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Abstract In numerical modeling of groundwater flow,
the result of a given solution method is affected by
the way in which transient flow conditions and
geologic heterogeneity are simulated. An algorithm
is demonstrated that simulates breakthrough curves at
a pumping well by convolution-based particle tracking
in a transient flow field for several synthetic basin-
scale aquifers. In comparison to grid-based (Eulerian)
methods, the particle (Lagrangian) method is better
able to capture multimodal breakthrough caused by
changes in pumping at the well, although the particle
method may be apparently nonlinear because of the
discrete nature of particle arrival times. Trial-and-error
choice of number of particles and release times
can perhaps overcome the apparent nonlinearity.
Heterogeneous aquifer properties tend to smooth the
effects of transient pumping, making it difficult to
separate their effects in parameter estimation. Porosity,
a new parameter added for advective transport, can be
accurately estimated using both grid-based and parti-
cle-based methods, but predictions can be highly
uncertain, even in the simple, nonreactive case.
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Numerical modeling . Heterogeneity . Scale effects

Introduction

Groundwater tracers are sometimes used in the inverse
calibration of basin-scale (as opposed to plume scale)
groundwater-flow models (Sanford et al. 2004; Manning
and Solomon 2005; Michaels and Voss 2009; Sanford
2011). However, there are outstanding concerns with
regard to simulation methods and parameter estimation
(Konikow 2011; Voss 2011a, b). New insights into aspects
of these issues are provided in this paper. Numerical
dispersion, and its effect on parameter estimates, is one of
those concerns. At the basin-scale, real dispersion often is
neglected, in part because larger sources of uncertainty
exist than in the sub-grid-scale heterogeneity represented
by the dispersion coefficient (Sanford 2011). For example,
Zinn and Konikow (2007a, b) simulate complex solute
distributions that arise from wells represented in several
model layers. Even if real dispersion is not simulated,
inverse model estimates of parameters may be affected by
numerical dispersion caused by grid resolution, transient
flow, solution method, and the interaction of all these
factors. An alternative to more complex advection-
dispersion models and solution techniques is to use
computationally simpler models to explore parameter
space and the relations among parameters.

Grid resolution affects simulation accuracy in several
ways. Velocity gradients near features such as pumping
wells (Starn et al. 2012) or streams (Haitjema et al. 2001)
are not accurately represented by velocities at grid nodes
unless appropriately small grid spacing is used. Linear
interpolation of velocity, commonly used in particle-based
solute transport (Pollock 1988; Goode 1990; Schafer-
Perini and Wilson 1991), often is referred to as “exact,”
but it is exact only in its reproduction of cell mass balance,
not in its estimation of velocity (Pokrajac and Lazic 2002).
Apart from numerical effects of inaccurate velocity
interpolation (which can be rectified by using a fine
enough model discretization), spatial averaging of geo-
logic heterogeneity (Bower et al. 2005) affects groundwa-
ter flow and transport simulation results. Mehl and Hill
(2001) tested the effect of numerical solution methods on
inverse modeling parameter estimates and found that
numerical dispersion in the solution methods propagated
to estimates of dispersion that were larger than real
dispersion in order to compensate for error in the
numerical method. Similarly, Zyvoloski and Vesselinov
(2006) reported that error in estimated parameters could
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be reduced by as much as several hundred percent solely
by grid refinement. Although some guidelines are offered
in these references, there is no formal relation between
grid resolution and model accuracy (for advective flow).

Transient groundwater flow also can lead to apparent
dispersion (Goode and Konikow 1990) because of
changing flow directions; however, if the periodicity of a
cyclical stress that causes changing flow directions (such
as pump on/off periods) is less than the average
groundwater residence time, the effects on overall
transport may be minimal (Reilly and Pollock 1996).
Starn (1994) investigated a similar phenomenon where
apparent dispersion was caused by periodic stream
stage changes at a model outflow boundary. Even in a
flow system with spatially stationary sources and sinks,
apparent dispersion is produced by the complex
interaction of aquifer heterogeneity and transient flow
(Elfeki et al. 2012).

Model parameter values determined through inverse
modeling are products of their relation to the input data,
and different sets of calibration data will yield different
parameter estimates, although each may fit the calibration
data equally well. Although a simultaneous inverse
simulation involving groundwater flow and solute trans-
port can be used (for example, Fienen et al. 2009), Voss
(2011a, b) points out that hydraulic head disturbance
propagates through an aquifer as a diffusive process,
whereas tracer concentrations propagate through an
aquifer by advection and dispersion. He concludes that
tracer and head data should not be used in the same
inverse problem as they would each likely produce
different parameter estimates. On the other hand, Hill
and Tiedeman (2007) present successful studies that use
multiple types of data in inverse simulation. In one
example, Barth and Hill (2005) simulated breakthrough
curves (BTCs) of virus transport and found that artifacts
of the numerical solution methods (flow and transport)
influenced the simulated BTC and that error-based
weighting potentially leads to a few observations domi-
nating the regression. Saiers et al. (2004) compared
simulations calibrated to heads alone, heads and flows,
and heads, flows, and concentrations, and found that
simulated head and flow predictions varied little among
the simulations, even though estimated parameter
values were different for each simulation. Anderman
and Hill (1999) decoupled flow and transport models
in a three-step approach to inverse modeling, thus
separating the effects of different types of data on
parameter estimates.

The unifying idea in the preceding studies is that
inverse modeling will seek to match whatever data are
available, and although constrained by the physics in the
model, will produce parameter estimates that compensate
for a variety of conceptual, numerical, and structural
defects in the model (which are ubiquitous). Konikow
(2011) and Voss (2011a, b), considering these difficulties
(among others), exhort modelers to construct simple well-
understood models and to base model predictions on
major trends and locally averaged values.

Head and flow data can be used in inverse modeling to
identify groundwater flow paths, and volumetric flow
information produced by groundwater flow models can be
transformed to average linear velocity and groundwater
residence time (Konikow 2011). Uncertainty in porosity
estimates, which are important in overall residence time
estimates (Zhu et al. 2010; Konikow 2011; Zhu 2012), can
be propagated to uncertainty in tracer concentrations by
convolution for any steady-state period and arbitrary tracer
input function. The probability density function of
groundwater residence times can be used to derive a
solute BTC using convolution-based particle tracking
(CBPT) (Robinson et al. 2010). CBPT was extended to
simulate samples collected from pumping wells by Starn
et al. (2012) in steady flow and to simulate plumes in
transient flow by Srinivasan et al. (2011).

In calibrating advective transport models to atmospher-
ic tracer concentration data, questions arise as to the
appropriate level of discretization needed to achieve
meaningful results and to the effect of the solution method
on model parameter estimates. This paper looks at the
effects of grid resolution and numerical method on
inverse-simulation estimates of advective-transport model
parameters. The problem is framed using a typical
situation: a calibrated groundwater-flow model exists and
at some later time, advective transport is added. Porosity
is the principal parameter that is added and, in the work
presented here, is the only parameter estimated in inverse
simulation. Advective transport is governed by ground-
water velocity, which is the ratio of hydraulic conductivity
to porosity, both of which can be highly correlated in
typical problems (Barth and Hill 2005). In the limited test
cases presented here, porosity represents a linear
modification of the velocity field that has already been
determined through flow modeling. The flow model
fixes flow paths in space, and the porosity parameter
encapsulates uncertainty in travel times along those
flow paths.

The simulation of breakthrough curves (BTCs) by
convolution-based particle tracking (CBPT) in a transient
flow field at a pumping well is introduced in this paper. In
CBPT, the residence time distribution of groundwater
calculated using particle tracking is convolved with the
solute source input to produce BTCs. The situation
investigated here is basin-scale advective transport where
predictions of solute BTC are desired. Calibration data in
this case could consist of sparse observations of an
atmospheric tracer, such as tritium, chlorofluorocarbons,
or sulfur hexafluoride. The calibration data are vertically
integrated tracer observations such as might be obtained
from a pumping well. A groundwater-flow model
constructed on a relatively coarse grid is available such
as might be done to simulate regional flow. This scenario
can be considered worst-case, but this paper shows the
merit in undertaking such simulations if appropriate
regard is given to choosing simulation methods. The
paper presents new understanding based on a simple set of
simulations that may help a modeler understand larger
questions of basin-scale groundwater transport.
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Overview of methods

The effects of grid resolution and numerical methods on
parameter estimates are tested using a synthetic groundwater
model of transient groundwater flow. Three distributions of
aquifer properties on two grid resolutions (a third resolution
added for one case) are simulated: (1) homogeneous
properties, (2) layered heterogeneous properties, and (3)
distributed heterogeneous properties. BTCs are simulated by
CBPT and then are compared to grid-based (Eulerian)
solutions of advective transport. Porosity of the synthetic
model cases is estimated with an inverse model. Predicted
BTCs resulting from the introduction of a second hypothet-
ical tracer (other than the one used for calibration) are made
using CBPT for selected cases. Predictive uncertainty is
estimated based on model calibration and a calibration-
constrained Monte Carlo simulation. The effects of inverse
model linearity are discussed in relation to predictions.

Description of synthetic models

Synthetic models used in this analysis are modified slightly
from those used by Starn et al. (2012) (Fig. 1 and Table 1). A
standard finite-difference groundwater flow model
(MODFLOW; Harbaugh 2005) and particle tracker
(MODPATH; Pollock 2012) with refinements by Starn et
al. (2012) are used to calculate nodal velocities. The

simulations are formulated on increasingly refined grids by
dividing the domain into 9 × 9, 27 × 27, or 81 × 81 cells in
the horizontal dimension (abbreviated as 9-grid etc.). The
reference simulation is based on CBPT on a 243 × 243 cell
grid. Each grid is divided vertically into 9 evenly spaced
model layers, and the number of cells between adjacent
levels of refinement differs by a factor of 9. Inflow of water is
through a specified-flux (Neumann) boundary and outflow is
through a specified-head (Dirichlet) boundary. Water inflow
at the upstream boundary is specified in proportion to
hydraulic conductivity (K) such that the total inflow is
identical to the homogeneous aquifer (described in the
following). Boundaries not otherwise specified are zero-flux
(including no recharge). Twowells are simulated: a pumping
well in layers 4 and 5 and a monitoring well in layers 5 and 6
that is not pumped. Pumping history is varied to create
transient flow (Fig. 2). Flow into the pumping well from
each layer is calculated using the Multi-NodeWell (MNW2)

a

b

Fig. 1 a Map view and b section view of a 27 × 27 synthetic
simulation grid. Left boundary is specified solute and water flux.
Right boundary is constant head. All boundaries not otherwise
specified are zero-flux boundaries. All grid dimensions in meters

Table 1 Model grid dimensions and boundary conditions

Model domain dimensions
x 5,400 m
y 5,400 m
z 540 m
Number of layers 9
Boundary conditions
Row 1 specified flux 87,480 m3/d
Last row constant head 540 m
Flow and transport parameters (hydrofacies shown on Fig. 10)

K Porosity
Homogeneous 30 m/d 0.30
Clay 5 m/d 0.05
Muddy sand 20 m/d 0.20
Sand 30 m/d 0.30
Gravel 40 m/d 0.40
Specific Storage 0.00001/m
Sink strength
Monitoring well 0 m3/d
Pumping well (intermittent) 50,000 m3/d
Grid cell dimensions
9-grid (x 0 y) 600 m
27-grid (x 0 y) 200 m
243-grid (x 0 y) 22.22 m
Layer thickness (z) 60 m

K hydraulic conductivity

Fig. 2 Pumping history for transient simulation
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package (Konikow et al. 2009). The specific storage used in
these simulations (Table 1) is representative of a confined to
semi-confined aquifer, which results in stress periods that
very quickly reach steady state. CBPTalso was tested with a
storage representative of an unconfined aquifer (0.30) with
similar results (not presented in this paper).

Solute is introduced to the flow system at the upstream
boundary, and BTCs are calculated at the two simulated

wells. The solute source is a 2,500-day pulse of 1.0 mg/L
(Fig. 3). CBPT is performed by backward tracking the
release of 100 particles per time step for the simulated
pumping well and monitoring well. A 0.01 m spatial error
is specified for the movement of each particle in the
adaptive time-step Runge-Kunge solution (Starn et al.
2012). Particles are released at evenly spaced time
intervals, in this case every 500 days for 50,000 days,
and tracked backward from the well screen to the inflow
boundary. Particles are assigned such that the number of
particles in each layer is proportional to the flow into the
pumping well from that layer. An analytical solution
describing velocity distribution around the well is used to
provide divergence within the finite-difference model cell
(Starn et al. 2012). Truncated Gaussian density estimation
(Starn et al. 2012) is used to estimate complete residence
time density at each time step, and the concentration at
each time step is selected from the convolution of the
input function with the time-step density function. The
final BTC is minimally smoothed by applying a centered
moving-mean window with a width of 3 time steps. This
minor smoothing resulted in significantly less high-
frequency noise in the BTC without adding discernible
numerical dispersion.

For comparison, BTCs are produced on the same grids
using a grid-based (Eulerian) solution (MT3DMS; Zheng
and Wang 1999). The total variation diminishing (TVD)

Fig. 3 Solute input functions used to compute breakthrough
curves for parameter estimation

Fig. 4 Pumping well breakthrough curves for a homogeneous aquifer
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solver in MT3DMS is used. TVD is explicit and requires a
maximum time-step constraint, which in this case was set
to 0.5 to ensure stability. Results are comparable to the
CBPT, but execution time can be longer because concen-
tration must be calculated over the entire grid for
potentially small time steps and not just where BTCs are
desired. As the grid is refined, solutions computed using
CBPT and MT3DMS converge (Starn et al. 2012).

Three cases, corresponding to different conceptual
models of aquifer hydraulic property distribution, are used
to demonstrate the CBPT method. The first case simulates
homogeneous aquifer properties. Effective porosity is 0.30
and K is 30 m/d.

The second case simulates exponential decrease of
porosity with depth, similar to the systems described by
Sanford (2011). Two porosity parameters are needed; here,
0.30 at the surface decreasing exponentially to 0.05 at the
base of the aquifer are used. Because hydraulic conduc-
tivity (K) and effective porosity are weakly correlated; K
is simulated as 100 times porosity. K and porosity have
opposing effects on velocity, and their ratio results in a
single effective parameter that governs the velocity field;
however, in inverse modeling here, K is fixed and porosity
is varied.

The third case uses a transitional probability model
(Fogg 1996) to generate one realization of cell-by-cell
heterogeneous aquifer properties. The synthetic geology

used here was developed using well log data from the Salt
Lake Valley aquifer in Utah, USA (C.T. Green, US
Geological Survey, personal communication, 2011).
Synthetic geology of this type leads to improved simula-
tion of long, non-Gaussian BTC tails. The model used
here is typical of an alluvial fan (Weissmann et al. 2002)
and comprises four hydrofacies: clay, muddy sand, sand,
and gravel; thus, four porosity parameters are needed.
These values of K and effective porosity vary over a much
smaller range than those used by other investigators;
however, the purpose is not to simulate real deposits, but
to simulate synthetic deposits that have variability similar
to textural variation observed in well logs (Table 1). The
original hydrofacies values are on a 100 m (length and
width) by 1 m (thickness) grid. The first step to map them
onto the synthetic grids is to interpolate the values onto
the 243-grid. A median filter is applied in each vertical
stack of cells to get the median value for each layer in the
synthetic models. A median filter is then applied horizon-
tally to map hydrofacies from the finer to the coarser grids.

For each case and each method/grid combination,
inverse simulation was applied to estimate the known
distribution of porosity using a set of 40 equally spaced
simulated observations, 20 each in the pumping and
monitoring wells. In the case of real atmospheric tracer
data, only a sparse subset of these simulated observations
may be available. The sparseness of typical data sets in

Fig. 5 Monitoring well breakthrough curves for a homogeneous aquifer
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simulating atmospheric tracers, coupled with irregular
BTCs produced by time-varying pumping, make it
problematic to use the first temporal moment (arrival time
of center of solute mass) as done by Barth and Hill (2005).
The objective of the inverse simulation is to minimize the
sum of squared weighted residuals of tracer concentra-
tions. The simulated observations (hereafter termed
“observations”) were drawn from the reference simulation
(243-grid) and perturbed by adding normally distributed
noise to approximate measurement error. The variance of
the noise was assigned using a coefficient of variation of
0.1, from which the variance of the measurement was
calculated. The weight used in the inverse model is the
inverse of the variance. To prevent very small measure-
ments (which, if this were real data, might result from
values near the detection limit of the analytical method)
from dominating the regression (Hill and Tiedeman 2007),
a minimal variance of 0.0004 (standard deviation 0.02 mg/
L) was used. If the perturbed measurement was less than
zero, it was reset to zero. This weighting scheme
corresponds to the “observation-based weights” of Barth
and Hill (2005). In general, “simulation-based weights”
described in Barth and Hill (2005) are a good alternative
because they yield unbiased parameter estimates. The
computer program UCODE (Poeter et al. 2005) was used
to perform the inverse modeling. UCODE employs a

modified Gauss-Newton gradient-based nonlinear regres-
sion to estimate model parameters. A perturbation method
with a user-specified range of perturbation is used to
calculate the parameter sensitivity (Jacobian) matrix.

In order to see which measurements affect model
calibration, Cook’s D statistic (Yager 1998) is plotted on
the BTCs. Cook’s D is a measure of influence of each
measurement on the regression by calculating how much
the calibration would change if the measurement were
removed. Critical values calculated using methods de-
scribed by Hill and Tiedeman (2007) are used to show
influential measurements. Cook’s D is strictly applicable
for linear or nearly linear models and may not apply to all
the examples. It is shown to point out, through its
consistent pattern in all models, which parts of the
breakthrough curve have greater importance to model
calibration. Cook’s D does not relate to model predictions,
only to calibration. Although there is no analogous
statistic to Cook’s D for predictions, the OPR statistic is
an appropriate surrogate measure of influence (Hill and
Tiedeman 2007). OPR was not used here because, in these
simple models where porosity is the only parameter,
measurements that affect calibration are likely to affect
predictions. A measure of model linearity (Beale’s
measure; Hill and Tiedeman 2007) also is discussed with
the inverse model results.

Fig. 6 Pumping well breakthrough curves for a layered aquifer

818

Hydrogeology Journal (2013) 21: 813–827 DOI 10.1007/s10040-013-0967-2



Results of synthetic simulations

Homogeneous properties
An interesting artifact of the synthetic simulations is that
the pumping history (Fig. 2) causes a bimodal split of the
input pulse. During the first pump-off period, the solute
pulse migrates past the pumping well. When the pump is
turned back on, some of the solute reverses direction and
is pulled back into the well. The grid solution cannot
resolve the bimodal BTC and partially smoothes over the
variations (circles in Fig. 4), and in doing so under-
predicts porosity. Increasing the number of cells by a
factor of 9 (from 9-grid to 27-grid) increases the accuracy
of the grid method, but also increases the simulation time
by a factor of 4. CBPT (Fig. 4) had no difficulty resolving
the peaks, and grid refinement had little effect on the
match. The correct porosity was estimated by the inverse
model for the particle method for both grids. Critical
measurements (as defined in Hill and Tiedeman 2007) are
likely to occur just before and at the early part of solute
breakthrough, and at the low point in between the two
peaks. The monitoring well (Fig. 5), which is much less
affected by a mixture of groundwater residence times than
the pumping well, has the characteristic BTC of a pulse
input. The grid method cannot resolve this pulse due to
numerical dispersion, but the particle methods are able to
do so. Beale’s measure indicates that the two grid methods

are effectively linear, but the two particle models were
highly nonlinear.

Layered properties
The particle method tended to produce better matches than
the grid method, although improved grid resolution
improved the match for both methods (Fig. 6). The same
pattern of influential measurements is evident as for the
homogeneous case. Compared to the homogeneous
aquifer simulation, the BTC at the pumping well had a
lower, wider peak. The monitoring well again had a BTC
characteristic of a pulse source (Fig. 7). The grid method
matched the center of the peak accurately, but
overestimated the width and yielded biased estimates of
porosity (Fig. 8). The particle method was able to resolve
the center and width of the peak and yielded unbiased
estimates of porosity. The correlation matrix generated by
UCODE shows that the two porosity parameters are
weakly correlated (r∼0.5–0.7) for all synthetic models.
Beale’s measure indicated, as in the homogeneous case,
the grid method produced linear models and the particle
method produced nonlinear models. The sum-of-squared
weighted residuals objective function for both porosity
parameters (Fig. 9) shows some of the reason for difficulty
estimating the correct parameters: low sensitivity to
surface porosity and local minima.

Fig. 7 Monitoring well breakthrough curves for a layered aquifer
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Heterogeneous properties
As the aquifer properties are upscaled toward coarser grid
resolutions, the estimated properties tend toward homogene-
ity with median property values (Fig. 10). However, coarse
features in the synthetic geology remain. For example, in the
9-grid, the pattern is much simpler than the 243-grid, but the

preferential path ways remain. Upscaling produces a more
uniform (but not completely so) solute inflow distribution.
Only the particle method was tried in this case, but an extra
level of grid refinement (the 81-grid) was added. The purpose
is to focus on the effects of upscaling and to assess how well
the particle solution performs in this more realistic case. The
particle method matches the pulse relatively accurately, and
there is a slight improvement with increased grid refinement
(Fig. 11). Similar influential observations are evident and
their distribution follows the pattern as in previous cases. In
the monitoring well, and to a lesser extent the pumping well,
the peak arrival is estimated accurately in the 9-grid and 81-
grid, but not in the 27-grid (Fig. 12). The pulse retains its
shape as in previous cases, but it is apparent that some solute
bypasses the well due to preferential pathways in the aquifer
properties. All 3 grids can resolve the correct porosity
parameters (Fig. 13), with increasing reliability with increas-
ing grid refinement, except that the 9-grid overestimates
porosity in clay. Estimated parameters show weak correla-
tion, as in the layered case, except for the 27-grid, in which
the muddy sand and sand hydrofacies were highly correlated
(r∼0.96). The dilution rate (the pumping rate divided by the
volume of water in the grid cell) is an indication of grid
accuracy for particle methods (Starn et al. 2012). For a
pumping well with time-varying pumping, the dilution factor

Fig. 8 Optimal estimated porosity distribution for a layered aquifer

Fig. 9 Sum-of-squares objective function surface for a CBPT
layered aquifer on 27-grid
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changes with time also, and if the well is represented in more
than one model layer, the dilution factor can change

differently for each layer (Fig. 14), depending on grid
resolution. Likewise, the sink strength factor (the pumping
rate divided by the total rate of water flow into the cell)
changes with time in a transient flow system (Fig. 15).

Simulation of predictive uncertainty

In order to see the effects of parameter uncertainty on
predicted trends, a new solute (Fig. 3) was introduced into
the synthetic models. This new solute can be thought of as a
slowly increasing atmospheric tracer such as chlorofluoro-
carbons or sulfur hexafluoride, but it is not meant to
represent a specific input. These simulations were done
using 9-grid and 27-grid CBPT for the layered and
heterogeneous cases. These were chosen because they
illustrate several key points. Variance-covariance matrices

Hydrofacies

Clay Muddy sand Sand Gravel
Fig. 10 Map view showing hydrofacies (defined in Table 1) in
layer 4

Fig. 11 Pumping well breakthrough curves using the CBPT
solution for a heterogeneous aquifer
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from the inverse model were used to generate Latin
hypercube samples (LHS) of porosity (Starn et al. 2010;
Starn and Bagtzoglou 2011). Sampling in this way preserves
correlations among parameters. LHS guarantees that the
parameter density functions (Figs. 8 and 13) are sampled
evenly. In this case, 20 equally probable regions of the
density functions were sampled, and the sampling was
repeated 50 times for a total of 1,000 parameter sets. Monte
Carlo simulations were run using each of the 1,000
parameters sets, and the standard error in relation to the
calibration data was recorded for each simulation. For the
final analysis, parameter sets were eliminated in which the
standard error exceeded plus or minus one standard
deviation of the standard error. The number of valid runs
(out of the original 1,000) is presented in Figs. 16 and 17. To
judge whether the simulations were converging, mean
concentrations were calculated for each time step, and the

maximum difference between simulations was plotted
against simulation number. In each case, the maximum
change in mean concentration after all simulations was less
than 0.001 mg/L. This test confirms the stability of the mean
concentration, but does not address the extremes. To
produce specific confidence intervals would require
much more testing than was done here. Instead, the
envelope of minimum and maximum around the mean
predicted curve (Figs. 16 and 17) are plotted using
only valid runs.

Discussion

Similar to the results described by Barth and Hill
(2005), discrepancies are noted among methods and

Fig. 12 Monitoring well breakthrough curves using the CBPT
solution for a heterogeneous aquifer Fig. 13 Optimal estimated porosity distribution for heterogeneous

aquifer
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grid resolutions in their abilities to correctly estimate
the true porosity distribution. The homogeneous case
illustrates the strengths of the particle method in
resolving sharp concentration fronts. This is beneficial
in the inverse model for estimating parameter mean
and variance; however, the nonlinearity of these
models may make their use in prediction uncertainty
problematic in that most widely used techniques rely
on linear theory. It is possible that their nonlinearity is
“apparent,” not real, caused by a locally rough
objective-function surface. Although larger sets of
particles were tried without improving the situation,
it is possible that by judicious manipulation of the
number of particles and their release times that a
smoother objective-function surface could result. As
noted by Barth and Hill (2005), the time-step size can
influence parameter sensitivity and estimates. In
general, it seems the more heterogeneous the flow

system, the more particles are required. The effective
linearity of the grid method for the same models could
be because the grid method promotes smoothness in
the BTC, which in turn helps smooth the objective
function surface. Yager (2004) points out that the
amount by which sensitivities are perturbed in
UCODE can affect parameter estimation convergence,
and this could be manipulated to achieve a well-posed
linear problem with particles. Point estimates of
objective function gradient such as by exact sensitivity
equations or adjoint methods, might be more suscep-
tible to the ill effects of non-smooth objective function
surfaces (Yager 2004).

Estimating porosity from BTC data can be a
challenge because there are multiple points that can
be matched by the simulation. For example, the
inverse model could adjust porosity to match a

Fig. 14 Pumping well dilution factor for a heterogeneous aquifer Fig. 15 Pumping well weak sink factor for a heterogeneous
aquifer
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measured value as if it were on either the rising limb
or falling limb of the BTC. This effect was seen in the
objective function surface (Fig. 9). Because of its
irregular shape, judicious choice of parameter starting
values is necessary. Having observations at multiple
locations within single porosity zones can help achieve
the correct minima. Highly parameterized models, in
which more parameters can be adjusted, may have
more difficulty in this regard.

Although a rigorous analysis of data worth was
not undertaken, the simulations suggest data that
describe the first arrival of solute are influential, as
well as data that document any large changes in
direction of slope of the BTC. The first arrival of
solute fixes the BTC in its place in time and space,
and the physics of the model determine the rest of
its shape. Yager (1998) points out, however, that
even the least influential measurements have worth
in increasing confidence in predictions. Also, Barth
and Hill (2005) found that weights based on
simulated values rather than observed values pro-
duced more accurate sensitivities. In this study, the
observed and simulated BTCs overlie each other, so
the final weights are the same whether using
observed or simulated values as the basis for
calculating weights.

The degree of upscaling of aquifer properties
affects parameter correlation and accuracy of esti-
mates. As preferential pathways change with grid
refinement, the residence time distribution changes
in relation to the truth, and depending on local
juxtaposition of hydrofacies, can lead to inaccurate
results. In the heterogeneous case, refining the grid
from the 9-grid to the 27-grid actually resulted in a
less accurate simulation for the monitoring well
(Fig. 12). This refinement caused a dramatic in-
crease in parameter correlation between two of the
hydrofacies.

One characteristic of groundwater tracer data is that
there often are multiple low-level detections. Data
precision can mask real-but-low parts of BTCs and
make the inverse model insensitive to them. Non-
normality of residuals caused by clustering of concen-
trations near zero can lead to incorrect conclusions
about the applicability on confidence intervals that are
based on linear theory and normality of residuals.

Conclusions

Estimating complete BTCs, rather than point data, as is
typically done in inverse modeling, is helpful in

Fig. 16 Monte Carlo predictions for a pumping well
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diagnosing non-uniqueness, incorrect parameter values,
and lack of fit. Transient particle methods (CBPT here)
and grid-based methods produce BTCs differently
depending on grid resolution. Unique solutions to
models based on solute BTCs may be difficult to
obtain, even with rich data sets. This study shows that
simple transient pumping history and simple solute
input functions can produce complex multi-modal
BTCs. Real pumping histories, even in the absence
of complicated geology, can be expected to produce
complicated BTCs.

Both particle and grid methods were able to resolve
porosity parameters for increasingly complex aquifer
property conditions on relatively coarse model grids. In
these simple synthetic models, a model calibrated on
one set of solute data was used to successfully predict
a second set of data. For the pumping well, the range
of Monte Carlo outcomes contained the “true” predic-
tion (from the high resolution 243-grid). By contrast,
the range of Monte Carlo outcomes at the monitoring
well for the heterogeneous aquifer did not contain the
true prediction. This demonstrates how incorrect model
structure caused by upscaling can lead to incorrect
predictions, even though the correct parameters are
obtained from inverse modeling. Ranges of plausible
outcomes are greater for the heterogeneous case than
for the layered case. This is expected because of the

existence of preferential pathways in the heterogeneous
case. Pumping history strongly affects the BTC, and
numerical error from discretization can cause reversals
in trend direction even though the input function is
monotonically increasing. Effects of pumping on the
BTC are still evident in a monitoring well far from the
pumping well, but the variability of outcomes is less
than those at the pumping well.

Multiple local minima and local roughness on the
objective-function surface can lead to non-uniqueness
and convergence problems. The first issue can be
addressed by starting inverse modeling at different
starting values, but even several starting points at
what might be reasonable values can lead to incorrect
solutions. Additionally, if starting values of porosity
place the simulated BTC at a time when most data
are non-detects, there will be little movement of the
simulated BTC for small perturbations of porosity.
Conversely, large perturbation may help hide some of
the noise on the objective function surface, but also
lead to inaccurate gradients that could lead to a
correct minima being missed (overshoot). A careful
analysis based on prior knowledge of likely param-
eter values and the ability to simulate multiple BTCs
can give confidence in modeling results. The second
issue is related, in part, to solution method. Methods
that generate smooth solutions such as grid methods

Fig. 17 Monte Carlo predictions for a monitoring well
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reduce roughness of the objective function but cause
numerical dispersion that can lead to inaccurate
parameter values, especially if the BTC is multi-
modal. Accuracy for grid methods is improved
through grid refinement, but the execution time
increases greatly because more calculations are
required and because high gradients near pumping
wells require small time steps. Also, using a coarse
grid causes more uncertainty in parameter estimates,
which in turn can increase variance on predictions that
depend on those parameters. Truncated Gaussian-kernel
density estimation regularizes the particle method by
estimating the complete residence-time density function
with relatively few particles, thus reducing noise in the
computed BTC. Although fewer particles are required, the
number of particles and release times can be problem-
dependent and to offer general guidelines is beyond the
scope of this work.

As Elfeki et al. (2012) pointed out, there is a
complex interaction between transient flow and hetero-
geneity. This is especially true when using concentra-
tion data. For example, the vertical gradient imposed
by the parameter values in the “layered aquifer” case
caused a tension in the inverse model between
matching concentrations in the monitoring well and
the pumping well. Transient velocity fields at these
wells affect parameter estimates in opposing ways. In
the heterogeneous case, the upscaling that happens as a
necessary consequence of model construction obscures
preferential pathways, which, because of the transient
flow, play greater or lesser roles depending on the
location of the solute mass in relation to the sampling
point at the time of sampling.

The effects of solution method, flow transients, data
uncertainty, and geologic heterogeneity are all con-
volved together to produce BTCs, and separating them
in a model is not generally possible. Concentrations
measured at pumping wells tend to integrate the effects
of upgradient factors. In the end, all these factors tend
to act together to produce smooth BTCs, at least at the
scale where the effects of multiple confounding factors
are integrated, such as in a pumping well. There can
be enough information content in samples from such
wells to estimate parameters, but the results should be
interpreted with caution. When faced with the problem
of using the information in an existing groundwater
flow model to help explain groundwater trends, the
choices might be to use a grid method, if the
execution time is not prohibitive, for inverse modeling.
The results obtained using a particle method, which
has minimal numerical dispersion, can be compared to
results obtained using a grid-based to highlight where
numerical dispersion might be a problem. Once model
parameters are estimated, more accurate solutions with
less computation time can be obtained using reverse
particle tracking. In the future, efforts should be made
to fully understand the interactions among solution
method, heterogeneity, and predictive accuracy. In
particular, it would be helpful to have more concrete

guidelines for choices in that regard. The methods
presented in this work can be used to help pursue
those guidelines.
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