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Abstract A multivariate statistical method is presented
for providing hydrogeological information on groundwa-
ter formations. Factor analysis is applied to borehole logs
in Hungary and the USA to estimate the vertical
distribution of hydraulic conductivity of rocks intersected
by the borehole. Earlier studies showed a strong correla-
tion between a statistical variable extracted by factor
analysis and shale volume in primary porosity rocks.
Hydraulic conductivity as a related quantity can be
derived directly by factor analysis. In the first step, electric
and nuclear logs are transformed into factor logs, which
are then correlated to hydraulic properties of aquifers. It is
shown that a factor explaining the major part of variance
of the measured variables is inversely proportional to
hydraulic conductivity. By revealing the regression rela-
tion between the above quantities, an estimate for
hydraulic conductivity can be given along the entire
length of the borehole. Synthetic modeling experiments
and field cases demonstrate the feasibility of the method,
which can be applied both in primary and secondary
porosity aquifers. The results of factor analysis show
consistence with those of the Kozeny-Carman method and
hydraulic aquifer tests. The application of the statistical
analysis of well logs together with independent ground
geophysical and hydrogeological methods serves a more
efficient exploration of groundwater resources.

Keywords Factor analysis . Factor log . Hydraulic
conductivity . Hungary . USA

Introduction

Hydraulic conductivity quantifies the ease with which
water can move through the intergranular pore and
fracture spaces of the formation. In hydrogeological

problems, it is one of the most important petrophysical
properties of rocks that can be generally measured in the
laboratory using rock samples, and by aquifer tests
performed in the field or at the aquifer scale, for instance
from aquifer modeling. The study is mostly performed at
the well log scale, which attempts to calculate hydraulic
conductivity purely from well-logging measurements
influenced by only the near vicinity of the borehole at a
given depth. In porous media, the hydraulic conductivity
is related theoretically to the grain-size, porosity and
fracture characteristics. In primary porosity rocks, other
textural properties of rocks are also taken into account
such as cementation exponent or tortuosity factor. Geo-
physical interpretation approaches usually use some
empirical method or statistical tool for the evaluation
(Idrysy and De Smedt 2007; Ross et al. 2007; Odong
2013). Borehole geophysical measurements are part of the
in-situ investigations that are used primarily to detect the
variation of hydraulic conductivity along a borehole and
to correlate it between neighboring boreholes. In oilfield
applications, the direct determination of permeability as a
related quantity is possible by means of the nuclear
magnetic resonance (NMR) log. The surface geophysical
application of its technique known as magnetic resonance
sounding (MRS) is an emerging method in hydrogeology
(Roy and Lubczynski 2003). Borehole NMR has been
adapted from the oilfield for hydrogeological applications,
using boreholes typical of environmental and
hydrogeological investigations (Walsh et al. 2013). Al-
though borehole NMR is very expensive, it has the added
advantage of not only providing effective porosity, it can
also be used to determine the pore-size distribution and
pore-fluid characteristics to provide a better estimate of the
hydraulic properties of rocks. The effective pore-radius
based permeability prediction also has promising results
both in the laboratory and in hydrocarbon exploration
fields (Glover and Walker 2009). The indirect (in-situ)
methods for hydraulic conductivity estimation are based
on the determination of formation porosity and bound-
water saturation (Timur 1968). Alger (1966) connected
formation factor to effective grain-size, which allowed for
calculation of hydraulic conductivity from borehole logs.
As a continuation, Csókás (1995) suggested a well-
logging technique to estimate hydraulic conductivity and
other freshwater quality parameters for unconsolidated
sediments, which requires the preliminary calculation of
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porosity, pore-water resistivity and true resistivity of the
aquifer. The theory of freshwater assessment by means of
well-logging information was summarized in Alger and
Harrison (1989). In this framework, the reservoir param-
eters (including hydraulic conductivity) are connected to
physical quantities that are measurable by well-logging
probes. For extracting the unknown petrophysical param-
eters some deterministic or inverse modeling-based
procedure is usually applied. A resistivity and porosity
log-based approach can be found in Khalil et al. (2011),
while example inversion applications can be found in
Drahos (2005), Szabó and Dobróka (2013a).

Most types of well logs used in oilfields are commonly
applicable in hydrogeology practice. Spontaneous poten-
tial and natural gamma-ray intensity logs are used for
lithology identification and calculation of shale volume.
Gamma-gamma and neutron-neutron intensity measure-
ments give an accurate estimate of porosity. Resistivity
tools are mainly sensitive to the water saturation that is
calculated by them. In a regular case, the above well log
types fulfill the requirements; however, there are some
other advanced techniques that could give further infor-
mation. Acoustic measurements are typically used for
porosity estimation but, in shallow applications, nuclear
logs work better. In secondary porosity rocks, the sonic
log gives lower porosity reading than true porosity of the
formation, because the acoustic waves avoid vugs and
fractures as a result of the Fermat’s principle. Full-wave
sonic logs may provide more detailed information on
porosity, elastic parameters and horizontal stress condi-
tions in the vicinity of the borehole. The separation of
Stoneley waves propagating in the borehole enables the
determination of the permeability of porous formations.
Permeability is generally estimated from the inversion or
statistical processing of Stoneley transit-time data with an
advantage that they do not require the prior knowledge of
porosity (Buffin 1996). Recently a non-linear statistical
model was suggested by Szabó and Kalmár (2013) for
improving the description of the relation between the
characteristics of Stoneley waves and permeability. Their
findings suggest that the circumferential borehole acoustic
or optical images used in fractured formations should be
completed with full-wave sonic logs for a more accurate
and reliable interpretation.

When the currently used data processing methods are
evaluated, one can see that each of them have their own
weaknesses. The assumed model can be ambiguous and
the data sets may be noisy or not sensitive enough to give
a good estimate to hydraulic properties. Moreover, the
interpretation results are often in contradiction with those
determined from core samples. The estimation error of
permeability may reach one to one and a half orders of
magnitude. To reduce the uncertainty, the borehole
surveys are frequently expanded with ground geophysical
measurements. In Perdomo et al. (2014), hydraulic
parameters are estimated by a joint application of well-
logging resistivity and direct current electric
measurements. Slater (2007) combined surface induced-
polarization measurements with borehole flowmeter data,

ground penetrating radar tomographic data and neutron-
log-derived porosity information. Guérin (2005) presents
the advantages of the application of electromagnetic
methods. In the hydrogeological assessment of under-
ground mines, quantitative information can be extracted
from the joint inversion of borehole seismic and in-mine
geoelectric data, used for instance, in detecting tectonic
disturbances and fault zones in coal seam series, water
inrush and in estimating the thickness of impervious
layers (Dobróka et al. 1991).

In addition to the present measurement techniques, the
introduction of an independent data processing method is
of utmost importance. The simultaneous application of the
new method and the existing ones can improve the
accuracy and reliability of the estimation result. In this
paper, an alternative approach based on multivariate
statistical principles is presented, which processes all
borehole logs together to give an estimate to the vertical
distribution of formation hydraulic conductivity. Factor
analysis is normally used to reduce the dimensionality of
multivariate statistical problems, and to extract latent
information from the data set that is non-measurable.
The basic principle of the theory of factor analysis can be
found in the paper of Lawley and Maxwell (1962).
Several geophysical applications showed that the extracted
factor variables correlate to some petrophysical properties
of geological formations. Szabó (2011) introduced a factor
analysis-based method to estimate the shale volume of
sedimentary rocks. The statistical technique gave proper
estimates for several domestic and some overseas deep
wells in hydrocarbon fields (Szabó and Dobróka 2013b).
The method was also tested in some shallow freshwater
wells drilled in Hungary. Szabó et al. (2014) proposed a
regression relationship between one of the factors and
shale volume for eastern Hungary. Similar results were
recently published by Asfahani (2014), who processed
nuclear logs including natural gamma-ray intensity,
density and neutron-porosity data and long- and short-
normal electrical logs by factor analysis to characterize the
large extended basaltic areas in southern Syria. It was
concluded that the factor responsible for the largest part of
variance of original logs (i.e. first factor) can be
interpreted as a shale factor, which is useful for separating
different lithological units. The hydraulic conductivity of
groundwater formations is strongly related to shale
volume in primary porosity rocks. In this study, it is
assumed that the well log of the first factor correlates
adequately with hydraulic conductivity, which is useful to
extract the relevant parameter from borehole geophysical
measurements. The feasibility of the statistical method is
presented by synthetic modeling experiments and field
studies, and the interpretation results are validated by
independent laboratory and aquifer tests.

Theory of the method

According to Darcy’s law, hydraulic conductivity is the
proportionality factor between Darcy’s velocity of water
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flow and hydraulic gradient, which in rocks with
predominantly primary porosity, depends on the density
and viscosity of pore-water, grain-size and pore-size
distribution, porosity and water saturation. The spatial
distribution of the related parameters can be derived from
well-logging measurements. In the literature regarding the
forementioned parameters, some empirical or approximate
formula is normally used to calculate hydraulic properties
such as hydraulic conductivity, transmissivity and
storativity. The hydraulic conductivity K is directly
proportional to intrinsic permeability expressing the
measure of the aquifer’s ability to transmit water through
its pore spaces. The Kozeny-Carman equation is one of
the most widely used formulas for the estimation of
hydraulic conductivity given in units of cm/s (Bear 1972)

K ¼ ρwg
μ

d2

180

Φ3

1−Φð Þ2 ; ð1Þ

where d (cm) is the grain diameter, Φ (v/v) is the porosity
of formation, ρw (g/cm3) is the density of pore-fluid, μ
(g/cm/s) is the dynamic viscosity and g (cm/s2) is the
normal acceleration of gravity. In Eq. (1), the dominant
grain diameter d (cm) can be found from grain-size
analysis (Juhász 2002)

d ¼ d10 þ d60
2

ffiffiffiffiffiffiffi
d10
d60

s
; ð2Þ

where d10 (cm) and d60 (cm) are the representative sample
diameters at 10 and 60 % cumulative frequencies, respective-
ly. As rock samples can be taken from boreholes and porosity
can be estimated from well logs, the vertical distribution of
hydraulic conductivity can be calculated continuously along
the borehole. A new statistical method is presented in this
paper that makes use of suitable well logs sensitive to
hydraulic properties of rocks to give an estimate to hydraulic
conductivity for the entire logging interval.

The method of factor analysis is applied to borehole
logs in the following manner. Let the column vector dl

contain the data of the l-th measured variable along the
borehole. The readings of all data types are gathered in
data matrix D

Dil ¼ dli; ð3Þ

where i = 1,2,…,N is the total number of measuring points
in the processed depth-interval and l = 1,2,…,L is the
number of geophysical tools measuring different physical
quantities in the investigated borehole. The input data
must be standardized in the first step of the analysis

bDil ¼
Dil−Dl

� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N−1

XN
i¼1

Dil−Dl

� �2
vuut

; ð4Þ

where Dl represents the arithmetic mean of the data
measured by the l-th probe. Factor analysis reduces the N-
by-L matrix in Eq. (4) to a lower dimension by the matrix
decomposition

bD ¼ FWT þ E; ð5Þ

where F denotes the N-by-M matrix of factor scores, W is
the L-by-M matrix of factor loadings, E is the N-by-L
matrix of residuals, M is the number of factors extracted
from a higher number of observed variables, that is, M < L
(T indicates the matrix transpose operator). The factor
scores given in a column of matrix F represent a well log
of the extracted statistical variable. Matrix W contains the
weights of individual data corresponding to the extracted
factors. Practically, the factor loadings represent the
degree of correlation between each factor and measured
data type. Since the factors are assumed to be linearly
independent (FTF/N = I), the correlation matrix of the
standardized data is

R ¼ 1

N
bDTbD ¼ WWT þΨ; ð6Þ

where Ψ = ETE/N is the diagonal matrix of specific
variances (I is the identity matrix). If the notation of
communalities represented by the elements of the main
diagonal of matrix Rc = WWT is introduced, it can be
realized that matrix Ψ represents the part of variance of
the observations that are not explained by the common
factors. Normally W and Ψ are estimated by an iterative
algorithm that minimizes the following type of objective
functions

Ω W;Ψð Þ ¼ tr R‐WWT−Ψ
� �2 ¼ min; ð7Þ

where tr denotes the trace of the square matrix given in the
argument. Function Ω must be minimized with respect to
factor loadings and specific variances simultaneously. For
solving the optimization problem the use of the maximum
likelihood method is generally applied, which can give a
robust solution (Jöreskog 1969). Assuming that W and Ψ
are known, the factor logs can be extracted by the
maximization of the following log-likelihood function

lg Pð Þ ¼ −
1

2
lg 2πΨj j þ bD−FWT

� �
Ψ−1 bD−FWT

� �T� �
¼ max:

ð8Þ

After solving Eq. (8), an unbiased estimate to factor
scores can be given by the hypothesis of linearity (Bartlett
1953)

FT ¼ WTΨ−1W
� �−1

WTΨ−1bDT
: ð9Þ
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The optimal number of factors can be set by statistical
tests (Bartlett 1950) or a non-iterative approach (Jöreskog
2007). The resultant factors are usually rotated for an
easier interpretation. Since factor loadings are defined
non-uniquely, an orthogonal transformation WWT =
W*W*T can be applied to factor loadings, where W* =
WV holds for a suitably chosen M-by-M orthogonal
matrix V. In this study, the varimax algorithm suggested
by Kaiser (1958) is used to generate rotated factors, which
can be directly compared to hydraulic conductivity of
groundwater formations.

The resultant factors can be related with formation
parameters in regression analysis. Szabó et al. (2014)
showed a strong exponential connection between the first
factor (i.e. first column of matrix F) and shale volume in
groundwater formations, where the regression coefficients
obtained were approximately the same for different areas
in eastern Hungary. As hydraulic conductivity is inversely
proportional to shale content in primary porosity rocks
(Benson and Trast 1995; Sallam 2006; Shevnin et al.
2006), it is assumed that the first factor variable is also
sensitive to hydraulic conductivity. In this study, a linear
relationship between the first factor and the decimal
logarithm of hydraulic conductivity is demonstrated

�lg Kð Þ ¼ aF*
1 þ b; ð10Þ

where a, b are site specific constants and F1
* is the first

factor scaled into an arbitrary interval. Equation (10) is
confirmed by synthetic modeling experiments (see section
‘Synthetic modeling experiments’) and well-site studies
(see section ‘Well-site applications’). The Pearson’s
correlation coefficient R=cov K; F*

1

� �
=σKσF*1

characterizes
the strength of the linear connection between the given
factor and the logarithm of hydraulic conductivity, where
cov is the sample covariance operator, σK andσF*1

are the
standard deviations of the correlated quantities, respec-
tively. For statistical experiments using an exactly known
model the misfit between the noisy and noiseless synthetic
data is measured by the relative data distance

Dd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NL

XN
i¼1

XL
l¼1

d mð Þ
il −d cð Þ

il

d mð Þ
il

 !2
vuut

; ð11Þ

where dil
(m) and dil

(c) denote the l-th measured and
calculated data in the i-th depth point, respectively.
Multiplying Dd by 100, the measure of misfit is given in
percent. The closeness of hydraulic conductivities esti-
mated from different sources can be measured also by the
Pearson’s correlation coefficient.

Synthetic modeling experiments

Consider the petrophysical model with exactly known
parameters such as effective porosity (POR), water

saturation in the immediate vicinity of the borehole
flushed by mud (SX0) and that of the undisturbed
formation away from the borehole including only pore-
water (SW), shale volume (VSH), sand volume (VSD),
dominant grain-size (D) and hydraulic conductivity (K).
The model parameters vary vertically along the borehole.
The model represents a shallow unconsolidated sedimen-
tary geological formation made up of five inhomogeneous
beds (model-well-1). In the near-surface region, not only
freshwater but gas (normally air) may fill the pore space.
The air saturation can be calculated by SG = 1 – SW,
which can be divided into movable (SGM = SX0 – SW)
and irreducible (SGIR = 1 – SX0) parts. The lithology
from the top to the bottom is silty sand (42 % air and 58 %
water), fine-grained sand (42 % air and 58 % water), shale
(100 % water), fine-grained sand (35 % air and 65 %
water) and shaly sand (100 % water). Typical grain-sizes
are set from the literature (Wentworth 1922), while
hydraulic conductivities are calculated by Eq. (1). In
Well-1 bulk density (DEN), natural gamma-ray intensity
(GR), spontaneous potential (SP), deep resistivity (RD),
shallow resistivity (RS), neutron-neutron intensity (NN)
logs are applied. The parameters of the petrophysical
model are usually related to borehole geophysical mea-
surements empirically. These mathematical relations
called probe response equations can be used to predict
data in a forward modeling procedure. The values of
theoretical data would be measured along the borehole, if
the geological structure was characterized by the assumed
(exactly known) model parameters. Most types of bore-
hole geophysical data can be expressed as a linear
combination of the physical properties of rock matrix
and fluid components weighted by the relative volumes of
rock constituents. The following set of response functions
can be used for the solution of forward problem in
groundwater formations (Alberty and Hashmy 1984)

DEN ¼ POR SX0⋅DEMFð Þ þ 1−SX0ð ÞDEG½ �
þ VSH⋅DESHþ VSD⋅DESD; ð12Þ

GR ¼ GRSDþ 1

DEN
VSH⋅GRSH⋅DESHþ VSD⋅GRSD⋅DESDð Þ;

ð13Þ

SP ¼ SPSDþ VSH SPSH‐SPSDð Þ

¼ VSH⋅SPSH−C⋅lg
RMF

RW

	 

1−VSHð Þ; ð14Þ

NN ¼ POR⋅NNFþ VSH⋅NNSHþ VSD⋅NNSD; ð15Þ
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1ffiffiffiffiffiffiffi
RD

p ¼ VSH
1−VSH

.
2

� �
ffiffiffiffiffiffiffiffiffiffi
RSH

p þ
ffiffiffiffiffiffiffiffiffiffi
POR

p� �BMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BA⋅RW

p

2
664

3
775 ffiffiffiffiffiffiffiffi

SW
p� �BN

;

ð16Þ

1ffiffiffiffiffiffi
RS

p ¼ VSH
1−VSH

.
2

� �
ffiffiffiffiffiffiffiffiffiffi
RSH

p þ
ffiffiffiffiffiffiffiffiffiffi
POR

p� �BMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BA⋅RMF

p

2
664

3
775 ffiffiffiffiffiffiffiffiffi

SX0
p� �BN

;

ð17Þ

PORþ VSHþ VSD ¼ 1: ð18Þ

In Eqs. (12)–(17), there are additional quantities called
zone parameters that express the physical properties of the
solid and fluid parts of the groundwater formation. The
detailed list of zone parameters practically chosen as
constant in the forward modeling procedure can be found
in Table 1. Equation (18) is the material balance equation
for the rock environment, which is used to constrain the
domain of model parameters in the interpretation proce-
dure. Response Eqs. (12)–(17) can be used to generate
synthetic borehole logs. In the test, these data are
contaminated with some amount of random noise to
produce quasi measured logs. By the processing of the
noisy data it demonstrates how accurately the statistical
procedure reconstructs the parameters of the exact model.
The experiment evaluates the performance of the method,
namely it characterizes its accuracy, stability and noise
sensitivity.

The method of factor analysis is tested on synthetic
well-logging data calculated on model-well-1. The
workflow of the method is detailed in Szabó et al.
(2014). Borehole logging data are calculated to each
depth by substituting the actual values of model param-
eters (POR, SX0, SW, VSH, VSD) to Eqs. (12)–(17). As a
result, six types of well logs (GR, SP, DEN, NN, RS, RD)
in 250 depth levels are given, where the total number of
data is 1,500. The synthetic data set is contaminated by
random noise by adding a random number to each data
generated from Gaussian probability distribution with zero
mean and a scale parameter proportional to the noise level.
The values of zone parameters are listed in Table 1. The
correlation matrix in Table 2 shows that data variables
represented by noisy synthetic data are relatively strongly
correlated. The first two factors (i.e. first and second
columns of matrix F) are calculated, because they explain
90.8 % and 9.2 % of total variance of measured data,
respectively. Table 3 contains the loadings of the factors
calculated by Eq. (8) for the case of the synthetic data set
including 5 % Gaussian distributed noise. The largest

weights on the first factor are given by lithology sensitive
logs (GR and SP), while those of the second one are
obtained by resistivity logs (RS and RD). These results are
consistent with earlier studies (Szabó 2011; Szabó and
Dobróka 2013b; Szabó et al. 2014). Asfahani (2014) also
concluded that the first factor expresses the presence of
clay in basaltic formations, and can be termed as a clay
factor, while the second factor can be used to separate
different lithological units according to their resistivity
response; therefore, it can be termed as a resistivity factor.
Two uncorrelated factors are calculated with the factor
loadings by Eq. (9), which are then rotated and scaled to
the interval of 0 and 100 (in earlier studies the same
interval was chosen for the sake of comparability). The
linear connection between the first factor and hydraulic
conductivity in Fig. 1 is based on Eq. (10). The regression
model is lg(K) = −0.033F1

* – 2.72, where coefficients a, b
are obtained highly reliably (amin = –0.034, amax = –0.032
bmin = –2.75 bmax = –2.70 with 95 % confidence bounds).
The Pearson’s correlation coefficient between lg(K) and

Table 1 Groundwater-zone parameters chosen for synthetic model-
ing experiments

Zone parameter Definition Symbol Value (unit)

Gamma ray intensity Shale GRSH 160 API
Sand GRSD 10 API

Spontaneous
potential

Shale SPSH 0 mV
Sand SPSD 12.3 mV
Temperature
constant

C 70

Thermic neutron
intensity

Shale NNSH 4.0 kcpm
Sand NNSD 7.5 kcpm
Pore-fluid NNF 3.0 kcpm

Gamma-gamma
(density)

Mud-filtrate DEMF 0.9982 g/cm3

Shale DESH 2.5 g/cm3

Sand DESD 2.65 g/cm3

Gas (air) DEG 1.2·10−3 g/cm3

Electric resistivity Mud-filtrate RMF 8 ohmm
Pore-water RW 12 ohmm
Shale RSH 2 ohmm

Textural parameters Cementation
exponent

BM 1.5

Saturation
exponent

BN 2.0

Tortuosity factor BA 1.0
Hydraulic parameters Dynamic viscosity MU 0.019 g/cm/s

Acceleration
of gravity

G 981 cm/s2

Table 2 Correlation matrix of synthetic borehole logging data in
case of exactly known inhomogeneous model

SP GR DEN NN RS RD

SP 1 0.97 0.56 −0.84 −0.82 −0.80
GR 0.97 1 0.56 −0.86 −0.84 −0.82
DEN 0.56 0.56 1 −0.46 −0.51 −0.49
NN −0.84 −0.86 −0.46 1 0.71 0.69
RS −0.82 −0.84 −0.51 0.71 1 0.98
RD −0.80 −0.82 −0.49 0.69 0.98 1
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F1
* is R = –0.98, which indicates a strong correlation and

inverse proportionality between the variables. In Fig. 2,
the input logs, the petrophysical model and the estimated
hydraulic conductivity logs are illustrated, where GR log
primarily correlates with shale volume of the formations.
Since the resistivity of mud-filtrate (RMF) is lower than
that of the pore-water (RW), a sand aquifer is at higher
potential than shale (reverse SP). Shales are not invaded
by mud; therefore, RS and RD logs overlap. The porous
formations are flooded by a more conductive mud filtrate
than the original pore-water. Normally in water-saturated
rocks, the mud causes lower RS values than RD. The RD
curve ascends more in the first, second and fourth layers
where the pore space is partially saturated with air. The air
effect appears as a separation between the nuclear logs,
which provide porosity estimates for Eq. (1). The
composition and saturation of the modelled rocks are
represented by the last two tracks of Fig. 2. Beside the two
factors, the well logs of the hydraulic conductivity
estimated from Eq. (1) and Eq. (10) are plotted in track
7. The K(KOZENY) and K(FA) logs show a close
agreement with a correlation coefficient of R = 0.98.

Factor analysis as a data processing method is
necessarily affected by the propagation of errors. The
factor logs are estimated with a certain accuracy depend-
ing on the noise level of input data. A set of additional

synthetic tests are performed using different level of
uncertainties of wellbore data calculated on model-well-1
to examine the noise sensitivity of the factor analysis
algorithm. In Table 4 the test results for data sets with
different data distances based on Eq. (11) are listed.
Beside Gaussian noise up to 10 %, some non-Gaussian
typed (asymmetric) data distribution are also generated by
adding outliers to the Gaussian distributed data (five times
higher amount of noise is added randomly to the 10 % of
the given Gaussian distributed data). Two factors are
calculated in each case. The magnitude and sign of factor
loadings do not vary significantly, as they show a low-rate
decay for lithology dependent logs with increasing data
distances. The coefficients for the regression connection
between the hydraulic conductivity and the first-scaled
factor show high accuracy and little variation. Estimation
errors are directly proportional to data noises and are
relatively small even in highly noisy cases. The Pearson’s
correlation coefficients show strong and steady relation-
ship between the two variables. Non-Gaussian tests show
that factor analysis is properly resistant against data
distributions different from Gaussian type. The regression
connection between the factor and hydraulic conductivity
can also be recognized beside extreme noises. The
synthetic tests show a reliable and stable statistical
algorithm.

Well-site applications

Validation with Kozeny-Carman model
The suggested statistical method works properly when
applied to real data sets. The following example shows a

Table 3 Factor loadings derived from synthetic wellbore data in
case of inhomogeneous model for Well-1

Factor W(SP) W(GR) W(DEN) W(NN) W(RS) W(RD)

1st 0.97 0.98 0.55 −0.86 −0.80 −0.78
2nd −0.06 −0.08 −0.09 0.02 0.58 0.62

Fig. 1 Hydraulic conductivity versus factor scores derived from synthetic well-logging data contaminated by 5 % Gaussian distributed
noise for the model-well-1
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Hungarian case study. In the Pannonian Basin Province of
Central Europe, a thick Tertiary sedimentary sequence
including hydrocarbon and thermal-water reservoirs was
deposited over the Mesozoic and older basement rocks.
The overlying unconsolidated Quaternary formations
mainly consist of freshwater-bearing gravel or sand
aquifers confined by shales. The shallow part of well B-
1 is investigated, which is located in Baktalórántháza,
Szabolcs-Szatmár-Bereg County, North-East Hungary
(Fig. 3). The aim of the survey and earlier results of
factor analysis can be found in Szabó et al. (2014).

In this study, factor analysis is applied to borehole logs
to evaluate the hydraulic conductivity of geological

formations between the interval of 105 and 486 m, where
176 core samples were previously collected. The proc-
essed well logs include: natural gamma-ray intensity
(GR), spontaneous potential (SP), shallow resistivity
(RS), gamma-gamma intensity (GG) and neutron-neutron
intensity (NN). The total number of data is 19,075 which
are processed together in one interpretation procedure.
The strength of correlation between the measured vari-
ables is moderate, as is seen in Table 5. The correlation
coefficients are even smaller than they are assumed in the
calculations of the synthetic case (Table 2). Singular value
decomposition (SVD) of the data covariance matrix shows
that the total variance of input data can be explained by

Fig. 2 Synthetic borehole logs calculated for model-well-1. GR is natural gamma-ray intensity, SP is spontaneous potential, DEN is
density, NN is neutron-neutron intensity, RS and RD are shallow and deep resistivity logs, respectively. Dominant grain diameter is in track
5. The well logs of the extracted factors are in track 6. Hydraulic conductivity (K) logs are estimated from Kozeny-Carman equation (red
curve) and factor analysis (FA, black curve), separately (track 7). SX0 is water saturation in the invaded zone, SW is water saturation in the
virgin zone (track 8), POR is porosity, VSH is shale content, VSD is sand volume (track 9)

Table 4 Results of noise sensitivity tests in case of inhomogeneous model and noisy synthetic well-logging data sets

Data
noise

Dd
(%)

W(SP) W(GR) W(DEN) W(NN) W(RS) W(RD) amin a amax bmin b bmax r(F1
*, lgK)

Gaussian 1.0 0.99 0.99 0.88 −0.99 −0.83 −0.80 −0.031 −0.030 −0.030 −2.74 −2.73 −2.72 −0.99
2.0 0.99 0.99 0.78 −0.97 −0.82 −0.78 −0.033 −0.032 −0.031 −2.74 −2.72 −2.71 −0.99
3.0 0.98 0.98 0.68 −0.93 −0.80 −0.76 −0.032 −0.031 −0.030 −2.75 −2.73 −2.71 −0.99
4.0 0.97 0.98 0.53 −0.90 −0.77 −0.74 −0.034 −0.033 −0.032 −2.75 −2.73 −2.71 −0.98
5.0 0.97 0.98 0.55 −0.86 −0.80 −0.78 −0.034 −0.033 −0.032 −2.75 −2.72 −2.70 −0.98
10.0 0.89 0.92 0.31 −0.57 −0.66 −0.60 −0.037 −0.035 −0.033 −2.60 −2.54 −2.49 −0.93

Gaussian
with
outliers

1.66 0.98 0.98 0.77 −0.98 −0.77 −0.74 −0.032 −0.032 −0.031 −2.78 −2.76 −2.74 −0.99
3.22 0.98 0.98 0.63 −0.92 −0.83 −0.80 −0.030 −0.029 −0.029 −2.77 −2.75 −2.74 −0.98
5.28 0.95 0.98 0.32 −0.74 −0.77 −0.73 −0.035 −0.034 −0.033 −2.58 −2.55 −2.52 −0.98
7.01 0.93 0.96 0.28 −0.71 −0.71 −0.68 −0.035 −0.034 −0.033 −2.70 −2.66 −2.63 −0.96
7.98 0.93 0.94 0.49 −0.61 −0.74 −0.71 −0.039 −0.037 −0.036 −2.34 −2.29 −2.25 −0.96
15.64 0.80 0.87 0.03 −0.39 −0.63 −0.54 −0.043 −0.040 −0.037 −2.38 −2.30 −2.22 −0.87
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two lithological factors. The first factor is responsible for
82 % of data variance, while the second factor explains
the 18 % of observed information. In the previous study,
the first factor log was identified as a shale indicator. Now
a comparison is made between the first factor and
hydraulic conductivity coming from grain-size analysis
and porosity information. The factor loadings for well B-1
are listed in Table 6, where the GR and RS logs bear the
heaviest influence on the first factor. Factor scores are
scaled by the same procedure as in section ‘Synthetic
modeling experiments’. Figure 4 shows the regression
relationship between the first scaled factor and the decimal
logarithm of hydraulic conductivity calculated by Eq. (1).
Dominant grain-sizes are calculated by Eq. (2) from d10
and d60 values of grain-size distribution curves measured
on core samples. Porosity in Eq. (1) was calculated from
the neutron log using Eq. (15). The zone parameters for
the neutron response can be obtained from the neutron-
neutron vs. gamma-gamma crossplot (NNSD = 7.5 kcpm,
NNSH = 4.0 kcpm, NNF = 1.0 kcpm). The regression

function suggested in Eq. (10) approximates well the
relationship between the two variables, where the
Pearson’s correlation coefficient (R = –0.79) indicates an
unequivocal inverse proportionality. This index number is
highly dependent on the level of data noise and the
uncertainty of positioning the places of core sampling.
The regression function is lg(K) = −0.046F1

* − 3.38,
where coefficients a = [–0.052,–0.041] and b = [–3.66,–
3.11] are estimated with 95 % level of significance.

The input borehole logs and the interpretation results
are illustrated in Fig. 5. The GR log indicates the
boundary between the Pleistocene and Pannonian (late
Miocene) complex at around 240 m. The latter dominantly
consists of clayey sands, silts and marls, while the former
is formed mainly by coarse-grained sands and gravels. At
the top of the lithology column Holocene flood sediments
can be found. A GR-log-based method proposed by
Larionov (1969) can be appl ied to give an
independent estimate to shale volume (indicated by VSH
in the last track). The formation porosity (POR) is
extracted from the neutron log by Eq. (15), while the

Fig. 3 Location map of the investigated well sites, in a view of the northern hemisphere of the Earth from above the North Pole

Table 5 Correlation matrix of borehole logging data observed in
well B-1

RS SP GR GG NN

RS 1 −0.01 −0.74 −0.33 −0.06
SP −0.01 1 −0.13 −0.42 −0.14
GR −0.74 −0.13 1 0.36 0.05
GG −0.33 −0.42 0.36 1 0.02
NN −0.06 −0.14 0.05 0.02 1

Table 6 Factor loadings derived from borehole geophysical data
collected from well B-1

Factor W(RS) W(SP) W(GR) W(GG) W(NN)

1st −0.79 −0.41 0.91 0.36 0.03
2nd 0.21 0.85 −0.15 −0.24 −0.18
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volume of sand is calculated by Eq. (18). As the entire
interval is fully water-saturated, thus the water saturation in
the flushed and the virgin zone is 100 % (SX0 = SW = 1). In
the fifth track, the well log of the first scaled factor is plotted.
Hydraulic conductivity K(CORE) values indicated by red

circles are calculated by Eq. (1) in the places of core
sampling. The same quantity derived from factor
analysis is represented by the black curve of K(FA).
The hydraulic conductivity logs show a close fit to
confirm the feasibility of the statistical method.

Fig. 4 Regression relation between the hydraulic conductivity calculated from core measurements and the scores of the first factor derived
from borehole logs measured in well B-1

Fig. 5 Borehole logs measured from well B-1 (tracks 1–4). GR is natural gamma-ray intensity, SP is spontaneous potential, GG is
gamma-gamma intensity, NN is neutron-neutron intensity, RS is shallow resistivity log. The well log of the first factor is in track 5. D10 and
D60 are representative grain diameters at 10 and 60 % cumulative frequencies, DOMINANT is dominant grain diameter (track 6). Hydraulic
conductivity (K) logs are estimated from grain-size analysis made on core samples (red circles) and factor analysis (black curve), separately
(track 7). POR is porosity, VSH is shale content, VSD is sand volume (track 8)
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Validation with aquifer test
The drilling of Well FL-800 was part of a project of US
Geological Survey and US Environmental Protection
Agency to characterize the lithostratigraphy and regional
hydrogeology of the Ordovician Sinnipee Group situated
in Waupun, Fond du Lac County, Wisconsin, USA
(Fig. 3). The aim of the study was to acquire useful
information to manage and protect the groundwater
supply. For this task, detailed laboratory measurements
made on core samples, borehole geophysical and
hydrogeological surveys were performed at the investiga-
tion site (Dunning and Yeskis 2007). The Ordovician
Sinnipee Group is considered a bedrock aquifer, which
consists of the Platteville, Decorah and Galena Dolomite
formations (from the bottom to the top). They are overlain
only by a thin layer of unconsolidated deposits of
Quaternary age. The principal lithology of the Sinnipee
Group is dolomite and shaly dolomite in the logged
interval. Core measurements indicate a primary porosity
of 2–4 % in the dolomite, while primary porosity is up to
10 % in shaly intervals. The dolomite is quite massive and
in some levels the fractures and bedding-plane partings are
responsible for secondary porosity and permeability.
These features were identified by the acoustic borehole
televiewer, single-hole directional reflection and cross-
hole radar tomography measurements. Borehole geophys-
ical results showed that water is transmitted primarily
along bedding-plane partings. In some isolated intervals,
horizontal hydraulic conductivity was estimated by hy-
draulic tests, which proved to be highly consistent with
heat-pulse flow-meter (flow velocity and volume) data. In
this study, horizontal hydraulic conductivities calculated
from slug tests using the method of Hvorslev (1951) are
directly compared to the results of factor analysis.

Borehole logging measurements in well FL-800 suit-
able for factor analysis includes: natural gamma-ray
intensity (GR), short- and long-spaced neutron-neutron
intensity (NN-N for near receiver and NN-F for far
receiver), electric resistivity (RES-16: short normal,
RES-64: long normal, LAT: lateral) and temperature
(TEMP) logs. The processed interval is between elevation
910 and 750 feet (277.4 and 228.6 m) above mean sea

level referenced to National Geodetic Vertical Datum of
1929 in the United States of America (NGVD 29). The
total number of data is 11,298. Table 7 shows the
correlation matrix of the borehole logs, which indicates
moderate correlation between the measured variables on
the average. Three factor logs are calculated, where SVD
results show that 79.1 % of total variance is explained by
the first factor, 14.9 % by the second factor and 6 % by the
third factor. The factor loadings for well FL-800 are listed
in Table 8, which shows some difference compared to the
case of primary porosity rocks. The first factor appears to
be principally a resistivity factor, while the second one is
affected more by lithology and water content. In these
fractured formations the first factor seems to be directly
proportional to resistivity, while it is inversely related to
natural gamma-ray log. After scaling the first factor as in
section ‘Synthetic modeling experiments’, the logarithm
of hydraulic conductivities obtained from slug tests can be
plotted with respect to the factor scores. The regression
relationship is illustrated in Fig. 6, which shows that the
inverse connection is even stronger (R = –0.90) than in
section ‘Validation with Kozeny-Carman model’. The
regression function is lg(K) = −0.05F1

* + 2.84, where
the coefficients estimated with 95 % significance bounds
are a = [–0.08, –0.02] and b = [1.47, 4.21].

The boundary of Galena Dolomite and Decorah
formations runs at 810 elevation in feet (246.9 m) and
the top of the Platteville Formation is at around 790
elevation in feet (240.8 m). The GR log provides
information on shale content, of which maximum is
~40 % in the Decorah Formation. The highest permeabil-
ity zones are in the argillaceous dolomite above 870
elevation in feet (265.2 m), which was obtained from
flow-meter tests. The acoustic televiewer images showed
earlier also a high density of subvertical fractures and
bedding-plane partings in the same interval. In the
Decorah Formation, the larger porosity of shale causes a
relative higher permeability than in the massive dolomite
of Platteville Formation. The permeable zones are also
indicated by the separation of resistivity logs of different
penetrations. The well logs of the factors are plotted in the
fifth track in Fig. 7. The logarithm of hydraulic

Table 7 Correlation matrix of borehole geophysical data acquired in well FL-800

GR TEMP RES16 RES64 LAT NN-N NN-F

GR 1 −0.03 −0.65 −0.50 −0.69 −0.52 −0.66
TEMP −0.03 1 0.36 0.51 0.28 0.12 0.17
RES16 −0.65 0.36 1 0.92 0.98 0.46 0.56
RES64 −0.50 0.51 0.92 1 0.85 0.40 0.51
LAT −0.69 0.28 0.98 0.85 1 0.47 0.57
NN-N −0.52 0.12 0.46 0.40 0.47 1 0.59
NN-F −0.66 0.17 0.56 0.51 0.57 0.59 1

Table 8 Factor loadings derived from borehole geophysical data measured in well FL-800

Factor W(GR) W(TEMP) W(RES16) W(RES64) W(LAT) W(NN-N) W(NN-F)

1st −0.47 0.11 0.81 0.59 0.87 0.21 0.20
2nd −0.67 0.03 0.39 0.32 0.41 0.63 0.83
3rd −0.02 0.59 0.44 0.73 0.29 0.11 0.17
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conductivity LG_K(ST) values represented by red circles
are obtained from slug test results, while the continuous
curve of LG_K(FA) is estimated from factor analysis. The
overall fit between the results is sufficient to confirm the
validity of the method.

In this section, the feasibility of factor analysis has
been demonstrated for two different geological settings.
An acceptable fit between the estimates of hydraulic
conductivity derived separately from factor and core
analysis was achieved in well B-1 (Fig. 8a). In the

Fig. 6 Regression relation between the hydraulic conductivity calculated from aquifer tests and the scores of the first factor estimated from
well logs observed in well FL-800

Fig. 7 Borehole logs measured from well FL-800 (tracks 1–4). GR is natural gamma-ray intensity, NN(NEAR) and NN(FAR) are short-
and long spaced neutron-neutron intensity, RES-16 and RES-64 short and long normal resistivity, LAT is lateral resistivity, TEMP is
temperature log. The extracted three factors are in track 5. Hydraulic conductivity (K) logs estimated from slug tests (red circles) and factor
analysis (black curve), separately (track 6). Conversion: 1 m=3.2808 ft, 1 cm/s=2834.65 ft/day
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Pleistocene, the matching points of the crossplot show
bigger discrepancies from the black straight line
representing the equation lgK(FA) = lgK(CORE), while
the misfit is smaller in the lower hydraulic conductivity
Miocene formation. In well FL-800, a closer fit between
the estimates of factor analysis and slug tests is indicated
for the entire depth interval (Fig. 8b), where the equality
lgK(FA) = lgK(ST) is represented by black straight line in
the figure. The accomplished synthetic and field experi-
ments infer that the statistical method gives a reliable
evaluation of hydraulic conductivity of groundwater
formations.

Conclusions

A multivariate statistical approach applied to borehole
logging data is suggested for the estimation of hydraulic
conductivity. The factor analysis-based method has been
proven to be a powerful tool in solving hydrogeophysical
problems, for instance in earlier studies factor analysis
was used to evaluate the shaliness of groundwater
formations (Szabó 2011; Szabó and Dobróka 2013b;
Szabó et al. 2014). As a continuation, a new statistical
procedure is introduced in this paper to extract the vertical
distribution of formation hydraulic conductivity purely
from borehole geophysical observations. As a result, it
provides continuous in-situ information to interpolate
hydraulic conductivity between cored or pumped inter-
vals. Synthetic modeling experiments using noisy data
sets show that the estimation results are consistent,
accurate and outlier resistant. Since the estimation error
of permeability or hydraulic conductivity can normally
reach one order of magnitude, any additional information

given from a different source may increase the reliability
of the hydrogeological interpretation. The estimation error
can be effectively reduced by the suggested method,
because of a large number of observed variables and
statistical sample. The method of factor analysis jointly
processes suitable data within the logging interval
allowing some shorter intervals of missing data. The
process requires only a few seconds of CPU time using a
quad-core processor-based workstation.

The paper also gives an overview on the practical
issues on the application of the method. Numerical results
confirm the validity of the regression formula defined in
Eq. (10). The regression coefficients must be set for each
well using core or aquifer test data. Even with the lack of
this information, the formula gives a first approximation
of hydraulic conductivity. On the basis of earlier results,
the method is tested first in shallow clastic aquifers
(section ‘Validation with Kozeny-Carman model’), where
a strong inverse proportionality is shown between the first
factor and hydraulic conductivity. Another field case is
presented to demonstrate the feasibility of the method also
in fractured sedimentary rocks (section ‘Validation with
aquifer test’). Both studies confirm the validity of
regression Eq. (10) where some deviations in the
regression constants can be experienced because of the
different measurement units of hydraulic conductivity. In
sedimentary rocks with intergranular porosity, the first
factor is mainly sensitive to shale content, where the factor
loadings show positive correlation with the lithology logs
(GR and SP). In these rocks the permeability is inversely
proportional to shale content. In secondary or mixed
porosity systems, where the mineral composition and
textural (or structural) properties are more complex, the
first factor may be influenced by other properties different

Fig. 8 Regression relation between hydraulic conductivity estimations. a The decimal logarithm of hydraulic conductivity was estimated
from factor and laboratory analysis in well B-1. b The decimal logarithm of hydraulic conductivity was estimated from factor analysis and
slug tests in well FL-800. Conversion: 1 cm/s=2,834.65 ft/day
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from lithology (e.g. pore-fluid content and secondary
permeability). In section ‘Validation with aquifer test’, a
massive dolomite complex is studied, in which shale
volume is directly proportional to permeability. The
loading of the first factor for the GR log appears to be
negative and smaller than those of the resistivity logs. The
interpretation of factors related to fractured rocks should
be further analyzed in forthcoming research. The present-
ed results show that reliable information on the distribu-
tion of hydraulic conductivity can be extracted from
borehole geophysical data sets, which may improve the
solution of hydrogeological problems. The method can be
extended to multiple (two- or three-dimensional) borehole
applications as it was shown earlier in Szabó et al. (2012)
to support ground geophysical and hydrogeological
surveys even in regional scales.
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