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Abstract A new multi-objective optimization method-
ology is developed, whereby a multi-objective fast
harmony search (MOFHS) is coupled with a ground-
water flow and transport model to search for optimal
design of groundwater remediation systems under
general hydrogeological conditions. The MOFHS
incorporates the niche technique into the previously
improved fast harmony search and is enhanced by
adding the Pareto solution set filter and an elite
individual preservation strategy to guarantee uniformity
and integrity of the Pareto front of multi-objective
optimization problems. Also, the operation library of
individual fitness is introduced to improve calculation
speed. Moreover, the MOFHS is coupled with the
commonly used flow and transport codes MODFLOW
and MT3DMS, to search for optimal design of pump-
and-treat systems, aiming at minimization of the
remediation cost and minimization of the mass remain-
ing in aquifers. Compared with three existing multi-
objective optimization methods, including the improved
niched Pareto genetic algorithm (INPGA), the non-
dominated sorting genetic algorithm II (NSGAII), and
the multi-objective harmony search (MOHS), the
proposed methodology then demonstrated its applica-
bility and efficiency through a two-dimensional hypo-
thetical test problem and a three-dimensional field
problem in Indiana (USA).
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Introduction

Groundwater contamination, as one of the most
important health-related environmental problems, has
brought serious adverse effects on the environment and
human health and attracted more and more attention
around the world. Groundwater remediation is one of
the major technical and environmental challenges in
the field of water resources because completion of
groundwater remediation often needs to undergo a
relatively long time horizon of up to several decades
or more. Over the past three decades, the coupled
simulation-optimization (S/O) models were often used
for optimal design of groundwater remediation systems
and have been successfully applied to a variety of
groundwater management problems (Gorelick 1983;
Wagner and Gorelick 1989; Culver and Shoemaker
1992; Tiedeman and Gorelick 1993; Wagner 1995;
Rizzo and Dougherty 1996; Minsker and Shoemaker
1998; Zheng and Wang 1999a; Mayer et al. 2002; Cai
et al. 2003; Wu et al. 2005). Until now, most studies
have dealt with the groundwater remediation design as
a single objective optimization problem involving
minimizing cleanup time, minimizing health risks,
minimizing remediation cost, and minimizing contam-
inant mass remaining in the aquifer. The methods used
for solving these single-objective optimization prob-
lems include linear programming (Ahlfeld et al. 1988;
Ahlfeld and Mulligan 2000), nonlinear programming
(Haggerty and Gorelick 1994; Karatzas and Pinder
1996), dynamic programming (Culver and Shoemaker
1992; Hsiao and Chang 2002), simulated annealing
(Dougherty and Marryott 1991), genetic algorithm
(McKinney and Lin 1994, 1996; Ritzel et al. 1994;
Huang and Mayer 1997; Wang and Zheng 1997;
Zheng and Wang 2002; Guan and Aral 2004; Ko et
al. 2005), and some other evolutionary strategies
(Bayer and Finkel 2004, 2007). For real-world ground-
water remediation problems, decision makers often
need to consider these competing objectives simulta-
neously. These multiple competing objectives will lead
to a series of compromised solutions, known as non-
dominated solutions or Pareto-optimal solutions (Deb
2001; Deb et al. 2002), instead of the single optimal
solution to groundwater remediation problems.
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Recently, multi-objective evolutionary algorithms
(MOEAs) have been reported to solve groundwater
remediation problems. Many evolutionary algorithms
have proven to outperform traditional methods because
of their ability to obtain a set of Pareto optimal solutions
with different target units of measurement in a single
optimization run. Evolutionary algorithms use a popula-
tion of solutions and can be easily extended to maintain a
diverse set of solutions in a single run. For instance, Ritzel
et al. (1994) compared a Pareto genetic algorithm (Pareto
GA) with a vector evaluated genetic algorithm (VEGA) in
a multi-objective groundwater pollution containment
application by the pump-and-treat (PAT) method, and the
Pareto GA was shown to be superior to the VEGA.
Cieniawski et al. (1995) applied four different GA-based
codes to a multi-objective groundwater-monitoring prob-
lem, and compared their results with those based on
simulated annealing in terms of both performance and
computational burden. The multi-objective GA-based
formulations were able to find a large number of convex
and nonconvex points of trade off curve in a single
iteration. More recently, Erickson et al. (2002) used a
niched Pareto genetic algorithm (NPGA) to solve the PAT
groundwater remediation problem, where two objectives
were used: minimization of the remediation cost and
minimization of contaminant mass remaining at the end of
the remediation horizon. The NPGA was demonstrated to
outperform both the single genetic algorithm (SGA) and
the random search (RS) by generating a better tradeoff
curve. Singh and Minsker (2008) developed a probabilis-
tic multi-objective genetic algorithm (PMOGA) and
applied it to a field-scale PAT design problem at the
Umatilla Chemical Depot site at Hermiston (Oregon,
USA). The results showed that the uncertainty-based
PMOGA can give valuable information about remediation
options, resulting in both cost-effectiveness and lower
uncertainty. Singh and Chakrabarty (2010) coupled the
non-dominated sorting genetic algorithm II (NSGAII)
coded in C with FORTRAN programs (MODFLOW and
MT3DMS) and used this methodology to obtain a tradeoff
between remediation cost and clean water extraction rate.
The results indicated that the proposed method is
promising for wide applicability in the field of
groundwater remediation. Wu et al. (2011a, b) devel-
oped an improved niched Pareto genetic algorithm
(INPGA) to solve the multi-objective PAT groundwater
remediation problem in the Massachusetts Military
Reservation (MMR, USA) site, and added the message
passing interface (MPI) for parallel computing and the
operation library of individual fitness to improve
calculation speed. The comparative results proved that
the INPGA was superior to the NPGA in finding the
tradeoff curve with a range of applicable Pareto
optimal solutions.

The aim of this study is to present a new multi-
objective programming algorithm, named multi-objective
fast harmony search (MOFHS) algorithm, and then the
proposed algorithm is coupled with the flow and transport
simulators to search for Pareto-optimal solutions of the

multi-objective optimization problem associated with
groundwater-remediation problems.

Simulation and optimization model

Flow and transport simulation model
In this study, the flow and transport simulation model is
based on the three-dimensional (3D) finite-difference
groundwater flow simulator MODFLOW (McDonald and
Harbaugh 1988; Harbaugh and McDonald 1996) and the
3D contaminant fate and transport simulator MT3DMS
(Zheng and Wang 1999b). Under the S/O framework used
in this study, the flow and transport equations have to be
solved repeatedly, that is to say, the MODFLOW and
MT3DMS simulators have to be called by the main
optimization program repeatedly.

Multi-objective optimization model
A general multi-objective optimization problem can be
stated as (Rao 1991):

Minimize y ¼ FðxÞ ¼ ðf1ðxÞ; f2ðxÞ; � � � ; fkðxÞÞ ð1Þ
subject to

giðxÞ � 0; i ¼ 1; 2; � � � ;M ð2Þ

hjðxÞ ¼ 0; j ¼ 1; 2; � � � ;P ð3Þ

li � xi � ui; i ¼ 1; 2; :::;N ð4Þ
where y ¼ ðy1; y2; � � � ; ykÞ 2 Y, yi= fi(x) is the i-th objec-
tive function among k objectives, Y is the objective
function space; x ¼ ðx1; x2; � � � ; xnÞ 2 X, x is a n-dimen-
sional decision variable vector that represents a solution, X
is the set of feasible solutions, restricted by M inequality
(Eq. 2) and P equality (Eq. 3) constraints; li and ui are the
lower and upper bounds of the i-th decision variable (xi),
respectively.

Usually, the term “Pareto-optimal solutions” or “non-
dominated solutions” is used to characterize the optimal
solutions to the multi-objective optimization model as
given by Eqs. 1–4 in that the multiple objectives are
usually conflicting with each other. Mathematically, a
Pareto-optimal solution or non-dominated solution can be
defined as follows: if x� 2 X, and if-and-only-if there is
no existence of x 2 X such that FðxÞ < Fðx�Þ, then x* is
one of the Pareto-optimal solutions to a multiple objective
optimization model in the decision variable space, X.

In this study, the generic groundwater remediation system
aims to minimize the remediation cost and the contaminant
mass remaining in the aquifer at the end of the remediation
horizon, while satisfying some specific constraints. The first
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objective function is defined as the total remediation cost
through the engineering planning horizon, including the
fixed cost associated with well drilling, capital cost
associated with well installation, and operation cost associ-
ated with pumping and/or treatment over the full duration of
the project. The second objective function is measured by the
percentage of mass remaining in the aquifer at the end of the
operational period of the PAT system.

This problem can be mathematically expressed as
follows (Zheng and Wang 2003):

Minimize J1 ¼ RC ¼ a1

XNw

i¼1
wi þ a2

XNw

i¼1
widi

þ a3

XNw

i¼1

XNt

t¼1
wi Q

t
i

�� ��Δtt

þ a4

XNw

i¼1

XNt

t¼1
wiM

t
i ð5Þ

Minimize J2 ¼ MR ¼ massend
mass0

� �
� 100% ð6Þ

where J1 is the total remediation cost (RC) in terms of a
currency unit, Nw is the number of potential pumping wells
to be optimized, wi is a binary variable indicating whether
well i is drilled (yes if wi=1; no if wi=0), di is the depth of
well bore associated with well i,Qt

i is the extraction/injection
rate associated with well i during the ‘t’th management
period, Nt is the total number of management periods, and
Δtt is the duration of the ‘t’th management period,Mt

i is the
amount of solute mass removed by well i during the ‘t’th
management period, and αi (i=1, 2, 3, 4) is the cost
coefficient associated with well drilling, well installation,
water extraction/injection, or water treatment. J2 is the
percentage of mass remaining (MR) in the aquifer at the
end of the remediation horizon, mass0 and massend are the
total solute mass in the aquifer at the beginning and end of
the remediation horizon, respectively. The number of
potential pumping wells (Nw) and the extraction/injection
rate associated with well i (Qt

i) are the decision variables.
The constraints for the remediation design problems

can be expressed as (Zheng and Wang 2003):

XNw

i¼1
wi � NW ; ð7Þ

hmin
j � hj � hmax

j ; j ¼ 1; 2; � � � ;Nh ð8Þ

houtk � hink � Δhmin
k ; k ¼ 1; 2; � � � ;Ng ð9Þ

Cmin
l � Cl � Cmax

l ; l ¼ 1; 2; � � � ;NC ð10Þ

Qmin
i � Qi � Qmax

i ; i ¼ 1; 2; � � � ;Nw ð11Þ
Equation 7 is a constraint indicating that the total number

of actual wells must not exceed a prescribed number, NW.
Equation 8 gives a set of constraints indicating that the
hydraulic head at location j, hj, must be within the specified
lower and upper bounds (hmin

j and hmax
j ) during any specific

management period, Nh is the total number of head
constraints. Equation 9 gives a set of constraints indicating
that the head difference between a pair of nodes at up-
gradient and down-gradient locations (houtk and hink ) must be
greater than a minimum value (Δhmin

k ) during any specific
management period to ensure the efficiency of the PAT
system; Ng is the total number of head pairs. Equation 10
gives a set of constraints indicating that the solute
concentration at location l, Cl, must be within the specified
lower and upper limits (Cmin

l and Cmax
l ) during any specific

management period; Nc is the total number of concentration
constraints. Equation 11 gives a set of constraints indicating
that the pumping capacity of well i at any specific
management period must be within the specified minimum
and maximum values (Qmin

i and Qmax
i ). In most cases, only

one is compulsory among these two constraints given by
Eqs. 9 and 10, respectively.

Solution by optimization algorithms
To find the optimal solutions to the two-objective
optimization problem by different evolutionary algo-
rithms, the constrained model must be modified to an
unconstrained fitness measure by adding the constraint
violations to the objective function as penalties. The
constrained optimization model is then transformed to an
unconstrained one given by

Minimize F1 ¼ J1 þ V1 þ V2 þ V3 þ V4 ð12Þ

Minimize F2 ¼ J2 ð13Þ
and

V1 ¼ b1 �max 0;
XNw

i¼1
wi � NW

 !
ð14Þ

V2 ¼ b2 �
XNh

j¼1
max 0;

hmin
j � hj

hmax
j � hmin

j

;
hj � hmax

j

hmax
j � hmin

j

 !
ð15Þ

V3 ¼ b3 �
XNg

k¼1
max 0;

Δhmin
k � ðhoutk � hink Þ

Δhmin
k

� �
ð16Þ
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V4 ¼ b4 �
XNc

l¼1
max 0;

Cmin
l � Cl

Cmax
l � Cmin

l

;
Cl � Cmax

l

Cmax
l � Cmin

l

� �
ð17Þ

where Fi (i=1, 2) are the fitness values; Vi (i=1, 2, 3,
4) are the penalty amount of constraint violations with
respect to the constraints on the total number of wells
(Eq. 7), hydraulic head (Eq. 8), hydraulic gradient
direction (Eq. 9), and water quality (Eq. 10); and βi (i=
1, 2, 3, 4) are penalty coefficients. The constraint on the
pumping capacity of wells (Eq. 11) is implicitly
represented by the search coding.

Multi-objective fast harmony search algorithm

Improved fast harmony search (IFHS) algorithm
The harmony search (HS) proposed by Geem et al.
(2001) is a nature-inspired algorithm that mimics the
improvisation of music players. The HS algorithm
uses the concept that musical performances seek a
perfect state of harmony determined by aesthetic
estimation, to optimize the objective function. The
harmony in music is analogous to the optimization
solution vector, and the musician’s improvisations are
analogous to the local and global search schemes in
optimization techniques (Geem et al. 2001). The HS
algorithm generates a new solution vector by consid-
ering all of the existing solution vectors and uses
harmony memory considering rate (HMCR) and pitch
adjustment rate (PAR) for finding the solution vector
in the search space, unlike the GA (only considering
two parent vectors; Geem et al. 2001; Geem 2010).
These features increase the flexibility of the HS
algorithm and then produce better solutions. Thus,
the HS algorithm is of good ergodicity and has been
successfully applied in many areas such as ecological
optimization (Geem and Williams 2007), water distri-
bution network design (Geem 2006), structural design
(Degertekin 2008), groundwater management (Ayvaz
2009), and inverse pollution source identification
(Ayvaz 2010).

The iteration process of the HS algorithm is based
on the parameters HMCR, PAR and bandwidth (BW).
The parameter HMCR, which varies between 0 and 1,
controls the balance between exploration and exploita-
tion. For example, HMCR=0 behaves like a purely
random search. While the entire solution space is
explored by HMCR, PAR aims to satisfy the diversity
of the harmony memory. The parameter PAR combined
with BW potentially controls the convergence rate of
the algorithm and fine-tunes the optimized solution
vectors. When PAR is small, and BW is large, it will
increase the iterations needed to find the optimal
solution, showing the poor performance of the algo-
rithm. A small BW increases the fine-tuning of
solution vectors in final generations, however, in early
generations BW should be set a fairly big value to

increase the diversity of solution vectors. Moreover,
large PAR with small BW usually leads to the
improvement of solution quality in final generations
and make the algorithm converge to optimal solution
vectors (Mahdavi et al. 2005).

The IFHS algorithm proposed by Luo et al. (2011)
incorporates two methods to enhance the accuracy and
convergence rate of HS. The first method is based on
the improved harmony search (IHS) algorithm pro-
posed by Mahdavi et al. (2005). The IHS-based IFHS
uses the previous iterations (see Eqs. 20 and 21 in the
following) to generate the new solution vectors and no
longer needs to pre-set the value of BW. This can help
it quickly find the range where the optimal solution is
located. The second method relies on the basic idea of
GA that produces a new population in any iteration.
The IFHS generates a new population of solution
vectors instead of only one new single solution vector.
In this way, it would not only increase the diversity of
the solutions, but also accelerate the convergence
speed of the algorithm. Luo et al. (2011) has shown
the powerful global search ability and fast convergence
rate of IFHS for single objective optimization problems
associated with hydrogeological parameter identifica-
tion of groundwater systems. For the sake of com-
pleteness, the main elements of IFHS are briefly
recapitulated as follows:

Step I. Initialize the problem and algorithm parameters
Initialize the optimization problem and algorithm

parameters: the harmony memory size (HMS), HMCR,
PAR and the number of improvisations (NI).
Step II. Initialize the harmony memory

The harmony memory (HM or the HM matrix) is a
memory location where all the solution vectors are stored.
The HM matrix is filled with as many randomly generated
solution vectors as the HMS:

x11 x12 � � � x1N�1 x1N
x21 x22 � � � x2N�1 x2N
..
. ..

. ..
. ..

. ..
.

xHMS�1
1 xHMS�1

2 � � � xHMS�1
N�1 xHMS�1

N
xHMS
1 xHMS

2 � � � xHMS
N�1 xHMS

N

�����������

fiðx1Þ
fiðx2Þ
..
.

fiðxHMS�1Þ
fiðxHMSÞ

2
666664

3
777775

ð18Þ

where x ¼ ðx1; x2; � � � ; xnÞ represents a set of decision
variables, N is the number of the decision variables, and
fiðxÞ (in this study, i=1, 2) are the objective function
values corresponding to the decision variable set x. HMS
is the harmony memory scale that shows the number of
the solution vectors.
Step III. Improvise a new harmony memory

A new harmony vector x
0 ¼ ðx01; x02; x03; :::; x0NÞ is gen-

erated based on three rules: (1) memory consideration, (2)
pitch adjustment, and (3) random selection.

1500

Hydrogeology Journal (2012) 20: 1497–1510 DOI 10.1007/s10040-012-0900-0



The memory consideration procedure is intuitively
given as follows:

If randð0; 1Þ < HMCR
x0i  x0i 2 x1i ; x

2
i ; x

3
i ; :::; x

HMS
i

� �
Else

x0i  x0i 2 randðli; uiÞ
End If

ð19Þ

where rand(0, 1) is the random number generator for
generating a uniformly distributed random number be-
tween 0 and 1, and rand(li, ui) is a uniformly distributed
random number between the minimum and maximum
values of the decision variable xi.

Then the pitch adjustment procedure evolves according
to the parameter PAR:

If randð0; 1Þ < PARðgnÞ
x0i  xbesti þ r1 � ðxbesti � xiÞ

Else
x0i  x0i

End If

ð20Þ

and

PARðgnÞ ¼ PARmin þ ðPARmax � PARminÞ
NI

� gn ð21Þ

where gn is the current iteration step number, xi
best

representatives the current best solution, xi is a random
solution vector, r1 is a random number between 0 and 1,
PARmax and PARmin are the maximum and minimum
value of the PAR (Mahdavi et al. 2005).
Step IV. Update the harmony memory

To update the harmony memory, the solution vectors in
the old and new harmony memory matrices are ranked by
their objective function values. Then the top 50 % of
solution vectors are added to the new harmony memory
matrix for the next iteration.
Step V. Check the stopping criterion

If the maximum number of generations is achieved,
computing is terminated. Otherwise, go to step III and
continue running the program.

MOFHS algorithm
Horn et al. (1994) developed an evolutionary multi-
objective optimization algorithm, known as the niched
Pareto genetic algorithm (NPGA), based on a suggestion
by Goldberg (1989) that introduced speciation along with
the theory of a spatially ordered search space. Erickson et
al. (2002) used the NPGA to solve a multi-objective
groundwater quality management problem involving
remediation by the PAT system. Wu et al. (2011a)
proposed the INPGA to promote the solving ability of

the NPGA algorithm. The improvement of the INPGA
algorithm lies in the use of the Pareto solution set filter,
the elite individual preservation strategy and the neigh-
borhood space Mühlenbein mutation (Deb et al. 2002).
The INPGA is comparable to the NSGA-II in finding the
Pareto-optimal or near Pareto-optimal solutions to the
multi-objective optimization problems (Wu et al. 2011a).
Moreover, the message passing interface (MPI) for
parallel computing and the operation library of individual
fitness are introduced in the INPGA to improve calcula-
tion speed. Sivasubramani and Swarup (2011) proposed a
multi-objective harmony search (MOHS) algorithm for an
optimal power flow problem and compared its perfor-
mance with that of the NSGAII method. The comparison
showed that the MOHS was able to generate true and well
distributed Pareto optimal solutions for multi-objective
optimization problems (Sivasubramani and Swarup 2011).

In this study, the MOFHS algorithm inherits the
structural framework of NPGA and improvements are
made by adding the Pareto solution set filter and the elite
individual preservation strategy to guarantee the diversity
and accelerate the convergence of the Pareto solutions to
the true Pareto fronts of multi-objective optimization
problems (Wu et al. 2011a). The Pareto solution set filter
is introduced to avoid the situation whereby some
individuals appearing in the Pareto optimal solution may
disappear because the population size of the evolution is
limited. The Pareto solution set filter is able to accommo-
date a certain number of Pareto solutions. In each
generation, the optimal individuals are stored in the Pareto
solution set filter, and when a new individual is added, the
filter operation is performed to ensure the solutions in the
Pareto solution set filter are the “true” Pareto optimal.
When the filter capacity is saturated, the individuals with
the greatest population density will be removed to ensure
the uniformity of the Pareto optimal solutions. The
capacity of the Pareto solution set filter can be set equal
to the size of population or any other reasonable value
(100 is given in this study). Simultaneously, the elite
individual preservation strategy is applied to preserve the
best individual that has appeared during the evolution.
The parent population is mixed with the offspring
population into a new population, and each of them is
assigned a rank according to the degree of Pareto
domination ranking and crowding. The smaller the rank
value is, the better the individual stands for the solution
quality. The first half of the mixed population with smaller
rank value will be considered as the new parent population
to the next round of evolution. With this strategy, it can
accelerate the convergence speed to the Pareto front, and
ensure that the Pareto optimal solutions are distributed
more uniformly (Deb et al. 2002).

In order to further improve the calculation speed, the
operation library of individual fitness is also introduced.
The operation library of individual fitness is a library that
can accommodate all individuals and their fitness values.
In the simulation and optimization process, the individuals
and their fitness values of the initial measurement are
stored in the operation library of individual fitness. In the
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following iterations, each individual must be first com-
pared with the individual library to check if the fitness
value evaluation is needed. If there is a matching
individual in the individual library, the flow and solute
transport models (MODFLOW/MT3DMS) no longer need
to run and directly read the corresponding individual
fitness value. Otherwise, if the individual is not consistent
with an existing library, the flow and transport simulators
need to run to calculate the individual’s fitness value and
save the individual as well as its fitness value into the
individual library. This step can improve the computa-
tional efficiency and reduce the running time of the
program (Wu et al. 2011a). Figure 1 shows the flowchart
of MOFHS linked with MODFLOW and MT3DMS.

Performance measures
There are two goals in a multi-objective optimization: (1)
convergence to the Pareto-optimal set, and (2) mainte-
nance of diversity in solutions of the Pareto-optimal set.
Thus efforts should be made in devising two metrics to
evaluate the performance of a multi-objective optimization
algorithm: one for measuring the convergence of solutions
to the Pareto-optimal front and the other for measuring the
diversity of solutions. Many performance metrics such as
the convergence metrics, the diversity metrics, and so on,
have been suggested (Deb 2001; Deb et al. 2002; Zitzler

1999). In this study, two performance metrics have been
used for directly evaluating the quality of solutions
obtained by the MOFHS algorithm. The first metric γ
(the convergence metric) measures the extent of conver-
gence to a known set of the true Pareto-optimal front (Deb
et al. 2002). For each solution among the obtained Pareto-
optimal solutions, its minimum Euclidean distance apart
from those solutions on the true Pareto-optimal front can
be calculated. Then the average of these distances is
considered as the convergence metric γ which is mathe-
matically given by

di ¼ min
P�

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xk
m¼1

fmðhiÞ � fmðpjÞ
f max
m � f min

m

� �vuut ð22Þ

g ¼
PH
i¼1

di

H
ð23Þ

where the parameter di is the minimum Euclidean distance
of the i-th obtained solution apart from those solutions on
the true Pareto-optimal front, P* is the number of the true
Pareto optimal solutions, H is the number of the obtained
Pareto optimal solutions, andf max

m and f min
m are the maxi-

mum and minimum value of the m-th objective function
among the entire set of solutions per iteration. The smaller
the value of γ, the better the convergence toward the
Pareto-optimal front. When all obtained solutions lie
exactly on the true Pareto-optimal front, this metric takes
a value of zero.

Although the first metric γ can provide some informa-
tion about the spread in obtained solutions, this method
uses a different metric to measure the spread in solutions
obtained by an algorithm directly. The second metric Δ
(the diversity metric) measures the extent of spread
achieved among the obtained solutions defined as follows
(Deb et al. 2002):

Δ ¼
df þ dl þ

PN�1
i¼1

di � d
�� ��

df þ dl þ ðN � 1Þd ð24Þ

where the parameters df and dl are the Euclidean distances
between the extreme solutions and the boundary solutions
of the obtained nondominated set. The parameter d is the
average of all distancesdi, assuming that there are N
solutions on the best nondominated front. The maximum
value of the above metric can be greater than one.
However, an idealized distribution would make all
distances diequal to d anddf ¼ dl ¼ 0. Thus, for the most
widely and uniformly spread out set of nondominated
solutions, the value of Δwould be zero or extremely close
to zero. For any other distribution, the value of the metric

Fig. 1 Flowchart of the MOFHS algorithm for multi-objective
optimal design of groundwater remediation systems. HM harmony
memory
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would be greater than zero. For two distributions having
identical values of df anddl, the metric Δ takes a higher
value with worse distributions of solutions within the
extreme solutions.

Note that in this study the true Pareto-optimal front
were obtained from the mixed ranking of the optimal
results from INPGA, MOFHS, NSGAII and MOHS
algorithms. And all calculations are completed on a laptop
computer with a 1.80 GHz CPU.

Application to a two-dimensional (2D) hypothetical
problem

Description of the application
In this section, the MOFHS algorithm is applied to
optimal design of a PAT system subject to the flow and
transport constraints adopted from Zheng and Wang
(2003). The aquifer system used for this example is a
2D model that consists of 17 rows and 23 columns
(Fig. 2). The model grid spacing is uniformly 150 m
along rows and columns. It is assumed that the aquifer
has already been contaminated by an existing contam-
inant plume shown in Fig. 2. The flow domain is
bounded by the constant-head boundaries on the east
and west sides, and no-flow boundaries on the north
and south sides. The head values for the two constant-
head boundaries are set equal to 35 m on the west side
and 25 m on the east side. For the transport model,
boundary conditions are zero-mass-flux on the west,
north and south sides, and specified advective flux on
the east side. Other input parameters of the flow and
transport model are given in Table 1. Four candidate
pumping wells shown in Fig. 2 are pre-selected to
contain and cleanup the contaminated groundwater. It is
assumed that the pumping rate is within the specified
minimum and maximum values (0 and 10,000 m3/d)
and the remediation time horizon is fixed at 5 years.

Optimization model
The first objective considered for this application is to
minimize the total cost needed to install and operate the
PAT system while satisfying the constraint that the
maximum concentration level (MCL) is below 20 mg/l
within the area of compliance (see Fig. 2) at the end of the
5-year project horizon. For this simple application, it is
supposed that the first objective function only includes two
terms of the right-hand side of Eq. 5: the fixed cost associated
with well drilling, and operation cost associated with
pumping during the entire 5-year management period.
Accordingly, the first objective function can be mathemati-
cally expressed as

Minimize J1 ¼ RC ¼ a1

XNw
i¼1

wi þ a3

XNw
i¼1

wi Qij jΔt ð25Þ

where α1is set to 10,000 USD (US dollars) and α3is set to
0.4 USD/m3 in this study.

The second objective is to minimize the total mass
remaining in the aquifer at the end of the project duration,
which is still given by Eq. 6. And the MCL constraint can
be stated as

Cm � C� ð26Þ
where Cm is the calculated concentration at any monitor-
ing location, and C* is the MCL constraint within the area
of compliance (set to 20 mg/l in this study).

Optimization results
The parameters of MOFHS used for this problem are set
as follows: HMCR, 0.95; PARmin, 0.1; PARmax, 0.95 and
the parameters of INPGA, NSGAII and MOFHS are set
according to the actual situation of the applied example
and references (Deb et al. 2002, Mahdavi et al. 2005,
Sivasubramani and Swarup 2011, Wu et al. 2011a). In
order to facilitate comparison, the number of iterations and
size of population are set identically to 100 for the four
optimization algorithms.

Figure 3 shows the comparison of the Pareto solutions
obtained from the INPGA-based, MOFHS-based,
NSGAII-based and MOHS-based optimization model runs
for 100 generations. Compared with those based on
NSGAII and MOHS the Pareto solutions along the
tradeoff curve based on INPGA and MOFHS are more

Fig. 2 Diagram showing the configuration of the pump-and-treat
(PAT) system design for the hypothetical aquifer (modified from
Zheng and Wang 2003)

Table 1 Input parameters of the flow and transport models for the
hypothetical test problem (after Zheng and Wang 2003)

Parameter Value

Ambient hydraulic gradient 0.003
Porosity 0.20
Transmissivity (m2/d) 500
Saturated thickness (m) 30.0
Storage coefficient 0.0001
Longitudinal dispersivity (m) 50.0
Transverse dispersivity (m) 10.0
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uniformly distributed and more fully reflect the tradeoff
between the two conflicting objective functions. With the
decrease of the remaining pollutants in the aquifer, the
total remediation cost is clearly nonlinear growth. Further,
with careful comparison between the results of the INPGA
and MOFHS algorithm, the tradeoff curve based on
MOFHS provides a more perfect range of options for
decision making under different circumstances. Table 2
further shows that the quality of Pareto solutions based on
MOFHS is better than that based on the other three
optimization algorithms. The convergence and diversity
metrics of MOFHS, γ and Δ, are 0.009968 and 0.2945,
respectively, slightly smaller than those of INPGA,
NSGAII and MOHS since all of these are small.
Moreover, to obtain the Pareto solutions as shown in
Fig. 3, a MOFHS run needs to repetitively implement
8,662 times of the flow and transport model and the
optimization runtime is 609 s, while an INPGA run needs
to execute 9,038 times of the flow and transport model
and the runtime is about 677 s, a NSGAII run needs to
calculate 10,000 times of the flow and transport model and
the runtime is about 1055 s, and an MOHS run needs to
call 10,000 times of the flow and transport model too and
the run time is about 1,094 s (shown in Table 2).

Comparatively, the MOFHS has approximately 10.4 %
more runtime saving than INPGA and approximately 72.3
and 79.6 % saving than NSGAII and MOHS, respectively.
Therefore, it is suggested that the MOFHS be a little bit
appealing because of its higher computational efficiency
and stronger searching ability.

MOFHS parameter sensitivity
In this study, sensitivity analyses of the main MOFHS
parameters including HMCR, PARmin, PARmax and niche
radii are carried out to identify the importance of input
parameters and quantify the effects of parameter variations
on the optimization results.

Figure 4, showing the tradeoff curves of the remedia-
tion cost versus the percentage of mass remaining, is
obtained from four MOFHS runs for different HMCR
values of 0.35, 0.5, 0.75 and 0.95. Note that the values of
PARmin, PARmax and niche radii are set to 0.1, 0.95 and
0.05 respectively for this case. It is found that, for the case
of fixed PARmin, PARmax and niche radii, the greater the
value of HMCR is, the more uniformly the Pareto
solutions by MOFHS are distributed along the Pareto
front. This is consistent with those shown in Table 3
where the value of convergence metric γ decreases from
0.068011, 0.011062, 0.0108062 to 0.009968 and the value
of diversity metric Δ decreases from 0.8763, 0.6848,
0.4907 to 0.2945 as the HMCR increases from 0.35, 0.5,
0.75 to 0.95. Moreover, the comparison of computational
time required by the MOFHS for different HMCR values
is also shown in Table 3. When the HMCR is set to a
small value, the MOFHS runs are relatively computation-
ally inefficient, requiring runtime up to 876 s for HMCR=
0.35 and 864 s for HMCR=0.5. However, with the
increase of the HMCR value from 0.5, 0.75 to 0.95, the
computational time of the MOFHS run decreases from
864, 787 to 609 s, respectively. This shows that an
adequately large HMCR could help MOFHS produce
better optimization results in terms of both tradeoff curve
and computational effort.

Figure 5 shows how well the Pareto-optimal solutions
depend on different combinations of PARmin and PARmax,
supposing that HMCR and niche radii are set to 0.95 and
0.05 respectively. In the cases of the combinations of the
fixed PARmin (PARmin=0.1) and fluctuating PARmax, the
Pareto solutions along the tradeoff curve are distributed
more uniformly as the value of PARmax increases from
0.35, 0.65 to 0.95 as shown in Fig. 5a–c. Comparison of
the values of convergence metric γ and diversity metric Δ
in Table 4 shows that when the combination of (PARmin,
PARmax) is set equal to (0.1, 0.95), the algorithm produces
the best result, where the values of γ and Δ are 0.009968
and 0.2945, respectively. In the cases of the combinations
of the fixed larger PARmin (PARmin=0.35) and varying
PARmax (PARmax=0.65 and 0.95), the Pareto solutions
along the tradeoff curves shown in Fig. 5d and e are
distributed less uniformly than those shown in Fig. 5c. As
shown in Table 4, the values of convergence metric γ are
0.011381 and 0.011072 corresponding to Fig. 5d and e,

Fig. 3 Comparison of the final Pareto-optimal solutions based on
INPGA, MOFHS, NSGAII and MOHS algorithms

Table 2 Comparison of computational load of the INPGA, MOF-
HS, NSGAII and MOHS algorithms

Algorithm Computing
time (sec)

Convergence
metric (γ)

Diversity
metric (Δ)

Repetitive
runs of the
simulation
model

INPGA 677 0.010675 0.4396 9,038
MOFHS 609 0.009968 0.2945 8,662
NSGAII 1,055 0.017302 0.5798 10,000
MOHS 1,094 0.024015 0.5994 10,000
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respectively. These values are approximately 9.3 times of
that of 0.009968 corresponding to Fig. 5c. Meanwhile, the
values of diversity metric Δ are 0.4123 and 0.4987
corresponding to Fig. 5d and e, which are also much
greater than that of 0.2945 corresponding to Fig. 5c. Even
more unfortunate is that the MOFHS algorithm was
trapped into premature convergence in the case of
Fig. 5d (PARmin=0.35 and PARmax=0.65). Similarly, in
the case of PARmin=0.65 and PARmax=0.95, the algorithm
was still trapped into premature convergence even though
the Pareto solutions along the tradeoff curve shown in
Fig. 5f are distributed quite uniformly, where the diversity
metric of Δ=0.2949 is very close to that of Δ=0.2945
based on Fig. 5c. On the other hand, there is no substantial
difference in the computational efficiency between the
cases as shown in Table 4 except for the two afore-
mentioned premature cases. Thus, the combination of an

adequately small PARmin and an adequately large PARmax

could be helpful for the MOFHS to generate high-quality
Pareto solutions, which corresponds with the description
of Mahdavi et al. (2005).

To examine the effects of the niche radii on the
algorithmic performance, several MOFHS runs were
implemented with fixed HMCR, PARmin, PARmax

(HMCR=0.95, PARmin=0.1, PARmax=0.95) and differ-
ent niche radii set to 0.01, 0.05, 0.1 and 0.5,
respectively. Shown in Fig. 6 is the comparison of
the Pareto solutions obtained from the MOFHS runs
with different niche radii. At first view, it is found that
the Pareto solutions shown in Fig. 6a–d spread over
quite a wide and uniform span of the tradeoff curve. It
is very difficult to distinguish the quality of Pareto
solutions by the MOFHS with different niche radii.
However, as shown in Table 5, when the niche radii is
set to 0.05, the MOFHS generates the smallest values
of convergence metric (γ) and diversity metric (Δ).
Moreover, when the niche radius is set to 0.05, the
MOFHS is the least time-consuming. Unfortunately,
when niche radius is set to 0.5 (shown in Fig. 6d), the
algorithm was trapped into premature convergence.
Therefore, selection of a suitable niche radius can help
to improve the stability and robustness of the MOFHS
in finding the Pareto solutions to multi-objective

Fig. 4 a-d Final Pareto offline results obtained from the MOFHS for different HMCR. The plus symbol (+) denotes the Pareto-optimal
solutions

Table 3 Computational load of the MOFHS for different HMCR

HMCR Computing
time (s)

Convergence
metric (γ)

Diversity
metric (Δ)

0.35 876 0.068011 0.8763
0.50 863 0.011062 0.6848
0.75 787 0.010806 0.4907
0.95 609 0.009968 0.2945
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optimization problems. Comparison of the performance
of the MOFHS shown in Table 5 shows that 0.05 is
the best choice of the niche radius for this synthetic
application.

Application to a 3D field problem in Indiana

The field application considered in this study is the
optimization of an existing PAT system at a gasoline
terminal site at Granger, Indiana (Fig. 7a). Extensive
field investigations showed that groundwater beneath
and down-gradient of the site was contaminated by
dissolved compounds associated with petroleum hydro-
carbons (Hathaway and Andrews 1990). The study
aquifer of interest consists of an upper deposit unit of
fine and medium grain sands with occasional discontin-
uous lenses of silty sand, and a lower deposit unit of
medium to coarse sands with some gravels (Fig. 7c).
Wang and Zheng (1997) developed a GA-based single

objective optimization model for optimal design of
groundwater remediation system for this site.
Figure 7b shows the configuration of the flow and
transport models developed by Wang and Zheng (1997).
The finite-difference mesh for the 3D flow and transport
models consists of 61 rows, 40 columns and 4 layers,
covering an area of approximately 3,536 m (11,600 ft)
in the X-direction by 6,233 m (20,450 ft) in the Y-
direction. The vertical four modeled layers are uniform-
ly 7.6 m (25 ft) thick. The upper two layers represent
the fine-to-medium sand unit, and the lower two layers
represent the coarse sand unit. The horizontal mesh
spacing is uniformly 15.2 m by 15.2 m (50 ft by 50 ft)
in the detailed study area (labeled as zone ABCD in
Fig. 7b) and increases gradually toward the model
boundaries. Figure 7b shows the eight potential pump-
ing wells of the PAT system and the initial concen-
trations of 1,2-DCA (1,2-dichloroethane) in groundwater
in the detailed study area of layer 3. The boundary
conditions for the flow model are specified-head for the
four sides and no flow at the bottom. The boundary
conditions for the transport model are no mass flux on
the four sides. Primary input parameters for the flow
and transport models for this site are listed in Table 6.
Details of the flow and transport model can also be
found in previous work (Wang and Zheng 1997; Zheng
and Wang 2003).

In the S/O approach, the flow model is assumed to be
steady-state. The two conflicting objectives considered in
the current study are similar to the previous 2D hypothet-
ical example except that the fixed capital cost is negligible
compared with the pumping and treatment cost. Thus, the

Fig. 5 a-f Final Pareto offline results obtained from the MOFHS for different combinations of PARmin, PARmax. The plus symbol (+)
denotes the Pareto-optimal solutions

Table 4 Computational load of the MOFHS for different PAR
(PARmin, PARmax)

(PARmin, PARmax) Computing
time (s)

Convergence
metric (γ)

Diversity
metric (Δ)

(0.10, 0.35) 642 0.010841 0.3963
(0.10, 0.65) 614 0.011674 0.4011
(0.10, 0.95) 609 0.009968 0.2945
(0.35, 0.65) 554 0.011381 0.4123
(0.35, 0.95) 630 0.011072 0.4987
(0.65, 0.95) 566 0.011611 0.2949
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first objective function for this problem can be simplified
as the total pumping volume given in the following.

Minimize J1 ¼ Δt
X8
i¼1

Qij j ð27Þ

where Qi is the pumping rate of well i, Δti is the duration
of pumping associated with well i.

The second objective function and the MCL constraint
are also given by Eqs. 6 and 26, respectively. Note that,
for this field application, the MCL is set to 42 mg/l within
the entire model by the end of 500 days (Wang and Zheng
1997). The pumping capacity for each well is specified to
be 850 m3/d (30,000 ft3/d).

In order to further demonstrate the applicability and
efficiency of the MOFHS algorithm, comparisons are
made between INPGA, MOFHS, NSGAII and MOHS

algorithms. The parameters of algorithms are the same as
those set for the 2D hypothetical problem.

Figure 8 shows the tradeoff curve obtained from the
four optimization algorithms run for the Indiana site. It is
obvious that the tradeoff curve of the MOFHS method is
the best of all, not only for its diversity but also for its
convergence to the true Pareto front. For the computa-
tional efficiency, the MOFHS needs about 216 min to
complete the optimization run for this application, while
the INPGA needs 223 min, the NSGAII needs 364 min,
and the MOHS needs 362 min.

In Fig. 8, any point on the tradeoff curve based on
MOFHS corresponds to an optimal pumping strategy that
satisfies all the constraints and achieves the clean-up
targets by the end of 500 days. There is a nonlinear
relationship between the total pumping volume and the
mass remaining in the aquifer. With the decrease of the
total pumping volume, the contaminant mass remaining in
the aquifer will increase polynomially, approximately
given by a quadratic equation with a coefficient of
determination of 0.9987:

J2 ¼ 6:57� J 21 � 37:18� J1 þ 94:47 ð28Þ
where J1 (total pumping volume) and J2 (contaminant
mass remaining) are measured in the units of million cubic
meters and dimensionless percentages, respectively.

Fig. 6 a-d Final Pareto offline results obtained from the MOFHS for different niche radii. The plus symbol (+) denotes the Pareto-optimal
solutions

Table 5 Computational load of the MOFHS for different niche
radii

Niche radii Computing
time (sec)

Convergence
metric (γ)

Diversity
metric (Δ)

0.01 731 0.010173 0.4009
0.05 609 0.009968 0.2945
0.10 717 0.011576 0.5193
0.50 681 0.010507 0.6078
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Note that the mass remaining in the aquifer for this field
application consists of the immobile mass adsorbed by solid
matrix and the mobile mass dissolved in groundwater.
According to the transport model for this field application,
the initial contaminant mass in the aquifer is 4,722 kg, about
half of which is immobile. However, only mobile mass in an
aquifer can be removed by the PAT system so that the value
of J2 (contaminant mass remaining) as shown in Fig. 8 is
relatively high, approximately ranging from 42 to 60%. This
indicates that groundwater remediation by the PAT technique
is not very efficient for this field application even though a
little bit of immobile mass can transform intomobile with the
decrease of mobile mass in an aquifer during the remediation
period. As for the detailed cost-effectiveness analysis of
groundwater cleanup, it is beyond the scope of this work.

Fig. 7 a The field application site at Granger, Indiana (USA).
b The configuration of the entire model domain and the initial
plume in the detailed study area labeled as ABCD (concentra-
tion of 1,2-DCA, in model layer 3) and potential pumping well
locations. c The cross section map showing the alluvial deposits
of the aquifer along the section plane E–F (modified from
Wang and Zheng 1997)

Table 6 Aquifer parameters of the flow and transport models for
the 3D field problem (after Wang and Zheng 1997)

Parameter Value

Hydraulic conductivity of fine
to medium sand (m/d)

18.29 (60 ft/d)

Hydraulic conductivity of coarse sand (m/d) 158.50 (520 ft/d)
Ratio of vertical to horizontal hydraulic
conductivity

0.1

Recharge rate (cm/a) 12.7 (5 in/a)
Porosity 0.3
Retardation factor 2.0
Longitudinal dispersivity (m) 3.05 (10.0 ft)
Transverse dispersivity (m) 0.61 (2.0 ft)
Saturated thickness (m) 30.48 (100 ft)

Fig. 8 Tradeoff curve for total amount of pumping rate vs. mass
remaining (%) in model layer 3 based on different algorithms for the
gasoline terminal site at Granger, Indiana

Fig. 9 Distribution of pumping volume under three different optimal
strategies under specific mass remaining. constraints: A-MR=60 %, B-
MR=50 %, and C-MR=42 %. Well locations are shown in Fig. 7b
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Shown in Fig. 9 are the distributions of three optimal
pumping strategies based on the MOFHS corresponding
to three specific constraints on the percentages of
contaminant mass remaining: 42, 50 and 60 %. Figure 9
clearly shows how the pumping volume changes with the
contaminant mass remaining. When the percentage of
contaminant mass remaining is set to 60 %, the contam-
inants in groundwater are pumped from wells 2–5, and the
total pumping volume from these four wells is 2,407 m3/d
(85,000 ft3/d). When the percentage of mass remaining is
decreased to 50 %, the total pumping volume increases to
3,408 m3/d (120,368 ft3/d). At this time, except for wells
2–5, well 6 is also selected to be an operational well for
pumping. When the percentage of mass remaining is
42 %, the total pumping volume achieves 5,260 m3/d
(185,756 ft3/d). Similarly, except for well 7, all of the
other potential wells (wells 1–6 and well 8) are selected by
the optimization model to be operational pumping wells,
whereas the pumping rate from well 8 is rather small,
merely 163 m3/d (5,756 ft3/d). Thus, it can be concluded
that wells 2–5 make an important contribution to removal
of the contaminant mass in the aquifer. Especially, wells 3
and 4 are always at their maximum capacity while wells 2
and 5 are not. As shown in Fig. 7c (cross section along the
line EF), the direction of groundwater flow is from
northeast to southwest, so the upstream pollutant in the
aquifer near well 2 will move downstream and could be
captured by wells 3 and 4 even though well 2 is close to
the centroid of the plume. Application of the MOFHS to
the Indiana site demonstrates that the newly developed
model can be used to solve large-scale field problems
involving multiple objective groundwater contaminant
optimizations under complex hydrogeologic conditions.

Conclusions

In this study, a new multi-objective optimization tech-
nique, namely MOFHS, is developed for optimal design
of nonlinear water-management problems under general
hydrogeological conditions. As an extension of the IFHS,
this new algorithm makes improvements by adding the
Pareto solution set filter and the elite individual preserva-
tion strategy so that it can guarantee the uniformity and
integrity of the Pareto front of multi-objective optimiza-
tion problems. Furthermore, the operation library of
individual fitness is used to reduce the computational load
of the algorithm. The MOFHS algorithm was then
coupled with the commonly used groundwater flow and
transport simulators, MODFLOW and MT3DMS, to solve
multi-objective groundwater-quality management prob-
lems consisting of active remediation by the PAT system.

The coupled MOFHS-based simulation-optimization
model was first used to solve a 2D hypothetical problem
to demonstrate the efficacy of a PAT remediation system
under the dual objectives of cost-effectiveness and mass
removal. Comparison of the results based on the INPGA,
NSGAII, MOHS and MOFHS show that the proposed
MOFHS is an effective method for producing perfect

tradeoff curves for optimal groundwater remediation
design. Furthermore, the sensitivities of MOFHS param-
eters including HMCR, PARmin, PARmax and niche radii
were assessed for the hypothetical application. The results
show that the best parameter combination for the
hypothetical application is: HMCR, 0.95; PARmin, 0.1;
PARmax, 0.95; niche radii, 0.05.

The MOFHS was then applied to optimize an existing
PAT system involving 1,2-DCA and complex hydrogeo-
logic conditions at a gasoline terminal site at Granger,
Indiana. Comparison of the results based on the INPGA,
NSGAII, MOHS and MOFHS demonstrated that the
proposed MOFHS is flexible in coping with different
number of decision variables, and the coupled MOFHS-
based model can successfully yield Pareto-optimal sol-
utions (tradeoff curves) for both hypothetical and practical
applications.

Further work should focus on investigating the
applicability of the MOFHS in solving remediation
system-design problems under consideration of uncer-
tainty of contaminant source and aquifer properties.
Another work is to improve the computational effi-
ciency of the MOFHS in searching for Pareto-optimal
solutions to address real-world multi-objective optimi-
zation problems.
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