existing remote gravity measurements that record varia-
tions of the water mass over time (e.g. GRACE), as
proposed by Sun et al. (2010).

For the previous applications, relatively large values of τ
are explained by the major role of unconfined aquifers with
storage coefficients much larger than those of confined ones.
This feature has already been emphasized by many authors
(e.g. OSS 2005, which is a report for the NWSAS) and
deserves further discussion. The value of Su can generally be
estimated as the accessible porosity, which is generally on
the order of 0.1 (Marsily 1986). By contrast, the low storage
coefficient Sc of confined aquifers is due to the compress-
ibility of the water and of the pore volume and depends
mainly on the mechanical deformation ability of rocks. The
resulting Sc value lies in the range 1/100–1/1000 of that of
Su; however, the existence of such a great difference of
storativity suggests several limitations. First, during a
depletion event, the top of the confined aquifer may become
unsaturated in some places so that its behaviour becomes
that of an unconfined one. Second, possible vertical fluxes
(leakage) between neighbouring aquifers have been
neglected, whereas they may contribute to increase the
available water storage. For instance, Bredehoeft et al.
(1983) found that leakage due to fractures is important in
explaining the head distribution in the confined Dakota
Aquifer System (USA). In fact, Eq. (30) applies to a case
where the confined aquifer is hydraulically isolated from its
surroundings except through the connection with its up-
stream unconfined neighbour.

Equation (31) may also receive a very simple physical
interpretation: the time constant τ is similar to that of a
falling head permeameter for measuring the Bhydraulic
resistance^ ac/Tc of a porous medium limiting the
discharge toward an outlet (Marsily 1986). This analogy
was already used by Ould Baba Sy (2005) to reconstruct
the Binitial^ hydraulic head of the NWSAS aquifers at the
beginning of the dry period.

Conclusions

This work is a continuation of the previous study by
Rousseau-Gueutin et al. (2013) of the transient depletion
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of a mixed (unconfined-confined) aquifer system when
subjected to a sudden recharge change. The various
models developed here present both a generalization of
the previous study for more complex and more realistic
cases (initial condition, 2-D effects, etc.), and some
simplifications where the initial water storage is geomet-
rically concentrated.

When such a mixed aquifer system is submitted to an
abrupt change of recharge, the hydraulic head evolution
from an initial equilibrium to a final one closely follows
an exponential trend exp(−t/τ) characterized by the time
constant τ. For simple geometries, τ is expressed
analytically as a function of the characteristics of the
system: the hydraulic parameters (transmissivities Tu,Tc
and storage coefficients Su, Sc) and the geometrical ones
(width of the two components au, ac and for the
cylindrical case, radius R of the recharge zone). Table 2
summarizes the analytical formulae expressing τ as a
function of these parameters as developed in the previous
analytical sections. These formulae are labelled from Nos.
1 to 10; each of them corresponds to a specific assumption
made on the values of the parameters as well as on the
actual geometry of the flow pattern. Since these various
formulae are to be used in practical situations, the
following paragraphs are providing some guidance for
discussing their relevance domain.

Formulae Nos. 1–4 apply to the linear 1-D case where the
curvature of the flow lines can be neglected, whereas formulae
Nos. 5–10 emphasize the role of cylindrical flow characterised
by the curvature radius R of the upstream reservoir.

For the linear 1-D case, formula No. 1 applies to the
general case of a mixed aquifer and does not need any
specific assumption. However, in practice, several approx-
imations are often justified since the upstream aquifer
component of the basic model is identified as an
unconfined aquifer with large storage capacity (Sc<< Su).
In fact, the relevant formula also depends on the relative
values of transmissivities: the case where Tc=Tu leads to
formula No. 2 (already developed by Rousseau-Gueutin
et al. 2013); if Tu >>Tc, it is possible to replace the

upstream component of width au and large capacity Su by
an equivalent reservoir of integrated storage auSu resulting
in formula No. 3. If, moreover, the horizontally
integrated auSu is much larger that acSc, then formula
No. 3 reduces to No. 4 where the parameters Sc and Tu
are absent.

The effects of radial convergence or divergence are to
be discussed on the basis of cylindrical models; only the
case where Tu >>Tc is considered where the upstream
component can be replaced by an equivalent reservoir
with curvature radius R. Formulae Nos. 5 and 7
respectively give the expression of τ for the general case
of a diverging flow or a converging one; these formulae
are the counterparts of formula No. 3 in the case of
cylindrical symmetry. The effect of a weak curvature
(ac<<R) is assessed by formulae Nos. 6 and 9 through
comparison with formula No. 3 based on the linear model:
the marginal effect of divergence (No. 6) or convergence
(No. 9) is characterized by the factor±ac/R. When,
moreover, the horizontally integrated auSu is much larger
than acSc, the effect of an important curvature (i.e. ac on
the order of R) results in formula No. 7 (for divergence)
and No. 10 (for convergence).

It is important to notice that, in many commonly
occurring conditions, the analytical expression of τ
depends on only four parameters that characterize the
system: the width ac of the main confined aquifer, its
transmissivity Tc, the integrated storage situated upstream
M=Suau and the curvature R of the reservoir describing the
convergence/divergence of the flow. These ultra-simplified
expressions are given in Table 2 as Nos. 3, 7 and 10.

These expressions were applied to several large aquifer
basins of the Sahara and Australia. Following the sudden
occurrence of the present aridity around 4,000 years ago,
these deep confined aquifers have been subjected to a
natural head decay with a large time constant (τ>5,000
years) resulting from their structure and geometry. This
large time constant τ can be explained by the existence of
an upstream water reserve in the form of an unconfined
aquifer. The convergence of groundwater flow also results

Table 2 Summary of analytical expressions obtained

Formula N° Geometry Assumption on parameters Expression of the time constant τ

1 1D Mix. Aquif.a No assumption auac(Su/Tc)+au
2Su/(2Tu)+ac

2Sc/(2Tc)
2 1D Mix. Aquif. Tu=Tc ; Sc<< Su au(ac+au/2)Su/Tc
3 1D Res. Aquif.b Tu>>Tc acauSu/Tc+ac

2Sc/(2Tc)
4 1D Res. Aquif. Tu>>Tc ; auSu >>acSc acauSu/Tc
5 2D Cyl. Div.c Tu>>Tc ac

2Sc/Tc{ (1+2R/ac)/4−(R/ac)2[1/2−auSu/(ScR) ln(1+ac/R)}
6 2D Cyl. Div. Tu>>Tc; ac<<R ac

2Sc/Tc[(1+ac/3R)/2+ (1+ac/2R)(auSu)/(acSc)]
7 2D Cyl. Div. Tu>>Tc; ac#

e R; auSu>>acSc
e RauSu/Tc{ln[(R+ac)/R]}

8 2D Cyl. Conv.d Tu>>Tc ac
2Sc/Tc{(1−2R/ac)/4−(R/ac)2[1/2+auSu/(ScR)] ln(1−ac/R)}

9 2D Cyl. Conv. Tu>>Tc ; ac<<R ac
2/Dc[(1−ac/3R)/2+ (1−ac/2R) (auSu)/(Scac)]

10 2D Cyl. Conv. Tu>>Tc ; ac#R; auSu>>acSc RauSu/Tc{ln[R/(R−ac)]}
a Corresponds to linear mixed aquifer system
bCorresponds to linear reservoir–aquifer system
cCorresponds to axial symmetry with divergent flow
dCorresponds to axial symmetry with convergent flow
e # corresponds to of the same order of magnitude
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in a significantly enhanced time constant τ. Both effects
have contributed to the natural persistence of flow at the
outlet of these aquifers for 4,000 years. The same
mechanisms may also have been responsible for the
apparent time delay observed in the Sahara between the
onset of a climatic wet phase at the beginning of the
Holocene and the maximum extent of the humid zones.
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Appendices

Appendix 1: Laplace transform solution for the 1-D
mixed aquifer system
The auxiliary function g(x,t) defined in the text is satisfying:

Su
∂g
∂t

¼ Tu
∂2g
∂x2

þ B for 0 < x < au ð53Þ

Sc
∂g
∂t

¼ T c
∂2g
∂x2

for au < x < au þ ac ¼ a ð54Þ

Its initial condition is that g(x,0)=0 for any x in the
range (0, a=au+ac). Its boundary conditions are:

T c
∂g
∂x

0; tð Þ ¼ 0

g a; tð Þ ¼ 0
g− au; tð Þ ¼ gþ au; tð Þ
Tu

∂g−

∂x
au; tð Þ ¼ Tu

∂gþ

∂x
au; tð Þ

ð55Þ

Let γ(x,p) be the Laplace transform of g(x,t); γ(x,p)
satisfies:

Supγ ¼ Tu
∂2γ
∂x2

þ B

p
for 0 < x < au ð56Þ

Scpγ ¼ T c
∂2γ
∂x2

for au < x < au þ a ð57Þ

with boundary conditions similar to those of g(x,t) as
Eq. (55). When introducing the parameter q defined by:

q ¼
ffiffiffiffiffiffiffiffi
pSc
T c

r
¼

ffiffiffiffiffiffi
p

Dc

r
ð58Þ

the general solution of Eq. (56) can be written as:

γ x; pð Þ ¼ B

p2Su
þ αcosh

qx

f

� �
þ δsinh

qx

f

� �
for 0 < x < au

ð59Þ
and that of Eq. (57) as:

γ x; pð Þ ¼ λ cosh qxð Þ þ ξsinh qxð Þ for au < x < au þ ac ð60Þ

The four constants a,δ,λ,ξ are obtained by the four
boundary conditions (Eq. 55) and the solution is:

γ x; pð Þ ¼ B

p2Su
1− r

cosh acqð Þcosh qx= fð Þ
Δ

� �
for 0 < x < au

ð61Þ

γ x; pð Þ ¼ B

p2Su

sinh auq= fð Þ cosh q a − xð Þ½ �
Δ

� �
for au < x < a ¼ au þ ac

ð62Þ

where Δ is the determinant defined by:

Δ ¼ rcosh acqð Þcosh auq= fð Þ þ sinh acqð Þsinh auq= fð Þ ð63Þ

For taking the inverse Laplace transform, it is
necessary to identify the singularities of γ(x,p) in the
complex p plane. The function γ(x,p) is single valued. It
has a simple pole at p=0 and an infinite series of simple
poles pn on the negative part of the real axis.

The pole at p=0 corresponds to the asymptotic trend of
the solution for t→+∞. Its expression is obtained as the
limit of Eqs. (61)–(62) for p→0:

γ x; p→ 0ð Þ ≈ B

p

a2u − x2

2Tu
þ auac

T c

� �
for 0 < x < au ð64Þ

γ x; p→ 0ð Þ ≈ B

p
au
a − x

T c
for au < x < au þ ac ð65Þ

This asymptotic behaviour corresponds to the steady-state
solution g(x,t→+∞). From the definition of g(x,t)=h0(x)−h(x,t),
g(x,+ ∞) is also equal to the assumed initial value h0(x), the
expression of which (Eqs. 9–10) can be recognized in
Eqs. (64)–(65) to within a 1/p multiplicative factor.

The other poles correspond to the pn values where
Δ(pn)=0. Using Eq. (58), these poles in p correspond to
purely imaginary values of qn ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
pn=Dc

p ¼ iβn where βn
is real. Using a trigonometric transformation of Eq. (63),
the poles are also the zeros in β of the function Δβ:

Δ βð Þ ¼ rcos acβð Þcos auβ= fð Þ−sin acβð Þsin auβ= fð Þ ¼ 0 ð66Þ
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The first and smallest zero of Eq. (66) can be
approximated from a first-order expansion of Δβ) in the
vicinity of β=0:

Δ βð Þ ≈ r −β2 r

2

a2u
f
þ a2c

� �
þ auac

f

� �
ð67Þ

This first root β1 of Δβ=0 can be approximated by:

β1≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r

auac= f þ r a2u= f þ a2c
� �

=2

r
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

auac
Su
Sc

þ a2u
T cSu
2T uSc

þ a2c
2

s

ð68Þ

The inverse transform is obtained through integration
in the complex p plane as (Carslaw and Jaeger 1959):

g x; tð Þ ¼ 1

2iπ ∫c γ x; pð Þ exp ptð Þdp ð69Þ

The contour C of the integral lies parallel to the
imaginary axis, from –∞ to+∞, and is closed in such a
way that all singularities of the function (p) are located in
the left part of the complex p-plane. It is closed on a large
circle in the left part of the p-plane, which gives a
vanishing contribution. This contour integral allows the
use of the residuals theorem and each pole gives a
contribution to the integral Eq. (69) according to the
behaviour of γ(x,p). The pole at p=0 contributes to give the
asymptotic function h0(x). The other poles pn associated
with the βn (n=1,2…) solutions of Δβ=0 contribute to give
a function Rn(x)exp(−tDc/βn

2). Here Rn(x) denotes the
residual, i.e. the linear trend of the function γ(x,p) in the
vicinity of the pole pn=−βn2Dc. This yields:

g x; tð Þ ¼ B
a2u−x2

2Tu
þ auac

T c

� �
−

2B

SuDc

X∞
n¼1

rsin βnau= fð Þcos βnx= fð Þexp −β2
nDct

� �
β3
n ac þ aur= f þ ac r2−1ð Þcos2 βnau= fð Þ½ � ð70Þ

for 0<x<au and

g x; tð Þ ¼ Bau
a−x
T c

−
2B

SuDc

X∞
n¼1

cos βnauð Þsin βn a−xð Þð Þexp −β2
nDct

� �
β3
n ac þ au=r f þ au r2−1ð Þcos2 βnacð Þ=r f½ � ð71Þ

for au<x<au+ac.
Using Eq. (15), the expression of h(x,t) is found

directly from that of g(x,t) as h(x,t)=h0(x) – g(x,t) yielding
the results (Eqs. 17–18).

In practice, as explained in the main text, the summation
over n (1… ∞) can generally be restricted to the first term
n=1 since the other terms (n=2,3…) give a negligible
contribution. The time variation closely follows an expo-
nential decrease h(x,t)∝exp(−β12Dct) or h(x,t)∝exp(−t/τ)
where τ is the time constant. From Eq. (68), this time
constant may be approximated by:

τ ≈
1

β2
1Dc

≈ auac
Su

DcSc
þ a2u

T cSu
2DcTuSc

þ a2c
1

2Dc

¼ auac
Su
T c

þ a2u
Su
2Tu

þ a2c
Sc
2T c

ð72Þ

The relative importance of the three terms in Eq. (72)
can be assessed as shown in Table 3 which gives in
percent the relative contributions by these three terms for a
wide range of aquifer parameters. Three parameter ratios
(of storage coefficients, horizontal widths and transmissivities)
have a range of variation inspired by the considered aquifer
basins:

– The storage coefficient Sc/Su ratio is in the range 10−4

– 10−1 for characterizing the difference in storage
between confined and unconfined aquifers.

– The horizontal width au/ac ratio between the two types
of aquifers is assumed to vary between 0.1 (localized
recharge zone) and 0.5 (wide recharge zone).

– The transmissivity Tc/Tu ratio is largely arbitrary. It is
assumed to vary in the range 10−1 – 101.

It is clear that, for Sc/Su in the range 10−4– 10−2, the last
term of Eq. (72) is relatively negligible (less than 5 % of
the sum) for any Tc/Tu or au/ac and that when Tc≤Tu, the
first term of Eq. (72) is clearly dominant (above 80 % of
the sum), which results in further simplification of
Eq. (72) as discussed in the main text.

Appendix 2: Laplace transform solution for the 1-D
reservoir–aquifer system
The head h(x,t) satisfies the diffusion equation:

Sc
∂h
∂t

¼ T c
∂2h
∂x2

for au < x < au þ ac ¼ a ð73Þ

with the two boundary conditions:

h au þ ac ¼ a; tð Þ ¼ 0 ð74Þ

M
∂h au; tð Þ

∂t
¼ T c

∂h x; tð Þ
∂x

				
x¼au

ð75Þ
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The first boundary condition is that the head is 0 at the
outlet x=a. The second boundary condition means that the
aquifer is connected to a reservoir which has the same
head h(au,t) at x=au as the aquifer. This reservoir is
characterized by its integrated storage capacity M=auSu.
The reservoir–aquifer connection implies that any time
variation of the reservoir volume induces a diffusive flux
toward (or from) the aquifer at x=au.

The initial condition is that, at t=0, the system is at
equilibrium between a discharge at x=a and a recharge of
the reservoir at a rate B per unit coordinate for 0<x<au.
This yields the following linear solution of the equilibrium
equation in the aquifer:

h x; 0ð Þ ¼ h1
a−x
ac

for au < x < a ð76Þ

where h1 is such that the flux of water Tch1/ac entering in
the aquifer compensates the integrated recharge Bau.
Therefore:

h1 ¼ B
acau
T c

ð77Þ

Let η(x,p) be the Laplace transform of the function
h(x,t); the associated equation for η(x,p) is:

Sc pη� h1
a−x
ac

� �
¼ T c

∂2η
∂x2

for au < x < au þ ac ð78Þ

Introducing q ¼ ffiffiffiffiffiffiffiffiffiffi
p=Dc

p
the general solution of Eq. (78) is:

η x; pð Þ ¼ h1
p

a−x
ac

þ αcosh qxð Þ þ δsinh qxð Þ ð79Þ

with two constants α and δ which are determined to
satisfy Eqs. (74)–(75). This gives:

η x; pð Þ ¼ h1
p

a−x
ac

−
T csinh q a−xð Þð Þ

qac T ccosh qacð Þ þMDcqsinh qacð Þ½ �
� 

ð80Þ

Again, the function η(x,p) is single valued and has
an infinite series of simple poles pn on the negative part
of the real axis. The value p=0 is not a pole, as can be
verified with a limited development of Eq. (80) for
small p. The poles are the zeros of the expression at the
denominator of Eq. (80) and can also be expressed as
functions of the real variable β ¼ −iq ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

−p=Dc

p
. The

corresponding β values are positive solutions of:

Δ βð Þ ¼ T ccosh qacð Þ þMDcqsinh qacð Þ
¼ T ccos βacð Þ−MDcβsin βacð Þ ¼ 0 ð81Þ

The Laplace inversion proceeds as for Appendix 1. The
poles pn corresponding to the positive βn (n=1,2…)
solutions of Δ(β)=0 contribute to the contour integral
(as defined in Eq. 69). This contribution is a function
Rn(x)exp(−tDc/βn

2) where Rn(x) denotes the residual, i.e.
the linear trend of the function η(x,p) in the vicinity of the
pole pn ¼ −β2

n=D c . The expression for the residual is:

Rn xð Þ ¼ 2h1
sin βn a� xð Þ½ �

a2cβ
2
nsin βnacð Þ 1þM=Scac þ Mβn=Scð Þ2

h i
ð82Þ

and the required solution is an infinite series:

h x; tð Þ ¼ 2h1 ∑
∞

n¼1

sin βn a − xð Þ½ �exp −tDc=β
2
n

� �
a2cβ

2
nsin βnacð Þ 1þM=Scac þ Mβn=Scð Þ2

h i
ð83Þ

In practice, the summation over n (1… ∞) is restricted to
the first term n=1 since the other terms (n=2,3…) give a
negligible contribution. The time variation closely follows an
exponential decrease h(x,t)∝exp(−β12Dct) or h(x,t)∝exp(−t/τ)
where τ is the time constant τ=1/β1

2Dc. An approximate value

Table 3 Relative value in % of the three terms of Eq. (72) vs. values of ratios Sc/SuTc/Tu, au/ac

Tc/Tu au/ac Sc/Su=0.0001 relative
value in %

Sc/Su=0.001 relative value
in %

Sc/Su=0.01 relative value in % Sc/Su=0.1 relative value in %

0.1 0.1 99.45 0.50 0.05 99.01 0.50 0.50 94.79 0.47 4.74 66.45 0.33 33.22
0.1 0.2 98.99 0.99 0.02 98.77 0.99 0.25 96.62 0.97 2.42 79.37 0.79 19.84
0.1 0.5 97.55 2.44 0.01 97.47 2.44 0.10 96.62 2.42 0.97 88.89 2.22 8.89
1 0.1 95.19 4.76 0.05 94.79 4.74 0.47 90.91 4.55 4.55 64.52 3.23 32.26
1 0.2 90.89 9.09 0.02 90.70 9.07 0.23 88.89 8.89 2.22 74.07 7.41 18.52
1 0.5 79.99 20.00 0.01 79.94 19.98 0.08 79.37 19.84 0.79 74.07 18.52 7.41
10 0.1 66.64 33.32 0S.03 66.45 33.22 0.33 64.52 32.26 3.23 50.00 25.00 25.00
10 0.2 49.99 49.99 0.01 49.94 49.94 0.12 49.38 49.38 1.23 44.44 44.44 11.11
10 0.5 28.57 71.43 0.00 28.56 71.41 0.03 28.49 71.23 0.28 27.78 69.44 2.78
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of β1 is obtained from a first-order expansion of Δ(β) given
by Eq. (82) in the vicinity of β=0:

β1 ≅
1

ac
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2þM= Scacð Þ½ �p ð84Þ

Table 4 allows a comparison between the approximate
Eq. (84) and the exact value of β1 obtained by a
numerical solution of Eq. (81). The approximation
(Eq. 84) appears to be satisfactory to within 5 % as
long as M/(Scac)>1.

Therefore the time constant τ=1/β1
2Dc may be approx-

imated by:

τ ¼ 1

Dcβ
2
1

≅
a2c
Dc

1

2
þ M

Scac

� �
¼ a2c

2Dc
þ acauSu

T c
ð85Þ

Appendix 3: Laplace transform solution
for the cylindrical reservoir–aquifer system
with divergent or convergent flow

In radial coordinates, the head is assumed to depend only
on the radius r and to satisfy the corresponding radial
diffusion equation for h(r,t):

T c

r

∂
∂r

r
∂h
∂r

� �
¼ Sc

∂h
∂t

ð86Þ

For the case of diverging flow, the domain of the
aquifer is R<r<R+ac. A boundary condition is prescribed
at the outlet r=R+ac as h(R+ac)=0. The other condition at
r=R is a connection with a reservoir with integrated
storage given by M=auSu. This implies a mixed boundary
condition on the value of h at r=R:

M
∂h R; tð Þ

∂t
¼ T c

∂h r; tð Þ
∂r

				 r ¼ R ð87Þ

The general solution of the steady-state equation which
satisfies h(R+ac)=0 is:

h rð Þ ¼ h1
ln Rþ acð Þ−ln rð Þ
ln Rþ acð Þ−ln Rð Þ ð88Þ

h1 can be expressed as a function of the initial recharge
rate B. For t≤0, the water budget requirement is that the
flow entering the aquifer is equal to the integrated
recharge. Therefore:

h1 ¼ B
auR

T c
ln

Rþ ac
R

� �
¼ B

MR

T cSu
ln

Rþ ac
R

� �
ð89Þ

Let η(r,p) be the Laplace transform of the function
h(r,t); its associated equation is:

Sc pη−h1
ln Rþ acð Þ=r½ �
ln Rþ acð Þ=R½ �

� �
¼ T c

r

∂
∂r

r
∂η
∂r

� �

for R < r < Rþ ac

ð90Þ

Using q ¼ ffiffiffiffiffiffiffiffiffiffi
p=Dc

p
, the general solution of Eq. (90) is

obtained as a function of the modified Bessel functions
I0 and K0:

η x; pð Þ ¼ h1
p

ln Rþ acð Þ=r½ �
ln Rþ acð Þ=R½ � þ αI0 qrð Þ þ δK0 qrð Þ ð91Þ

α and δ are defined to satisfy the boundary conditions.
This leads to:

η x; pð Þ ¼ h1
pRln Rþ acð Þ=R½ � Rln

Rþ ac
r

� ��
þ

κ −I0 qrð ÞK0 q Rþ acð Þ½ � þ I0 q Rþ acð Þ½ �K0 qrð Þ� �
p I0 qRð ÞK0 q Rþ acð Þ½ �−I0 q Rþ acð Þ½ �K0 qRð Þ� �

−κq I1 qRð ÞK0 q Rþ acð Þ½ � þ I0 q Rþ ac½ �ð ÞK1 qRð Þ� �
)

ð92Þ

where the variable κ=Tc/M is introduced. In the complex
p-plane, the function η(r,p) is regular at p=0, as can be

shown by an expansion of η for small p. This is expected
since the limit p→0 corresponds to the ultimate steady

Table 4 Comparison of exact numerical values of (β1ac) and app-
roximation (Eq. 84)

M/Scac (β1ac) Exact numerical value (β1ac) Approximated
by Eq. (84)

100 0.0998 0.0997
10 0.3111 0.3086
1 0.8603 0.8165
0.1 1.4288 1.2910
0.0 Π/2 √2
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state which is h(r, + ∞)=0. η(r,p) has a series of single
poles on the negative real axis of p which correspond to
the p values which nullify the denominator Δ of Eq. (92).
The zeros can be expressed as functions of β ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

−p=Dc

p
using well known relations for Bessel functions of
imaginary argument:

Δ βð Þ ¼ J0 βR½ �Y0 β Rþ acð Þ½ �−J0 β Rþ acð Þ½ �Y0 βR½ �f gDcβ
2þ

J0 β Rþ acð Þ½ �Y1 βR½ �−J1 βR½ �Y0 β Rþ acð Þ½ �f gκβ ¼ 0

ð93Þ

As previously, the poles pn corresponding to positive
solutions of Δβ=0 contribute to the contour integral (as
defined in Eq. 69) in order to give a function
kn(r)exp(−tDc/βn

2). Here, kn(r) denotes the residual, i.e.
the linear trend of the function η(r,p) in the vicinity of
the pole pn ¼ −β2

n=D c . When taking into account the
fact that Δβn=as well as classical relations for Bessel
functions (see Carslaw and Jaeger 1959, p. 333), the
expression for the residual can be written after some
algebra as:

kn rð Þ ¼ h1κπ

2Rln
Rþ ac

R

� �

J0 βn Rþ acð Þ½ �Y0 βnr½ � −Y0 βn Rþ acð Þ½ �J0 βnr½ �
ρn
2
−
β2
n

2ρn
κ2 þ βn

2D2
c −

2κDc

R

� �
ð94Þ

where the coefficients ρn are defined by:

ρn ¼
−β2

nDc J0 βnRð Þ þ κβn J1 βnRð Þ
J0 βn Rþ acð Þ½ � ð95Þ

The required solution is an infinite series h(x,t)=
∑n=1

∞kn(r)exp(−tDc/βn
2). Only the first major term is

retained so that the approximate solution is:

h r; tð Þ≅k1 rð Þexp −tDc=β
2
1

� �
or h r; tð Þ≅k1 rð Þexp −t=τð Þ ð96Þ

β1 is obtained through an expansion of Δβ in the
vicinity of β=0. This requires the expansion of Bessel

functions for small values of their argument u which are
(here γ is Euler’s constant, 0.5772…):

J0 uð Þ≈1− u=2ð Þ2 ð97Þ

J1 uð Þ≈ u=2− u=2ð Þ3=3 ð98Þ

Y0 uð Þ ≈ 2=π ln u=2ð Þ þ γ − u=2ð Þ2ln u=2ð Þ
h i

ð99Þ

Y1 uð Þ ≈ 2=π −1=uþ u=2ð Þln u=2ð Þ þ u=2ð Þ γ − 1=2ð Þ½ � ð100Þ

Using this development for Δ, the evaluation of the
smallest solution of Δβ=0 is then obtained as:

β1≅
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 M

ScR
� 1

2

� �
ln

Rþ ac
R

� �
þ Rþ acð Þ2 � R2

4R2

" #vuut
ð101Þ

For the case of converging flow, the aquifer domain is
R – ac<r<R. A boundary condition is prescribed at the
outlet r=R – ac as h(R – ac)=0. As previously, the other
condition at r=R is a connection to a reservoir with
integrated storage M=auSu. The function h(r,t) satisfies the
same Eq. (86) but, since the flow is now convergent, the
mixed boundary condition at r=R is:

M
∂h R; tð Þ

∂t
¼ −T c

∂h r; tð Þ
∂r

				 r ¼ R ð102Þ

The general solution of the steady-state equation which
satisfies h(R+ac)=0 is:

h rð Þ ¼ h1
ln r= R−acð Þ½ �
ln R= R−acð Þ½ � ð103Þ

where h1 is expressed as a function of the initial recharge
rate B:

h1 ¼ B
auR

T c
ln

R

R−ac

� �
ð104Þ
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The Laplace transform η(r,p) of the function h(r,t)
yields the associated equation:

Sc pη� h1
ln r= R−acð Þ½ �
ln R= R−acð Þ½ �

� �
¼ T c

r

∂
∂r

r
∂η
∂r

� �
for R − ac < r < R

ð105Þ

The general solution of Eq. (105) is expressed in terms
of modified Bessel functions I0 and K0:

η x; pð Þ ¼ h1
p

ln r= R−acð Þ½ �
ln R= R−acð Þ½ � þ αI0 qrð Þ þ δK0 qrð Þ ð106Þ

where α and δ are defined to satisfy the boundary conditions:

η x; pð Þ ¼ h1
pRln R= R−acð Þ½ � Rln

r

R−ac

� ��
þ

κ I0 qrð ÞK0 q R−acð Þ½ �−I0 q R−acð Þ½ �K0 qrð Þ� �
p −I0 qRð ÞK0 q R−acð Þ½ � þ I0 q R−acð Þ½ �K0 qRð Þ� �

−κq I1 qRð ÞK0 q R−acð Þ½ � þ I0 q R−acð Þ½ �K1 qRð Þ� �
)

ð107Þ

As in the diverging case, the function η(r,p) is regular
at p=0 and has a series of single poles on the negative real
axis of p . These poles are the zeros of the denominator of
the last member of Eq. (107). Using standard relations for
Bessel functions with an imaginary argument, these zeros
are obtained for the values of β ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

−p=Dc

p
satisfying:

Δ βð Þ ¼ −J0 βR½ �Y0 β R−acð Þ½ � þ J0 β R−acð Þ½ �Y0 βR½ �f gDcβ
2þ

J0 β R−acð Þ½ �Y1 βR½ �−J1 βR½ �Y0 β R−acð Þ½ �f gκβ ¼ 0

ð108Þ

As previously, the poles pn corresponding to the
positive solutions βn (n=1,2…) of Δ(β)=0 contribute to
the contour integral (as defined in Eq. 69) via a function
kkn(r)exp(−tDc/βn

2). Here kkn(r) denotes the residual i.e. the
linear trend of the function η(r,p) in the vicinity of the pole
pn ¼ −β2

n=D c . After some algebra its expression is obtained:

kkn rð Þ ¼ h1κπ

2Rln
R

R−ac

� �

J0 βn R − acð Þ½ �Y0 βnr½ � −Y0 βn R − acð Þ½ �J0 βnr½ �
ρn
2
−
β2
n

2ρn
κ2 þ βn

2D2
c þ

2κDc

R

� �

ð109Þ

where the ρn are defined by:

ρn ¼
−β2

nDc J0 βnRð Þ − κβn J1 βnRð Þ
J0 βn R − acð Þ½ � ð110Þ

and the required solution is an infinite series h(r,t)=
∑n=1

∞kkn(r)exp(−tDc/βn
2). Only the first major term is

retained so that the approximate solution is: h(r,t)=
kk1(r)exp(−tDc/β1

2) or h(r,t)=kk1(r)exp(−t/τ).
β1 is obtained through an expansion of Δβ in the

vicinity of β=0 making use of the previous expansion
(Eqs. 97–100) of Bessel functions. One obtains the first
positive solution of Δβ=0 as:

β1≅
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 M

ScR
þ 1

2

� �
ln

R

R−ac

� �
−
R2− R−acð Þ2

4R2

" #vuut
ð111Þ
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