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Abstract Introducing the time variable in groundwater
vulnerability assessment is an innovative approach to
study the evolution of contamination by non-point sources
and to forecast future trends. This requires a determination
of the relationship between temporal changes in ground-
water contamination and in land use. Such effort will
enable breakthrough advances in mapping hazardous
areas, and in assessing the efficacy of land-use planning
for groundwater protection. Through a Bayesian spatial
statistical approach, time-dependent vulnerability maps
are derived by using hydrogeological variables together
with three different time-dependent datasets: population
density, high-resolution urban survey, and satellite
QuikSCAT (QSCAT) data processed with the innovative
dense sampling method (DSM). This approach is demon-
strated extensively over the Po Plain in Lombardy region
(northern Italy). Calibrated and validated maps show
physically consistent relations between the hydrogeological
variables and nitrate trends. The results indicate that changes
of urban nitrate sources are strongly related to groundwater
deterioration. Among the different datasets, QSCAT-DSM is
proven to be the most efficient dataset to represent urban
nitrate sources of contamination, with major advantages: a
worldwide coverage, a continuous decadal data collection,

and an adequate resolution without spatial gaps. This study
presents a successful approach that, for the first time, allows
the inclusion of the time dimension in groundwater
vulnerability assessment by using innovative satellite remote
sensing data for quantitative statistical analyses of ground-
water quality changes.

Keywords Vulnerability mapping . Urban areas . Remote
sensing . Nitrate . Italy

Introduction

Groundwater is among the most important freshwater
resources. In Western Europe, it contributes 60 % of the
drinking-water supply (EuroGeoSurveys 2014). Increasing
numbers of contamination sources in developed and
developing countries critically threaten groundwater re-
sources. Reactive remediation measures can be excessively
expensive when groundwater becomes contaminated be-
yond the required quality standards for safe consumption.

Groundwater vulnerability studies are crucial to under-
stand the cause-effect relationship between groundwater
quality and both natural and anthropogenic factors to
develop effective groundwater protection plans. Mapping
areas where groundwater is most vulnerable to contami-
nation and identifying primary factors influencing the
contamination level are imperative to manage and protect
groundwater and, thus, human health.

As groundwater resources have become more vulner-
able in recent years, it is necessary to urgently close the
gap between the information required for land use
planning to efficiently safeguard groundwater quality and
techniques required to accurately assess groundwater
vulnerability. In fact, the European Union (EU) Ground-
water Directive (2006/118/EC; European Community
2006) requires the identification of areas where ground-
water suffers increasing trends in contaminant concentra-
tion, highlighting the need to carefully manage such areas
even if the concentration is below the regulatory limit.

A current limitation in groundwater vulnerability
studies is related to the lack of consideration of temporal
trends (Stuart et al. 2007), and this emphasizes the need to
consider the time dimension in assessing groundwater
vulnerability. Methods currently used to assess groundwater
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vulnerability at a regional scale (Focazio et al. 2002) can be
subjective (i.e., knowledge-driven) or objective (i.e., data
driven). Subjective methods include overlay and index
methods (e.g., DRASTIC, Aller et al. 1987; GOD, Foster
1987; AVI, Van Stempvoort et al. 1993; and EPIK,
Doerfliger and Zwahlen 1997) and their modifications
(Sener and Davraz 2013). They are easy to implement and
require a limited amount of data to derive a subjective
categorization of groundwater vulnerability. On the other
hand, objective methods are based on the use of statistical
methods, ranging from descriptive statistics (e.g., Welch
et al. 2000) to regression and conditional probability
analyses (e.g., Eckardt and Stackelberg 1995; Tesoriero
and Voss 1997; Nolan 2001; Alberti et al. 2001; Worrall and
Besien 2005; Masetti et al. 2009), which allow an objective
determination of relations between the predictor factors and
the level of contamination in the study area. In this regard,
only objective methods allow scientifically defensible end
products (Focazio et al. 2002) and, most importantly, enable
an explicit integration of the time dimension in the
groundwater vulnerability assessment (Sorichetta 2011).

Objective methods, however, face a major challenge
that requires an extensive dataset, including a series of
contaminant concentration measurements and natural and
anthropogenic variables, to be consistent both in space
and in time (Brunner et al. 2007). Addressing such a
challenge demands a determination of the relationship
between temporal changes in groundwater contamination
and in land use across a vast spatial extent encompassing
natural environments, agricultural regions, and urban
areas. This effort will enable breakthrough advances to
improve the mapping of hazardous areas with different
levels of vulnerability, and to assess the efficacy of land
use planning toward groundwater protection.

In this context, this study focuses on advancing the use
of statistical methods to assess groundwater vulnerability
by explicitly introducing the time dimension in the
analysis. The objectives are to address recent requirements
from transnational policies and to close the critical
information gap described earlier.

In view of current and projected acceleration in global
urbanization, urban areas are widely considered as one of
the most important non-point sources of contamination
impacting groundwater quality (Kuroda and Fukushi
2008). The European Environment Agency (2006)
reported that the expansion of urban areas in many eastern
and western European countries has increased by over
three times the growth of population between 1986 and
2006 (EEA 2006). Urban sprawl is one of the most
important types of land-use changes impacting the
regional environment, the social structure, and the
economy in Europe. Urban sprawl generally follows
periods of rapid urbanization associated with population
growth and with the excessive migration of people from
rural to urban areas. The Po Plain in northern Italy is one
of the most populated regions in Europe with a similar
pattern: an initial phase of urban area expansion from the
1950s to the 1970s followed by an urban sprawl in the
subsequent decades. This pattern qualifies the Po Plain as

a representative “pilot area” to identify the interplay of
urbanization and environmental, social and economic
impacts after the rapid urban increase.

Nitrate is an abundant contaminant of groundwater.
With a high mobility and multiple sources, nitrate is an
effective indicator of groundwater contamination. A
sufficient frequency for monitoring nitrate concentration
in groundwater over the long term allows the use of nitrate
in temporal analyses to determine the contamination trend.

Recent studies (Masetti et al. 2008, 2009; Sorichetta
et al. 2011) have shown that, in some areas of the Po
Plain, nitrate occurrence in groundwater is strongly related
to urban sources (using population density as a proxy)
more than to agricultural activities; however, the problem
has never been analyzed in the time dimension. It is
unclear whether a relationship exists between recent
changes in groundwater nitrate contamination and in land
use. To analyze how urban development could affect
groundwater quality in the 2000s, recent trends in
groundwater nitrate concentration need to be correlated
with the evolution of potential urban nitrate sources across
this region.

While satellite data have been typically used to
qualitatively assess the availability of groundwater re-
sources (Jha and Chowdary 2007; Tweed et al. 2007; Al
Saud 2010; Jha et al. 2010; Jasmin and Mallikarjuna 2011;
Frappart et al. 2011; Wang et al. 2014), only a limited
number of studies used satellite data to quantitatively
assess groundwater quality (Werz and Hötzl 2007). The
use of an innovative dataset to delineate urban areas with
satellite scatterometer data has been explored to identify
zones where different rates of urban growth occurred
across the entire study area, and in which an increase of
potential urban sources may exist and consequently
impact groundwater. Radar backscatter data acquired by
the SeaWinds scatterometer aboard the QuikSCAT satellite
together with the Dense Sampling Method (QSCAT-DSM;
Nghiem et al. 2009) have been used to identify and map
urban extent and surface features at a posting scale of
about 1 km2. QSCAT-DSM results are to be compared
with those obtained from two different sources of urban
information: (1) changes of population density and (2)
changes in land use derived from high-resolution aerial
images acquired in different years.

In addition, to address the time dimension in ground-
water vulnerability assessment, this study can be consid-
ered to be the first to use remote sensing data to obtain a
quantitative assessment of groundwater quality changes
through time. Moreover, it also represents one of the first
applications of QuikSCAT data to environmental and
hydrogeological problems with an optimal spatial scale
enabled by DSM.

In this study, a “zone vulnerable to nitrate contamina-
tion” can be defined as an area where the combination of
natural (e.g., groundwater depth and velocity) and
anthropogenic factors (e.g., growth of urban areas)
involves a deterioration trend of groundwater quality. In
a static system, a “zone vulnerable to nitrate contamina-
tion” can be defined as an area where the combination of
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the same factors involves a given absolute level of
contamination in the aquifer.

Study area

The study area is located within the Po Plain area of
Lombardy region, and covers an area of 13,400 km2,
where urban, industrial, livestock and agricultural activi-
ties are extensively and heterogeneously present.

This region is surrounded by important rivers influencing
groundwater flow in the unconfined aquifer: Po River along
the south; Ticino, Sesia and Po rivers along the west; and
Mincio River along the east (Fig. 1). It is also constrained by
mountain chains forming the boundary of the plain: Lombardy
Prealps along the north and Appennines along the southwest.

This area has a complex hydrogeological setting
consisting of multiple aquifers with various properties and
interactions. The Lombardy plain subsoil is characterized by
Plio-Pleistocene sediments whose upper unit forms the
shallow unconfined aquifers (Fig. 2). Sediments are mainly
gravels and sands, although the presence of finer sediments
increases from the north to the south where shallow aquifers
are mainly constituted by fine sands and are partially
confined. These aquifers have high transmissivity, ranging

from 10−2 to 10−4 m2/s and medium-high hydraulic conduc-
tivity, ranging from 10−4 to 10−6 m/s, while its thickness
ranges from 40 to 80 m (Regione Lombardia and ENI 2001).

The groundwater flow is generally oriented north–
south toward the base level defined by the Po River, with
a deviation to east–south-east in the south-east area of
Lombardy. The groundwater depth decreases from north
to south, ranging from values higher than 70 m to less
than 2 m. There are also some groundwater-fed streams,
where the local groundwater depth reduces to zero.

Nitrate (NO3
−) is the most common non-point-source

contaminant found in groundwater in the Po Plain. Nitrate
concentrations have been monitored by a network of about
500 wells covering the entire area with a nearly uniform
spatial distribution, where data have been collected every
6 months from 2001 to 2011 (Regional Environmental
Agency – ARPA, unpublished data, 2012). From the
network, only the 221 wells monitoring the shallow
aquifer and having a minimum of eight measurements
were selected for being used in the analysis. As an
example (Fig. 1), two photographs taken during the PO
PLain EXperiment (POPLEX) in May 2014 (Masetti et al.
2014; Nghiem et al. 2014a) show rural and urban areas as
two major contrastive types of land use where the
monitoring wells are located.

Fig. 1 a Location of the study area; b well-monitoring network; c examples of well locations in urban (1) and rural (2) environments as
marked by 1 and 2 next to the square boxes on the map (b) where the photographs were taken during the POPLEX field campaign in May
2014. Coordinates refer to WGS 1984 – UTM Zone 32 N projection
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This study focuses on the evolution of nitrate concentra-
tion in groundwater related to changes of urban areas. The
change in nitrate concentration is quantified by the slope of
the regression line from an interpolation of concentration
data. The slope defines the rate of nitrate concentration
change in mg/L per day. Positive slope values show
increasing concentration trends representing water quality
deterioration, while non-positive slope values indicate
steady or decreasing concentration trend characterizing
unaffected or improved groundwater quality.

Until the end of the considered monitoring period in
2011, about 28 % of wells show increasing concentration
trends and concentrations exceeding the guideline value of
25 mg/L defined by the EU standard (91/676/EEC;
European Community 1991), while 35 % of wells show
decreasing concentration trends and concentrations lower
than the same guideline value. Only 3 % of wells show
increasing concentration trends and concentrations exceed-
ing the established threshold of 50 mg/L (91/676/EEC,
European Community 1991; 2006/118/EC, European Com-
munity 2006; Table 1). Wells with concentrations higher
than the guideline value of 25 mg/L are located mainly in the
northern sector, while those with concentrations lower than
the guideline value are mostly located in the southern sector.

Method and materials

Method
The weights of evidence (WofE) modeling technique
combines different spatial datasets in a geographical
information system (GIS) environment to analyze and

describe their interactions and generate predictive patterns
(Bonham-Carter 1994; Raines et al. 2000). WofE can be
defined as a data-driven Bayesian method in a log-linear
form that uses known occurrences representing the
response variable as training sites (training points). These
data are used to obtain predictive probability maps
(response themes; i.e., groundwater vulnerability maps)
from multiple weighted evidences (i.e., evidential themes
representing explanatory variables or factors that influence
groundwater vulnerability), which determine the spatial
distribution of the occurrences in the study area (Raines
1999). Training points (TPs) are used in WofE to calculate
the prior probability, the weights for each class
representing a different range of values of each general-
ized evidential theme, and the posterior probability values
in the response theme.

Prior probability is based on prior knowledge of the
TPs’ locations in the study area. Prior probability is
simply defined by the ratio between the area containing
occurrences (i.e., the number of pixels containing a
training point D) and the total area (i.e., the total number
of pixels). Thus, the prior probability represents the
probability that a pixel within the study area contains an
occurrence without considering any evidential themes, and
it can be expressed as (Bonham-Carter 1994):

P Df g ¼ ND

NT
ð1Þ

where ND and NT are respectively the number of pixels
containing a training point and the total number of pixels
in the study area.

Fig. 2 Hydrogeological scheme along the N–S section marked by the grey line on the map in Fig. 1b (modified from Regione Lombardia
and ENI 2001)
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For each class of each evidential theme, a positive and a
negative weight are computed based on the location of the
TPs with respect to the study area. For a given class B, the
positive weight W+ and the negative weight W− are,
respectively, higher and lower than zero or lower and higher
than zero. The resulting combination depends on whether B
has more or fewer TPs than expected by chance.

The weights can be expressed as (Bonham-Carter
1994):

Wþ ¼ loge
P B

���D
n o

P B
���D

n o ð2Þ

W − ¼ loge
P B

���D
n o

P B
���D

n o ð3Þ

where P{B|D} and P{B|D} are respectively the proba-
bility of a pixel being in class B when the same pixel
contains or does not contain a training point, and
P{B|D} and P{B|D} are respectively the probability of
a pixel not being in class B when it contains or does
not contain a training point.

The contrast (positive weight minus negative weight)
represents the overall degree of spatial association
between each class of a given evidential theme and
TPs. Thus, it is a measure of the usefulness of the
considered class in predicting the location of TPs
(Raines 1999). A confidence value for the ratio between
the contrast and its standard deviation must be selected
to provide a useful measure of the significance of the
contrast (Raines 1999). For this study, a confidence
value of 1.282, corresponding approximately to a 90 %
level of significance, was chosen as the minimum
acceptable value for considering an evidential theme
class as statistically significant.

The posterior probability represents the relative prob-
ability that a pixel contains an occurrence based on the
evidences provided by the evidential themes (i.e., based

on the calculated weights). The posterior probability can
be expressed as (Bonham-Carter 1994):

logeO D
���Bk

1

\
Bk
2

\
Bk
3…

\
Bk
n

n o
¼

Xn

j¼1

Wk
j þ logeO Df g ð4Þ

where n identifies each single class used to categorize
each evidential theme, k is either + or – depending on
whether the prediction spatial class, Bn, is either present or
absent, and O{D} is the odd form of the probability that a
pixel within the study area contains an occurrence.

The relative probability means that a pixel having a
higher posterior probability is more likely to contain an
occurrence than a pixel having a lower probability, and it
represents a measure of the relative likelihood of
occurrence of an event (Raines 1999). In this study, the
WofE response themes were generated using the Spatial
Data Modeler (Sawatzky et al. 2009) for ArcGIS 9.3
(ESRI 2008).

Response variable
For the purpose of this study, the response variable is
represented by nitrate concentration trend in groundwater.
The WofE modelling technique requires a binary formu-
lation of the response variable.

A frequency histogram of nitrate concentration trend
shows a nearly bimodal distribution with two main
relative peaks at about −0.0008 and +0.00016 mg/L per
day (Fig. 3). Another minor peak can also be identified at
value 0. The intermediate values of −0.0004 and +
0.0004 mg/L per day, which separate three populations,
were considered to be appropriate values to be used as
thresholds.

Wells showing concentration trends higher than +
0.0004 mg/L per day are considered as Bincreasing^ wells
(87), and those below −0.0004 mg/L per day as “decreas-
ing” wells (86). Wells showing concentration trends
included in the range −0.0004 and +0.0004 mg/L per day
are considered as Bneutral^ wells (48). In these wells, the
uncertainty in the slope coefficient value, which is close to
zero, does not allow one to precisely categorize them as
Bincreasing^ or Bdecreasing^ wells. The Bincreasing^
wells, showing a clear increase in concentration trends,
represent the training set, and they have been selected to be
used in the analysis. While Bdecreasing^ and Bneutral^
wells are grouped in a unique set, representing the control
set.

Evidential themes
Both natural and anthropogenic factors have been used as
evidential themes in the analysis. Natural factors include
geological and hydrogeological conditions of the study
area and are considered static for the purpose of the study.
Three different factors have been selected to represent
changes of urban nitrate sources through time, i.e. land

Table 1 Nitrate concentration trends related to the last measured
concentration (percentage of wells)

Increasing
concentration
trend

Decreasing
concentration
trend

Concentration≥25 mg/L
in 2011

28 % 18 %

Concentration<25 mg/L
in 2011

19 % 35 %

Concentration≥50 mg/L
in 2011

3 % 6 %

Concentration<50 mg/L
in 2011

44 % 47 %
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use change derived from (1) satellite data, (2) aerial
photographs, and (3) data on population density changes.
Details on each of the factors and on how they are used in
the study are presented in the following.

Urban nitrate sources: anthropogenic factors
Nitrogen loading derived from urban areas (presence of
sewer leakage or septic tanks) cannot be easily or directly
estimated quantitatively. For this reason, it is necessary to
explore other variables that can be used as a proxy.

For this purpose, it is crucial to have a temporally and
spatially consistent dataset delineating the urban area
extent through time in order to investigate the potential
relationships between its variation and the evolution of
groundwater contamination. Even in the data-rich Euro-
pean and North American countries, such information is
not collected consistently or during consistent periods of
time and is often spatially and/or temporally limited.

Population density has been used often as a proxy for
urban nitrate sources in groundwater vulnerability assess-
ments (Nolan 2001; Nolan et al. 2002; Masetti et al. 2009;
Sorichetta et al. 2011). Population density is generally
referred to administrative units at the specific time of the
demographic census or survey. Official national censuses
are usually done once every 10 years. Consequently,
analyses based on population census cover a period of
10 years, missing changes in shorter periods.

In this study, the population-density change is calcu-
lated as the difference between population densities in

each district referred to two successive national censuses,
in 2001 and 2011 (ISTAT 2001, 2011). Positive values
indicate a growth of population, and negative values
represent a reduction of population. Between 2001 and
2011, population density changed in the range of −402 to
+845 people/km2 across Lombardy (Fig. 4).

High-resolution aerial images in Lombardy have been
periodically acquired by the Agency of Services of
Agriculture and Forest (ERSAF), creating a database
called DUSAF (ERSAF 2014), to identify and categorize
the land cover in five main land use classes: urban areas,
agricultural areas, woods and semi-natural environments,
wetlands and surface-water areas. The technical maps are
at a 1:10,000 scale. For the purpose of the study, vector
maps have been transformed to raster format. DUSAF is
updated at irregular intervals that can be different for
different sectors of the region. This limitation does not
allow the maps to represent the urban land use at the same
time across the whole region.

To observe changes in urban extent, the two relevant
groups are: urban areas, and non-urban areas consisting of
the remaining four classes in DUSAF. Urban-extent
changes are calculated as the percentage change of urban
areas in each 1 km2 pixel, between two successive compila-
tions, in 2000 (DUSAF version 1.1) and in 2007/2009
(DUSAF versions 2.1 and 3.0), depending on the last
available data in different sectors of the study area.
Positive values indicate an expansion of urban areas,
while negative values indicate a reduction of urban areas.
According to DUSAF data, urban-area extent changed in
the range of −6.7 to +30.8 % (Fig. 5).

Radar satellite remote sensing data can be used to
identify and delineate urban areas. In fact, satellite radar
backscatter is dependent on the number, density, size and
material of buildings (e.g., higher backscatter for more
buildings, for larger and taller buildings, and for stronger
materials like steel rather than wood). Crucially, the
satellite global coverage with regular data acquisitions in
time spanning over a decadal period allows continuous
monitoring of urban changes, and thus enables the trend
analysis together with changes in nitrate sources, captur-
ing more detailed variability in annual, interannual, and
decadal time scales. Such a satellite dataset has been
collected by the SeaWinds scatterometer aboard the
QuikSCAT satellite (QSCAT) in the decade of the 2000s.
QSCAT backscatter measurement is accurate to 0.2 dB
(3-σ; Nghiem et al. 2004), which is equivalent to
approximately 1.57 % in root-mean-square error, enabling
QSCAT to detect not only large and rapid changes as well
as small and slow variations. Applied on the original
QSCAT backscatter data, the dense sampling method
(DSM), based on a newly invented mathematical trans-
form called Rosette Transform (Nghiem et al. 2009), is a
breakthrough enabling quantitative measurements of ur-
ban parameters (i.e., location, shape, extent, and typology)
to map land cover features at a posting pixel scale of
1 km2, and to calculate the rate of urban change in the
decadal period of 2000–2009 in every pixel across the
world.

Fig. 3 Frequency histogram of nitrate concentration trend
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In DSM, backscatter signature of an area is charac-
terized by the composition of a spatially dependent mean
part and a fluctuation part that is a function of location,
azimuth angle (buildings are different on different sides;
roads have preferential directions; hilly surfaces in a city,
etc.), and any changes in time (vehicles and people move
in a city; there can be rain, snow, hail, etc. at different
times in different sections of a city). Thereby, DSM
allows azimuthal and temporal changes to occur, and
high-resolution results from DSM include information
from both the mean value and the variability of
backscatter at each location where the Rosette Transform
is applied on an ensemble of backscatter data whose
centroids are collocated in each unit area. At the expense
of the daily temporal resolution, DSM is a breakthrough
method to increase the spatial resolution in urban areas,
where the inherent azimuth and motion changes invali-
date the use of the traditional deconvolution method to
enhance the resolution of satellite remote sensing data.

Moreover, advantages of QSCAT-DSM (Nghiem
et al. 2009) include the delineation of urban and
suburban contours both in metropolitan and rural areas,
and the identification of urban development both fast and
expansive or slow and restrained. Some limitations are
due to complex mountainous topography, persistent
snow cover on cold land at high latitudes (e.g., tundra

and taiga), or extensive water surfaces, which affect
backscatter signatures, but such factors are ineffective in
the study area. The pointing accuracy of DSM was
verified precisely with an accurate overlay of the
Príncipe Island (Gulf of Guinea) on its true geographic
location (Nghiem et al. 2009). DSM was validated and
used to accurately delineate urban extent for a number of
cities in different countries such as Dallas-Fort Worth
and Phoenix in the United States, Bogotá in Colombia,
Dhaka in Bangladesh, Guangzhou and Beijing in China,
and Quito in Ecuador (Nghiem et al. 2009; Nghiem et al.
2014b).

The rate of land cover change, including both urban
and rural areas, is determined by the slope of the linear
regression with QSCAT-DSM data obtained for each year
in 2000–2009, expressed in decibel per year (dB/year).
Positive slope values represent increasing or growth of
urban areas, while non-positive and shallow slope values
indicate steady rural areas or natural environments.
QSCAT-DSM slope varies within the range of −0.0699
to +0.1268 dB/year, or equivalently −16.0 to +29.6 %/
decade (Fig. 6), as the slope in dB/year can be converted
to the 10-year percentage change given by 10 times of
100×(10dB/year/10−1).

In this study’s approach to assess impacts on groundwater
contamination, the focal method is adapted particularly for

Fig. 4 Population density maps, at municipality level, in a 2011 and b 2001, and c the final map obtained as the difference between the
two maps (a–b). Coordinates refer to WGS 1984 – UTM Zone 32 N projection
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applications to QSCAT-DSM and hydrogeological data, and
to DUSAF as well. The algorithm in the focal method
considers both the value of each cell and the values of the
surrounding cells with a deterministic mathematic function.
It can account for groundwater flow direction: among the
surrounding cells of each cell, only the cells located
upstream are considered in the calculation. The extent of
the area of calculation is 9 km2 for a 3×3 window above each
pixel of 1 km2.

Urban nitrate sources: natural factors
Natural factors, characterizing geological and
hydrogeological conditions of the study area, are consid-
ered to be static in this study. While groundwater depth
has a seasonal variability, it has not significantly changed
over the Po Plain in the decade 2000–2009.

Soil protective capacity is obtained from existing data
(Fig. 7a). It was produced by the Agency of Services of
Agriculture and Forest. This soil variable has been
mapped at a 1:250,000 scale to assign soil to three
protective capacity classes: high, moderate and low. The
variable describes soil capacity to reduce water-soluble
polluting substances leaching from the surface. It is related
to filtering and buffering capacity because of both

mechanical and biological/microbiological activities con-
tributing to degradation (Masetti et al. 2007).

The fo l l owing desc r ibe s the o the r t h r ee
hydrogeological variables, characterizing the shallow
unconfined aquifer, that were obtained for this study.
Groundwater depth was derived from the difference
between the topographic level and groundwater piezomet-
ric levels (regional survey in 2003; Fig. 7b). The ground-
water depth decreases from north to south, ranging from
values higher than 70 m to less than 2 m. At some local
areas, there are groundwater-fed streams where ground-
water depth is reduced to zero.

Groundwater velocity was estimated from 1,263
wells where pumping tests were available to determine
hydraulic conductivity (Fig. 7c). These values were
used together with the local hydraulic gradient to
obtain groundwater velocity. Field data were interpo-
lated through the kriging methodology to obtain a map
of the distribution of groundwater velocity. In the
study area, groundwater velocity ranges from 4.7×10−8

to 7.3×10−5 m/s. Higher values are located in the
northern sector and in some areas of the southwestern
sector, while lower values are mainly found in the
southeastern sector.

Hydraulic conductivity of the vadose zone was
determined from 1,597 well stratigraphy records (Fig. 7d).

Fig. 5 DUSAF urban area extent maps in a 2007/2009 and b 2000, and c the final map obtained by calculating the percentage change of
urban areas between the two maps (a–b) at a resolution of 1 km2. Coordinates refer to WGS 1984 – UTM Zone 32 N projection
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For each well, the hydraulic conductivity was calculated
with the equivalent vertical permeability method
(Anderson and Woessner 1992), considering the thickness
of the layers in the vadose zone in the calculation of the
hydraulic conductivity. Data were then interpolated
through kriging methodology to obtain the map of
the distribution of hydraulic conductivity of the vadose zone
in the study area. Hydraulic conductivity of the vadose
zone ranges from 4.1×10−8 to 4.0×10−2 m/s. Higher values
are located in the northern sector, especially along the belt of
the heads of groundwater-fed streams and along the
main rivers (Ticino and Adda rivers).

Results and discussion

Impacts observed from the independent variables
The contrasts of statistically significant evidential themes
enable an assessment of the influence of the variables
under consideration on groundwater contamination. Con-
trast values, both for anthropogenic and natural factors,
are presented in Fig. 8. All three variables, representing
urban nitrate sources and their evolution, show a positive
correlation between the increase of urban areas or
population growth and the occurrence of increasing nitrate
concentration trends in groundwater.

Fig. 6 QSCAT-DSM backscatter maps, at a posting of 1 km2, from 2000 to 2009, and the final map of the linear regression slope.
Coordinates refer to WGS 1984 – UTM Zone 32 N projection
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Threshold values, corresponding to the transition from
negative to positive contrasts, are +44 people/km2, +
0.0260 dB/year and +1.81 % over the study period,
respectively for population density change, QSCAT-DSM
slope and DUSAF urban extent change. Observed from
these variables, classes with positive contrasts are clus-
tered in the northern sector, while classes with negative
contrasts are mainly in the southern sector.

Soil protective capacity is not statistically significant.
Also, it does not show a discernible correlation, with
negative contrasts for low and high classes and a positive
contrast for moderate classes. Groundwater depth reveals
that large values of water-table depth are positively related
to increasing concentration trends, while low values (close
to surface or less than 13 m) are negatively associated.
Groundwater velocity and hydraulic conductivity of the
vadose zone show positive correlations and the threshold
values are about 1.5×10−6 m/s and 4.7×10−6 m/s,
respectively.

Response themes and vulnerability maps
In order to evaluate the reliability of each variable as a
proxy of urban nitrate sources, three response themes were
obtained and compared (Fig. 9). Each response theme
considers one of the three urban variables, and the three
statistically significant evidential themes represent the
associated natural factors (Table 2).

Each response theme was categorized so that each
vulnerability class in the corresponding map contains
approximately the same number of different posterior
probability values according to the geometric interval
method (Sorichetta et al. 2011). Five classes were identified
with the degree of groundwater vulnerability increasing from
1 to 5. This number was selected based on the general criteria
used to identify vulnerability classes (Sorichetta et al. 2011)
and on visual analytic techniques (Cowan 2001).

It is important to note that these response themes are
time dependent. This means that groundwater vulnerabil-
ity classes reflect the tendency toward a deterioration of
the quality of the aquifer rather than the absolute severity
of the aquifer contamination in a static condition.

Reliability and validation of the maps
The general quality of each response theme (i.e., post
probability map) can be evaluated with the area-under-the-
curve (AUC) value. AUC is a direct measure of the
performance of the statistical approach, and is given by
the area under the curve (integral) for cumulated area/
cumulated training points expressed in percentage. The
calculated AUC values are presented in Table 2 showing
the consistent quality of the different maps.

Then, the reliability of each classified map was
evaluated again by considering its overall performance in
classifying the occurrences. Two statistical validation

Fig. 7 Natural factors maps: a soil protective capacity; b groundwater depth; c groundwater velocity; d hydraulic conductivity of the
vadose zone. c–d Dots represent the locations of pumping test sites and well stratigraphies used to map the spatial distribution of
groundwater velocity and hydraulic conductivity of the vadose zone, respectively. Coordinates refer to WGS 1984 – UTM Zone 32 N
projection
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procedures were used: (1) frequency of training set, and
(2) average nitrate concentration trend of all wells in each
vulnerability class.

The evaluation of the frequency,F, is expressed by the ratio:

F ¼ NW j=TW j

� � ð5Þ
where NWj is the number of Bincreasing^ wells in a
vulnerability class j and TWj is the total number of wells in
the same class j. This technique adds new information to the
validation process because it also includes the wells not used in
the modeling. Frequency is expected to increase monotonically
as the degree of vulnerability increases. The expected trend is
verified. In fact, for all the three vulnerability maps, there are no

Bincreasing^ wells in the lowest vulnerability class and the
highest frequency of Bincreasing^ wells is in the highest
vulnerability class (Fig. 10).

The evaluation of the average nitrate concentration
trend of all wells, CAVG, is expressed as:

CAVG ¼
X TW j

i¼1
Ci j

TW j
ð6Þ

where Cij is the nitrate concentration trend of well i in the
vulnerability class j, and TWj is the total number of wells
in the same class j. This analysis was carried out using all
wells stored in the database. The concentration should

Fig. 8 Contrasts and error bars of the statistically significant classes of each evidential theme used to generate the maps in Fig. 9
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monotonically increase as the degree of vulnerability
increases and the central vulnerability class should give
a value close to the overall mean value. Despite some
anomalies, all three histograms show a direct correlation
between average nitrate concentration trend and the
degree of vulnerability (Fig. 10). With these two tech-
niques, the quality of each vulnerability map was
evaluated based on the slope coefficient of the regression
line and the regression coefficient, so that a map should be
deemed reliable if it passes these tests.

Spatial agreement between maps
A spatial agreement is quantitatively evaluated through a
pixel-by-pixel analysis representing the difference,
expressed as percentage, in the unit-cell classification for

the three vulnerability maps (Fig. 11). Results from this
analysis show a high level of agreement between the maps
in the paired map-to-map comparison: almost 61–67 % of
the study area is classified with the same degree of
vulnerability, 33–38 % is classified within a difference of
one degree of vulnerability, while only 0.3–0.8 % are
within a difference of two degrees of vulnerability.

Another method to evaluate the reliability of each
vulnerability map is overlaying each map with the classes
of its urban change variable with positive contrast values
to examine their consistency (Fig. 12). Map W2, obtained
using QSCAT-DSM slope, is the only one where the
highest vulnerability classes are consistently overlain by
the classes of urban extent change variable with positive
contrast values. Instead, in the other two cases there are
anomalous mismatches. In map W1, obtained using
population density changes, some cities (like Monza or
Brescia) show negative contrast values, meaning that their
population density change is lower than +44 people/km2.
In map W3, obtained using DUSAF maps, some areas in
the northern sector show negative contrast values (like
Milan), while agricultural areas of the southern sector are
characterized by positive contrast values (e.g., Provinces
of Cremona and Mantua). The first anomaly could be
explained by the urban sprawl phenomenon, with residen-
tial citizens moving from the largest cities to the smallest
cities, while the rate of urbanization is increasing almost
everywhere. The second anomaly could be caused by the

Fig. 9 Vulnerability maps obtained using static variables, representing natural factors, with a population density change, b QSCAT-DSM
slope, and c DUSAF-based urban extent change as time-dependent variables. Coordinates refer to WGS 1984 – UTM Zone 32 N projection

Table 2 Combination of evidential themes used to obtain response
themes and AUC values (pop population density change, gwd gro-
undwater depth, gwv groundwater velocity, hcv hydraulic conduc-
tivity of the vadose zone, QSCAT-DSM land use changes derived
from satellite data, DUSAF land use changes derived from aerial
photographs)

Response
theme

Combination of evidential themes AUC value

W1 pop, gwd, gwv, hcv 74.4 %
W2 QSCAT-DSM, gwd, gwv, hcv 74.3 %
W3 DUSAF, gwd, gwv, hcv 73.7 %
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focal application applied to the binary land-use categori-
zation in the DUSAF maps: small changes in urban extent
cannot be accurately detected in large urban areas.

Discussion
The direct correlation for all of the three anthropogenic
evidential themes means that increasing nitrate

concentration is related to areas of urban development or
population increase, in agreement with Stevenazzi et al.
(2014). The three urban variables consistently identify that
the most important changes are clustered around the
biggest cities or in the northern sector where cities and
industries in the Lombardy region are mostly located,
while the southern sector primarily consists of agricultural
fields. There are anomalies in population density changes

Fig. 10 Histograms of the frequency of the Bincreasing^ wells (left) and of the average nitrate concentration trend (right) in each
vulnerability classes of the maps in Fig. 9. The degree of vulnerability increases from class 1 to class 5
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because some sectors in large cities have decreasing trends
while small towns show significantly increasing trends.
These changes indicate a tendency that people like to
move away from over-crowded urban areas and sprawl to
more open suburban areas with natural or agricultural
surroundings (EEA 2006).

The direct relationship between groundwater depth and
increasing concentration trends is consistent with earlier
static observations for shallow aquifer in USA (Nolan
2001; Nolan et al. 2002) and in the Province of Milan
(Sorichetta et al. 2013). The explanation can be found in
bio-geochemical conditions of the vadose zone. In fact, a
very shallow water table leads to waterlogged conditions
conducive to denitrification processes, in which denitrifi-
cation rates tend to decrease as water-table depth
increases. The result in this study supports this hypothesis
and indicates that nitrate concentration changes are related
to bio-geochemical activities in the vadose zone.

Groundwater velocity and hydraulic conductivity of the
vadose zone are two hydrogeological variables that
influence the movements of contaminants from surface
to aquifers and within aquifers. The first controls transport
and dilution of contaminants within aquifers, and the latter
controls the rate at which a contaminant can reach
groundwater. In terms of increasing concentration trends
in the study area, positive correlations mean that the
transport process is generally prevalent over the dilution
one, both in groundwater and in the vadose zone. Static
analyses (Sorichetta et al. 2013) have found that these

variables have positive correlations with the occurrence of
high nitrate concentrations. From this study, increasing
concentration trends are shown to relate to increasing
groundwater velocity or increasing hydraulic conductivity
in the vadose zone. Thus, both static and time-dependent
analyses confirm the impacts of these hydrogeological
factors on the distribution of contaminants, which are
necessary to include in groundwater vulnerability
assessment.

Vulnerability maps are calibrated and validated. The
similarity in calculated high AUC values for maps W1,
W2 and W3 asserts the consistent quality of the maps.
Histograms of frequency are excellent for all the maps,
with a monotonic increase corresponding to higher
vulnerability. Nevertheless, according to the criteria used
in evaluating the frequency histograms, map W2 can be
considered the one that performs best. In fact, it has the
highest regression coefficients and the one with the
highest frequency of impacted wells in the highest
vulnerability class.

Histograms of average nitrate concentration trends show
a general positive trend, although with low values. MapsW1
andW3 have the highest angular and regression coefficients,
but only map W2 shows the mean positive value in the
higher vulnerability class. No map presents the mean or
median value of the whole distribution as average concen-
tration trend in the central vulnerability class.

In summary, QSCAT-DSM can be successfully used as
a proxy for nitrate contamination from urban sources and,

Fig. 11 Variation of vulnerability from map-to-map: a map W2 on map W1; b map W2 on map W3; c map W1 on map W3. The variation
is expressed as the agreement in percentage between the vulnerability depicted in the first map with respect to the one depicted in the
second map. Coordinates refer to WGS 1984 – UTM Zone 32 N projection
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among the three obtained vulnerability maps, the map that
uses QSCAT-DSM slope to characterize the evolution of
urban nitrate sources (map W2) appears to be the best.

Conclusions

Introducing the time variable to monitor trends in
groundwater vulnerability assessment is an innovative
approach to study the evolution of non-point-source
pollution in an area and to forecast future changes.

With the application of a Bayesian spatial statistical
approach, it is found that:

– Natural factors, such as groundwater depth, groundwa-
ter velocity and hydraulic conductivity of the vadose
zone, influence groundwater vulnerability, confirming
results from previous studies on nitrate contamination
(Nolan 2001; Sorichetta et al. 2013).

– The innovative use of QSCAT-DSM satellite data
(Nghiem et al. 2009) in the analysis enables the
production of a time-dependent vulnerability map,
which is compared with two other vulnerability maps
obtained using different time-dependent factors related
to urban changes (i.e., population density from census

and changes in land use derived from the DUSAF
database).

– All of the time-dependent factors indicate that increas-
ing nitrate concentration occurs in areas related to
urban development or population increase.

– The calibration and validation procedures affirm all of
the three vulnerability maps have a high reliability,
while the one obtained with QSCAT-DSM is the better
one.

The latter result is remarkable for those areas where
there are insufficient or inaccurate data for population or
land use and their changes, and thus satellite observations
of urban change become particularly useful. Moreover,
QSCAT-DSM data have the advantages of a worldwide
coverage, a continuous data collection and an adequate
resolution without spatial gaps.

In conclusion, the approach developed in this study for
the first time allows the inclusion of the time variable in
groundwater vulnerability assessment with the use of
innovative remote sensing data to carry out a quantitative
statistical analysis of groundwater quality changes.

New approaches to combine groundwater vulnerability
maps obtained by explicitly accounting for the time
variable with traditional vulnerability maps should be
advanced for better intervention strategies and for more

Fig. 12 Vulnerability maps obtained using a population density change, b QSCAT-DSM slope and c DUSAF urban extent change as
time-dependent variables, overlain by the corresponding evidential theme classes with positive contrast values. Coordinates refer to WGS
1984 – UTM Zone 32 N projection
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efficient policy measures. Indeed, their combined use
would allow one to not only identify already highly
contaminated areas where expensive reactive remediation
measures need to be implemented, but also to detect areas
where pro-active interventions need to be planned. With
the method demonstrated in this study, existing and future
satellite scatterometer data can be used to make and
update maps of groundwater vulnerability as urbanization
accelerates across the world.
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