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Abstract An artificial neural network model (ANN) and a
geographic information system (GIS) are applied to the
mapping of regional groundwater productivity potential
(GPP) for the area around Pohang City, Republic of
Korea. The model is based on the relationship between
groundwater productivity data, including specific capacity
(SPC) and its related hydrogeological factors. The related
factors, including topography, lineaments, geology, and
forest and soil data, are collected and input into a spatial
database. In addition, SPC data are collected from 44 well
locations. The SPC data are randomly divided into a
training set, to analyse the GPP using the ANN, and a test
set, to validate the predicted potential map. Each factor’s
relative importance and weight are determined by the
back-propagation training algorithms and applied to the
input factor. The GPP value is then calculated using the
weights, and GPP maps are created. The map is validated
using area under the curve analysis with the SPC data that
have not been used for training the model. The validation
shows prediction accuracies between 73.54 and 80.09%.

Such information and the maps generated from it could
serve as a scientific basis for groundwater management
and exploration.

Keywords Groundwater development . Hydrogeological
factor . Back-propagation training . Geographic
information systems . Korea

Introduction

Groundwater, one of the most important natural resources,
supports human health, economic development, and
ecological diversity. The use of groundwater has increased
because of factors such as high obtainability, excellent
quality, and low development cost (Todd and Mays 2005).
Surface water accounts for 0.3 % of the fresh water that
exists on earth. In comparison, groundwater amounts to
30 % of the fresh water (Gleick 1993). Moreover
groundwater can be recharged with rainfall consistently.
Therefore, systematic development and management
planning is crucial for establishing stabilised, secure
sources of water. In the US, groundwater accounts for
20 % of all water resources used (Kenny et al. 2009). On
the other hand, the occupancy rate of groundwater is 11 %
in the Republic of Korea (MLTM 2006), and public water
supplies (e.g., town water supplies) use only 5 %
groundwater. Considering that water usage in Korea
increased by more than 210 % (MLTM 2009) between
1994 and 2008, the development and utilisation of
groundwater at national level is not up to the expectation
of the people.

Little research has been conducted on the distribution
of groundwater productivity potential (GPP) worldwide,
and analysis methods have not been systematically
formulated. The lack of a systematic approach has led to
high time and labour costs and distorted estimates of
groundwater resources. Development of groundwater
resources takes time and requires considerable finances,
and has the potential for a high failure rate depending on
the skill of the field investigator (Sander et al. 1996).
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However, the success rate can be improved using a
geographic information system (GIS) database of hydrau-
lic characteristics of aquifers such as the results of
pumping tests by previous research, hydrogeological
information on groundwater using a GIS spatial analysis
method, and systematic probability statistics models
(Engman and Gurney 1991; Jha et al. 2007). A reliable
analysis method and model to predict the GPP areas are
urgently needed for systematic development, efficient
management, and sustainable uses of groundwater
resources.

Groundwater is a dynamic system, influenced by
combinations and interactions of various factors, including
weather, hydrology, surface topography, and geologic
characteristics (Park et al. 2001). To understand aquifer
productivity and composite mechanisms in groundwater
systems, the physical characteristics of the related factors
that configure the system should be identified. While it is
not possible to directly understand groundwater distribu-
tion using remote sensing and GIS technologies without
field surveys, groundwater potential can be inferred from
surface attributes such as geology, soil texture, land use,
and drainage systems (Todd 1980; Jha and Peiffer 2006).

GIS and remote sensing technologies have great
potential for use in groundwater potential analyses. Many
studies have applied these techniques along with thematic
layers such as those representing the geomorphology,
drainage pattern, lineaments, lithology, and soil (Jaiswal et
al. 2003; Solomon and Quiel 2006; Kim et al. 2010;
Jasmin and Mallikarjuna 2011). Some studies have used
personal judgments or local information to assign weight
to different thematic layers and their features (Madrucci et
al. 2008; Pradhan 2009; Yeh et al. 2009; Dar et al. 2010;
Saud 2010; Singh et al. 2011). Other studies have applied
probabilistic models such as frequency ratio and weights-
of-evidence modelling for groundwater potential mapping
(Corsini et al. 2009; Oh et al. 2011; Lee et al. 2012). Oh et
al. (2011) and Lee et al. (2012) applied frequency ratio
and a weight-of-evidence model for groundwater potential
mapping and sensitivity analysis in Pohang City, Korea.
More sophisticated assessments have been conducted
using numerical modelling, decision trees, fuzzy logic,
and analytic hierarchy process analysis (Srivastava and
Bhattacharya 2006; Vijay et al. 2007; Murthy and Mamo
2009; Chenini and Mammou 2010; Kiesel et al. 2010).
Some researchers have also integrated GIS, remote
sensing, and geophysical surveys to derive additional
thematic layers of surface parameters such as resistivity,
aquifer thickness, or fault maps (Israil et al. 2006;
Srivastava and Bhattacharya 2006; Ranganai and Ebinger
2008; Kumar et al. 2009). However, such studies have
limitations because they use indirect indicators such as
yield, groundwater depth, resistivity, and spring location
rather than hydraulic constants such as specific capacity
(SPC) and transmissivity. Furthermore, past studies gen-
erally produced small datasets and did not validate the
results by comparison with other datasets.

In this study, an artificial neural network model (ANN)
was applied to analyse and validate the groundwater

potential using a GIS with different training and test
datasets of SPC for the area around Pohang City. GIS
approaches provide a way to introduce information and
knowledge from other data sources into the decision-
making process, and aid in the handling and manipulation
of classified remote sensing data (Adinarayana and
Krishna 1996). Use of a GIS enables quantitative
assessment of the consequences of heterogeneity in
environmental systems over a broad range of spatial and
temporal scales. Systematic integration of several surface
features that indicate groundwater potentiality is an
important aspect in water-management studies. A database
designed to support water-resource decisions must contain
various thematic information because of the interdisci-
plinary nature of water problems. Conventional methods
of exploration do not always account for the diverse
factors affecting the presence of groundwater (Murthy
2000). For this study in Pohang City, the result was then
compared with the previous research of Oh et al. (2011)
and Lee et al. (2012). GIS lacks prediction ability as it has
no built-in function for interpretation of multi-dimensional
data relating to individual incidents, or for exploration of
the spatial patterns associated with the likely occurrence
of future events. Therefore, it is necessary to have an
applied technique for identifying spatial correlations or
other spatial patterns using probability, statistics, and data
mining approaches. This study conducts a regional GPP
analysis by applying an ANN model in tandem with
application of GIS and remote sensing techniques. The
ANN model can provide a geospatial assessment tool to
calculate the probabilistic relationship between a depen-
dent variable and independent variables, including multi-
classified maps. Although ANN models have been applied
to many geosciences areas, this approach has not yet been
used to delineate groundwater potential.

Materials and methods

Preparation of the GPP map using GIS involved four
major steps: (1) assembly of a spatial database (75 SPC
data were used to create a spatial database using GIS;
topography, geology, lineament, and soil data were
collected and input into a spatial database); (2) processing
the data (SPC data were randomly split for training and
testing and then used for analysing and validating GPP
maps using the ANN model, training locations for ANN
analysis were extracted from SPC data, the training dataset
and various factors were analysed, and each factor’s
relative importance and weight were quantitatively deter-
mined); (3) application of weights to generate a GPP map;
(4) validation of the GPP map using test SPC data that
were not used directly in the analysis (Fig. 1).

Study area and hydrogeological setting
The study focuses on the Pohang City area of Korea. This
area has experienced rapid population growth and in-
creased demand for groundwater reserves. Thus, it is
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Fig. 1 Study flow for groundwater productivity potential (GPP) mapping
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appropriate for evaluating groundwater potential. The
study area lies between 35°50′07′′N and 36°16′34′′N
latitude and 129°00′31′′E and 129°34′57′′E longitude
(Fig. 2), and covers 891.44 km2 on a digital topographic
map (NGII 1997) with a 1:5000 scale (Table 1). Elevation
in the area ranges from 0 to 919.3 m above sea level (a.s.l.),
with an average of 144.2 m—SD(SD) =143.64 m). The
terrain gradient computed from a 30 × 30 m digital elevation
model (DEM) extracted from the 1:5,000-scale topographic
map ranged from 0 to 50.4° with a mean value of 14.4° and a
SD of 10.70°.

The bedrock geology of the study area consists mainly
of Cretaceous sedimentary, granitic, and volcanic rocks;
Tertiary granitic, volcanic, and sedimentary rocks; and
Quaternary basalt (Hwang et al. 1996; Kim et al. 1998)
(Fig. 3). The study area has two major faults: the Yangsan
and Ulsan faults that trend N10°–20°E and N10°–20°W,
respectively. In the study area, Cretaceous volcanic and
granitic rocks are distributed mainly in the west, Tertiary
sedimentary in the east, and Tertiary volcanic and granitic
rocks in the south.

The study area was divided into two areas. The north-
eastern area consists of coastal hills produced by Tertiary
deposition, and the north-western area is a rugged
mountain range consisting of volcanic rock and granite.
The Taebaek mountain range (Mt. Bade, 645.0 ma.s.l.;
Hyangnobong, 929.9 ma.s.l.; Satgatbong, 718.0 ma.s.l.;
and Mt. Bihak, 762.0 ma.s.l.) lies along the Yangsan fault

zone. The main mountain system in the study area trends
mostly N10°–20°E parallel to the Yangsan fault zone; the
other small systems trend N60°–70°W parallel to faults
that deviate from the Yangsan fault. Precipitation is most
abundant from June to September. The mean annual
rainfall between 1973 and 2009 was 1,119 mm.

Spatial database
To map GPP, the first stage was data collection and
construction of the spatial database from which relevant
factors were extracted (Table 1). Groundwater productiv-
ity data such as SPC, yield, well depth, well diameter, and
depth/elevation of the water table were collected from the
national groundwater survey in the Pohang area (MLTM
2003), the national groundwater monitoring network
construction report (MLTM 1995, 1998, 2001), and the
rural groundwater survey report (MIFAFF 1985–2005).
SPC data were also used for the GPP. Fig. 4 describes
spatial distribution and Table 2 shows statistics of the SPC
data used in this study.

The SPC value is derived by the pumping rate divided
by drawdown using pumping test results; pumping tests
last more than 24 h. The well depth is distributed from 50
to 280 m, mean depth is 133 m, and SD is 45 m. Each
discharge rate stands between 13 and 830 m3/d, mean
discharge rate is 272 m3/d, and SD is 162 m3/d.
Drawdown during each pumping test is between 3.49 m

Fig. 2 Study area in Korea, showing land-surface elevation from a digital elevation model (DEM; Landsat TM, 2003). Where data ranges
are given as, for example, 0–10.9, this means 0 to less than 10.9
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and 137.50 m, mean drawdown is 41.17 m, and SD is
34.69 m. Groundwater level is measured 2 days before the
pumping test and the drawdown is measured automatically
using a pressure transducer (DIVER), during pumping and
the recovery period.

In general, groundwater productivity is governed by
many hydrogeological factors including surface and
bedrock lithology, structure, slope steepness and morphol-
ogy, stream evolution, climate, soil, vegetation cover, land
use, and human activity, but these relationships have not
been statistically or quantitatively verified. In this study,
15 hydrogeological factors expected to be related to
groundwater potential were reviewed using SPC. Finally,
15 hydrogeological factors (Table 1) were selected and
applied to the ANN model.

The spatial database was constructed with a resolution
of 30 × 30 m on the basis of Landsat Thematic Mapper
(TM) imagery. The 15 hydrogeological factors were

converted to ArcGIS grid format, and the GRID set
comprised 1,822 rows × 1,787 columns. In the study area,
the total number of cells was 990,495 with SPC in 75 cells
(62 cells for training and 13 cells for validation).

Topographic factors
A triangulated irregular network was made using the
elevation value, and a DEM was made with 30 × 30 m
resolution after elimination of internal drainage (‘sink
area’) in the elevation grid using the FILL command
in ArcGIS 9.0. One input factor, the ‘ground elevation
within 300 m’, was given a mean value for each grid
cell based on the value of neighbouring cells within a
300-m radius. Using the DEM, the slope, curvature,
and topographic wetness index (TWI) were calculated.
The mean ground elevation and slope within the
watershed area were obtained after watershed delineation.

Table 1 Hydrogeological factors related to groundwater productivity in this study. Res. refers to resolution

Category Factors Description Unit Data type Scale

Topologya Ground elevation Ground elevation, obtained from DEM
(Res. 30 m) for local ground elevation
property. Negative relationship, in general

m a.s.l. Grid 1:5,000

Ground elevation
within 300 m

Mean ground elevation in cells within radius
300 m, obtained from DEM for regional
ground elevation property. Negative
relationship, in general

m a.s.l.

Mean ground elevation
within watershed area

Mean ground elevation within watershed area,
obtained from DEM for hydrological regional
ground elevation property. Negative relationship,
in general

m a.s.l.

Ground slope Ground slope, obtained from DEM (Res. 30 m)
for local ground slope property. Negative
relationship, in general

%

Mean ground slope within
watershed area

Mean ground slope within watershed area,
obtained from DEM for hydrological regional
ground slope property. Negative relationship,
in general

%

Ground curvature Ground curvature, obtained from DEM (Res. 30 m)
for local ground curvature property. Negative
relationship, in general

–

Topographic wetness index Topographic wetness index, obtained from DEM
(Res. 30 m) for local ground wetness property.
Positive relationship, in general

–

River density with
agricultural irrigation

Density of river line feature for surface drainage
property. Positive relationship, in general

km/km2

River density without
agricultural irrigation

Distance from river line feature for water supply
from river. Negative relationship, in general

km/km2

Cumulative watershed area Watershed area with accumulation through flow
direction for water body scale. Positive
relationship, in general

km2

Lineamentsb Lineament length density Density of lineament length. Positive relationship,
in general

km/km2 Line –

Lineament length density
weighted by its length

Density of lineament length weighted by its length.
Positive relationship, in general

km/km2

Lineament frequency density
weighted by its length

Density of lineament frequency weighted by its
length. Positive relationship, in general

count۰km/km2

Geologyc Hydrogeological units Hydrogeological units classified from bedrock
lithology by similar hydrological property

– Line 1:5,000

Soild Soil texture Soil texture property for groundwater infiltration – Polygon 1: 25,000

a Topological factor was extracted from digital topographic map (1:5,000 scale) by National Geographic Information Institute (NGII 1997)
b The Landsat TM image of study area was acquired in March 2003
c The geological map (1:50,000 scale) produced by the Korea Institute of Geoscience & Mineral Resource (KIGAM 1964)
d The detailed soil map (1:25,000 scale) produced by National Academy of Agricultural Science (NAAS 1977)
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The river density and distance from the river were
considered the prime indicators for selection of groundwater
potential sites because they are related to the yield of
groundwater. For the same permeable aquifer, the closer to
the river, the higher the groundwater capacity. The topo-
graphic factors are shown in Fig. 5.

Hydrogeology and lineament factors
The study area had 24 geological units of bedrock. With the
exception of alluvial units, these units were classified into six
geological groups with similar hydrogeological properties
such as porous volcanics, semi-consolidated sediments 1 and
2, non-porous volcanics, intrusives, and clastic sediments
(Fig. 6). These hydrogeological units were identified by
groundwater productivity statistics, spatial distribution, and
stratigraphic history (Table 3). The semi-consolidated sedi-
ments 1, consisting predominantly of sandstone and con-
glomerate, were overlain by the semi-consolidated sediments
2, consisting mainly of mudstone and shale.

In an image, a lineament is defined as a straight or slightly
curved surface feature of natural origin, interpreted directly

from the imagery (O’Leary et al. 1976; Koike et al.
1998). Lineaments and intersections of lineaments reflect
rock structures through which water can percolate and
travel as far as several kilometres within. Depending upon
the terrain, the lineament may be a zone of influence. To
predict ground control points in underground structures
(Kane et al. 1996), lineaments are strongly related to
discontinuities such as joints, faults, and folds. For these
reasons, the feature ‘lineament’ was used for structural
analysis, analysis of the relationship with lithology, and
assessment of groundwater productivity. In this study,
lineaments were detected through interpretation of Land-
sat TM imagery and hillshade maps from a DEM made
by a structural geologist with much experience in such
interpretation. To eliminate errors resulting from scale
deviation and sun illumination, the DEM data were used.
The hillshade maps from the DEM were used to detect
the lineaments. In the hillshade maps, the sun altitude is
45°, and the sun azimuths are 0, 45, 90, 135, 180, 225,
270, and 315°. The Landsat TM image was then overlaid
onto the hillshade maps, and the lineaments were
detected.

Fig. 3 Geological map of the study area
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Finally, a digital topographic map is used with a scale of
1:5000 to exclude drainage and roads, both of which could
be detected as lineament. In this study, lineament density was
applied to spatial relationship regarding lineament factors.
Lineament density is useful for understanding the local
distribution of lineaments. Lineament density analysis
considered the lineament frequency and length, and the
densities of lineament length and frequency were also
analyzed using the weight of lineament length in the study
area (Fig. 6). The density distribution of lineaments was
calculated using Hardcastle(1995)’s circular grid with
1.41 km radius and 2 km grid spacing. The circular grids
overlapped about 30–50 % and each circle included 10∼15
lineaments. In order to calculate the expectation value of
lineament existence for each cell, the density value of the
cells was divided by the sum of density of all cells.

Soil factor
Regarding land surface data, the soil was used as a factor
related to groundwater potential. Soil texture invariably

controls the penetration of surface water into an aquifer
system. The soil texture of the study area was generated
by a 1:25,000 scale soil map published by the National
Institute of Agricultural Science and Technology (1977).
Fourteen different categories of soil were extracted from
the soil map: forest, grassland, gravel, gravelly sandy
loam, fine gravelly sandy loam, sandy loam, loamy fine
sand, fine sand, loam, gravelly loam, silt loam, gravelly
silt loam, clay silty loam, and silty clay loam (Fig. 6f).

Theory
An artificial neural network (ANN) is a ‘computational
mechanism able to acquire, represent, and compute a
mapping from one multivariate space of information to
another, given a set of data representing that mapping’
(Garrett 1994). The ANN model offers a number of
advantages, including ability to analyze complex patterns
quickly and with a high degree of accuracy. In addition, the
ANN makes no assumption about the nature of the
distribution of the data. Consequently, when the relationship

Fig. 4 Location and value range of groundwater productivity data (SPCspecific capacity)
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between the variables does not fit an assumed model, better
results can be expected with artificial neural networks
(Livingstone et al. 1997).

The back-propagation training algorithm is the most
frequently used neural network method, and was also used
in this study. The back-propagation training algorithm is
trained using a set of examples of associated input and
output values. The purpose of an ANN is to build a
model of the data-generating process so that the network
can generalise and predict outputs from inputs that it has
not previously seen. This learning algorithm is amulti-layered

Table 2 Statistics of groundwater productivity data for the study area

Type No. Min. Max. Average Median

SPC (m3/d/m) 83 1.42 111.14 16.54 6.73

Fig. 5 Topographic factors. a Ground elevation, b ground elevation within 300 m (mean value for each grid cell based on the value of
neighbouring cells within a 300-m radius), c mean ground elevation within watershed, d ground slope, e mean ground slope within
watershed, f ground curvature, g topographic wetness index (TWI), h river density without agricultural irrigation, i distance from river, j
cumulative watershed area
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neural network composed of an input layer, hidden layers, and
output layer. The hidden and output layer neurons process
their inputs by multiplying each input by a corresponding
weight, summing the product, and then processing the sum
using a nonlinear transfer function to produce a result (Fig. 7).
An ANN ‘learns’ by adjusting the weights between the
neurons in response to the errors between the actual output
values and the target output values. At the end of this training
phase, the neural network provides a model that should be
able to predict a target value from a given input value.

Two stages are involved in using a neural network
for multi-source classification: the training stage, in
which the internal weights are adjusted, and the
classification stage. Typically, the back-propagation
algorithm trains the network until some target minimal
error between the desired and actual output values of
the network is achieved. Once the training is complete,
the network is used as a feed-forward structure to
produce a classification for the entire dataset (Paola
and Schowengerdt 1995).

Fig. 5 (continued)
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Procedure
A neural network consists of a number of interconnected
nodes, where each node is a simple processing element
that responds to the weighted inputs it receives from other
nodes. The arrangement of the nodes is referred to as the
network architecture (Fig. 7). The receiving node sums the
weighted signals from all the nodes connected to it in the
preceding layer. The input that a single node receives is
weighted. The network used in this study consisted of
three layers. The first was the input layer, where the nodes
were the elements of a feature vector; the second was the
internal or “hidden” layer; the third was the output layer
that presented the output data. Each node in the hidden
layer is interconnected to nodes in both the preceding and
following layers by weighted connections (Atkinson and
Tatnall 1997). Using the back-propagation training algo-
rithm, the weights of each factor can be determined and
may be used for the classification of data (input vectors)
that the network has not seen before. Zhou (1999)
described a method for determining the weights using
back-propagation.

The 15 hydrogeological factors were used as the input
data. Locations considered likely and unlikely to have
GPP were selected as training sites. In an artificial neural
network, the selection of training sites is important, and
the selection of likely and unlikely GPP areas was
carefully considered for training in this study. To select
the training sites based on scientific and objective criteria,
the SPC criterion of 6.25 m3/d/m was used. The average
yield of well data is 274 m3/d and average well depth is
130 m. The median value of transmissivity (T) (3.79 m2/d)
was taken as the criterion for division purposes. From the
relationship between T and SPC, T=0.9948×0.7293 SPC,

SPC=6.25 m3/d/m was taken as the criterion for division
purposes. These criteria, T=3.79 m2/d and SPC=6.25 m3/
d/m, are equivalent to well yield 500 m3/d, with supposed
drawdown of 2/3 of the total well depth. Then, based on
SPC=6.25 m3/d/m, areas with SPC data greater than
6.25 m3/d/m were classified as the ‘likely GPP’ training
dataset, and areas with SPC data less than 6.25 m3/d/m were
classified into an ‘unlikely GPP’ dataset. Next, 70 % of SPC
values were classified into a ‘likely GPP’ training dataset that
was randomly selected and used for training. The remaining
30 % of SPC values were used for validation.

The back-propagation algorithm was then applied to
calculate the weights between the input and hidden layers
and between the hidden and output layers. A three-
layered, feed-forward network was implemented using
the MATLAB software package based on the framework
provided by Hines (1997). Hines (1997) tried different
numbers of hidden layers to analyse the relationship
between the number of hidden layers and the training
cycle to reach the error goal. In the case of twice the
number of factors, the training cycle showed the lowest
rate of success in reaching the goal. The number of hidden
layers and the number of nodes in a hidden layer required
for a particular classification problem are not easy to deduce.
In this study, a 15 × 30 × 1 (number of input, hidden, and
output layers) structure was selected for the network, with
input data normalised in the range of 0.1 to 0.9. The nominal
and interval class group data were converted to continuous
values ranging between 0.1 and 0.9. Therefore, the contin-
uous values were not ordinal data but nominal data, and the
numbers denote the classification of the input data. The
learning rate was set at 0.01, and the initial weights were
randomly set at values between 0.1 and 0.3. The weights

Fig. 5 (continued)
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calculated from 10 test cases were compared to determine
whether the variation in the final weights depended on the
selection of the initial weights.

Themodel was trained for 2000 epochs, and the root mean
square error (RMSE) value used for the stopping criterion
was set at 0.01. If this RMSE value was not achieved, then
the maximum number of iterations was terminated at 2000
epochs. When the latter case occurred, the maximum RMSE
value was 0.366. The final weights between layers acquired
during training of the neural network and the contribution or

importance of each of the 15 factors was used to predict GPP.
Finally, the weights were applied to the entire study area, and
GPP maps were created for each training case.

Results

Weight determination and GPP mapping
The final weights between layers acquired during training
of the neural network and the contribution or importance

Fig. 6 Lineament, geologic and soil factors. a Lineament length density, b lineament length density weighted by its length, c lineament
frequency weighted by its length, d hydrogeological units, e lineament distribution, f soil factors
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of each of the 15 factors used to predict GPP are shown in
Table 4. The results were not the same because the initial
weights were assigned random values. Therefore, in this
study, the calculations were repeated 10 times to allow the
results to achieve similar values. The SD of the results

ranged from 0.006 to 0.012; therefore, random sampling
did not have a large effect on the results. For easy
interpretation, the average values were calculated, and
these values were divided by the average of the weights of
the factor that had a minimum value. In the weight, the
‘hydrogeological unit’ was the maximum value (1.430)
and the ‘curvature’ value was the minimum value (1.000).

The weights were applied to the entire study area, and the
GPP map was created (Fig. 8). The GPP values were
classified by equal areas and grouped into four classes (% of
area) of GPP rank for easy visual interpretation: very high
(5 %), high (10 %), medium (15 %) and low (70 %). The
minimum and maximum GPP values were 0.0764 and
0.9075, respectively. The mean and SD were 0.4560 and
0.1648, respectively.

Validation
The GPP map is expected to effectively predict future GPP
areas. This map can be further validated using new
exploration locations as they occur. Here, the result of the
GPP analysis was validated using test SPC data that were not
used for the analysis. Validation was performed by compar-
ing the test SPC data with the GPPmap. For this, success rate
curves were calculated for quantitative prediction, and the
area under the curve was calculated. The rate shows how
well the model and factors predict the GPP, and the area
beneath the curve thus qualitatively assesses the prediction
accuracy. To obtain the relative ranking for each prediction
pattern, the calculated index values of all pixels in the study
area were sorted in descending order. The ordered pixel
values were then divided into 100 classes with accumulated
1 % intervals. The rate validation results appear as a line in
Fig. 9. As a result, the 80–100 % class (20 %) in which the

Table 3 Geology of bedrock and hydrogeological units of the study
areat

Age Geological
units

Hydrogeological
units

Quaternary – Qba Basalt Porous
volcanics

Tertiary Yonil
series

Ty Yonam form. Semi-
consolidated
sediments 2

Td Duho form.
Te Idong form.
Th Hunghae form.
Ta Hakrim form. Semi-

consolidated
sediments 2

Tc Chunbuk Cong.

– Tb Basalt Porous
volcanics– Tbv Alkalic volc.

Janggi
series

Tj Janggi series Non-porous
volcanics

– Tav Acidic volc.
– Tgr Granite Intrusives

Cretaceous Yucheon
Group

Ksar Acidic volc. Non-porous
volcanicsKiv Volc.

Bulgugsa
Series

Ad Dyke Intrusives
Kfl Syenite
Kap Acidic

porphyrite
Kbgr Biotite granite
Khgr Hornblende

granite
Hayang
group

Kdo Dochunri member Clastic
sedimentsKch Cheonggyeri

member
Ksd Daegu form.

Fig. 6 (continued)
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groundwater potential index had a high rank could explain
between 46 and 62 % of all occurrences of SPC≥6.25 m3/d/

m. The graph showing the best prediction accuracy was
selected from among the 10 runs.

Table 4 Weights of hydrogeological factors considered in the GPP analysis based on each case

Factor No.
1 2 3 4 5 6 7 8 9 10 Average SD Weight

Ground elevation 0.061 0.063 0.064 0.070 0.066 0.073 0.051 0.077 0.066 0.064 0.065 0.007 1.100
Ground elevation within 300 m 0.063 0.064 0.074 0.070 0.081 0.078 0.046 0.054 0.048 0.062 0.064 0.012 1.074
Mean ground elevation within
watershed area

0.056 0.052 0.070 0.062 0.069 0.059 0.069 0.061 0.068 0.050 0.061 0.007 1.033

Hydrogeological units 0.093 0.087 0.082 0.076 0.084 0.086 0.096 0.071 0.090 0.086 0.085 0.007 1.430
Ground Slope 0.075 0.061 0.069 0.063 0.084 0.067 0.076 0.062 0.071 0.057 0.068 0.008 1.149
Mean ground slope within watershed
area

0.060 0.070 0.063 0.070 0.062 0.054 0.075 0.062 0.066 0.071 0.065 0.006 1.096

Ground curvature 0.051 0.060 0.055 0.050 0.058 0.061 0.066 0.071 0.065 0.058 0.059 0.007 1.000
Topographic wetness index 0.062 0.070 0.049 0.075 0.045 0.055 0.052 0.065 0.065 0.070 0.061 0.010 1.023
River density with agricultural irrigation 0.066 0.057 0.066 0.066 0.049 0.059 0.069 0.073 0.071 0.055 0.063 0.008 1.063
River density without agricultural
irrigation

0.071 0.083 0.072 0.070 0.068 0.080 0.070 0.057 0.068 0.085 0.072 0.008 1.215

Cumulative watershed area 0.059 0.062 0.067 0.053 0.085 0.066 0.064 0.061 0.078 0.060 0.066 0.009 1.102
Lineament length density 0.077 0.072 0.074 0.070 0.057 0.081 0.076 0.074 0.063 0.084 0.073 0.008 1.222
Lineament length density weighted by
its length

0.054 0.083 0.064 0.063 0.057 0.066 0.065 0.069 0.062 0.082 0.067 0.009 1.120

Lineament frequency density weighted
by its length

0.078 0.059 0.064 0.070 0.070 0.058 0.056 0.078 0.064 0.059 0.066 0.008 1.102

Soil texture 0.075 0.059 0.068 0.074 0.064 0.059 0.068 0.064 0.057 0.059 0.064 0.006 1.084

Fig. 7 Architecture of artificial neural network
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To compare the result quantitatively, the areas under
the curve (Lee and Dan 2005) were re-calculated as if the

total area were one, which indicates perfect prediction
accuracy. The resulting area ratios, suggesting the

Fig. 9 Success rate curve of GPP index by ANN

Fig. 8 Groundwater productivity potential (GPP) map
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prediction accuracy, were between 0.7354 and 0.8009;
thus, the prediction accuracy was between 73.54 and
80.09 %, with an average accuracy of 76.47 %.

Discussion

In this study, the GPP maps were made using an ANN and
repeated 10 times. Training sites were extracted from SPC
data. The validation showed between 73.54 and 80.09 %
prediction accuracy, with an average of 76.47 %. The
accuracies were similar, and they were satisfactory
considering the map scale and input data accuracy.
Additionally, using the artificial neural network, the
relative importance and weight of factors were calculated.
The ‘hydrogeological units’ showed the highest weight
value (1.430), followed by the ‘lineament length density’
with a value of 1.222. The ‘curvature’ showed the lowest
value at 1.000, and the ‘topographic wetness index (TWI)’
was 1.023. These results indicate that the ‘hydrogeological
unit’ was the most important factor and was 1.4 times
more important than ‘curvature’ in GPP mapping. In
particular, most of the very high potential was distributed
in areas of porous volcanics, and low-potential areas were
distributed in hydrogeology units of non-porous volcanics
and intrusives in this study (see Fig. 8 and Fig. 6d).

Oh et al. (2011) and Lee et al. (2012) applied the
frequency-ratio and weight-of-evidence method for ground-
water potential mapping and sensitivity analysis in the same
area. A comparison of the result maps developed by Oh et al.
(2011), case 1 (SPC≥6.25 m3/d/m) of Lee et al. (2012) and
Fig. 8 revealed that the overall distributions of the three
result maps showed similar patterns. In the central part, the
distribution of groundwater potential indices showed a
pattern similar to that of Oh et al. (2011) and Lee et al.
(2012), and consisted mainly of very high and high indices.
The northeast part of the site was expected to represent high
and very high potential based on the frequency-ratio model;
however, that area was expected to have high and medium
potential based on the ANNmodel. In contrast, the southeast
part was expected to have very high and high potential using
the results from this study. These differences in spatial
distribution can be explained by correlations among factors
used in the studies. For these three models, the frequency-
ratio model demonstrated 77.78 % accuracy; the weight-of-
evidence model described 71.20 %; the ANN model
exhibited 76.47 % accuracy on average. The frequency ratio
model showed the best result of groundwater productivity.
However, the highest prediction accuracy of 10 times
training using ANN model showed 80.09 %. In some cases,
the ANN model can demonstrate higher accuracy than the
frequency ratio model.

Conclusion

Groundwater plays an increasingly important role in both
private and public water supplies worldwide. Some areas
in Korea rely on a water-supply system that uses only

surface water. These areas need an alternative, stable water
acquisition system that can provide high-quality reliable
drinking water. Therefore, this study developed an ANN
approach that used GIS to estimate a region’s potential for
groundwater resources.

The primary value of the results is that even with some
incomplete data sets and broad assumptions, the method
proved to be a robust and useful tool for estimating and
mapping productivity potential mapping. Also, Oh et al.
(2011) conducted a sensitivity analysis using the frequency-
ratio model. According to the result of sensitivity analysis
(Table 4), in order of influence, soil texture, cumulative
watershed area, and distance from river had a positive
influence on the groundwater-potential maps. In contrast,
using all factors (including ground elevation, curvature,
ground elevation within 300 m) had a negative influence on
the groundwater-potential maps. In the ANN model, the
weights of factors represent the importance of each factor.
The calculated weights indicate that the hydrogeological
units ‘river density without agricultural irrigation’ and
‘lineament length density’ were more important factors than
ground curvature, topographic wetness index, and mean
ground elevation within the watershed area, in terms of their
effect on the groundwater-potential maps in this study. The
result maps from each model reflected the influences of
important factors.

The proposed method of GPP mapping can be applied in
planning and managing groundwater use, such as in regional
groundwater development planning, determination of prom-
ising groundwater development areas in emergency situa-
tions, and control of the water-supply system based on a
systematic, objective, and scientific decision model. In
addition, the GPP map can greatly help planners seeking
suitable locations at which to implement exploration. The
method used in this study is also valid for generalised
planning and assessment purposes. However, the method
might be less useful at the site-specific level, at which local
geologic and geographic heterogeneities may prevail. For
the method to be more generally applied, more groundwater
productivity data are needed, and the method must be
applied to more case studies.
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