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Abstract Stochastic methods based on time-series mod-
eling combined with geostatistics can be useful tools to
describe the variability of water-table levels in time and
space and to account for uncertainty. Monitoring water-
level networks can give information about the dynamic of
the aquifer domain in both dimensions. Time-series
modeling is an elegant way to treat monitoring data
without the complexity of physical mechanistic models.
Time-series model predictions can be interpolated spatial-
ly, with the spatial differences in water-table dynamics
determined by the spatial variation in the system proper-
ties and the temporal variation driven by the dynamics of
the inputs into the system. An integration of stochastic
methods is presented, based on time-series modeling and
geostatistics as a framework to predict water levels for
decision making in groundwater management and land-
use planning. The methodology is applied in a case study
in a Guarani Aquifer System (GAS) outcrop area located
in the southeastern part of Brazil. Communication of
results in a clear and understandable form, via simulated
scenarios, is discussed as an alternative, when translating
scientific knowledge into applications of stochastic

hydrogeology in large aquifers with limited monitoring
network coverage like the GAS.
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Statistical modeling . Brazil

Introduction

The application of stochastic approaches to hydrogeology
is emerging from some parts of academia and starting to
appear more frequently in discussion meetings of water
commissions and regulatory bodies involving decision
makers, policy makers and stakeholders. In a changing
world, professionals are becoming more open to accepting
how uncertain future scenarios are. Uncertainty analysis
and scenario evaluation can be taken into account during
land-use planning processes and evaluation of natural
resources. It is common now to describe events as
probable and possible, referring to various degrees of
probability (Rubin 2004). Stochastic hydrology theories
and approaches have developed considerably during the
last 30 years. However, stochastic methods have not been
used very frequently in hydrological applications, despite
the impressive success of essentially the same approaches
in other scientific disciplines like atmospheric modeling,
meteorological forecast, ocean monitoring and ecological
assessment (Christakos 2004). So far, their application to
real-world problems has been limited and they have not
become a routine tool for hydrological modeling (Dagan
2002; Zhang and Zhang 2004; Rubin 2004; Renard 2007).
One reason is that these methods generally fail when
trying to represent complexities inherent to processes that
cannot be modeled without rigorous rules. There is a need
to balance these rigid theories and their application with
quantitative accuracy in field engineering problems in-
volving the subsurface environment (Hunt and Doherty
2011; Ginn 2004). Renard (2007) presented a survey of
publications in the field of stochastic hydrogeology over
the last two decades. While the total number of publica-
tions has increased in all fields of research, the author was
surprised by the observation that the proportion of
stochastic hydrogeology papers remained constant,
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suggesting that interest in these techniques within the
research community is not increasing. Pappenberger and
Beven (2006) discuss reasons why uncertainty analysis
should not be used and Clarke (2010) points out the
misuse of statistical methods in reporting hydro-climato-
logical data. Neuman (2004) believes that the level of
mathematical understanding required by stochastic theo-
ries is far beyond that of most hydrogeologists, in
academia and in practice. Sudicky (2004) agrees, and
adds that regulations are based on single numbers, and the
uncertainty in the prediction of such numbers (e.g. the
probability of exceeding it) is not something regulators
can readily deal with. Nourani et al. (2011) believe that
problems in data interpretation given by the lack of strong
predictive tools (or lack of experienced users of those
tools) contribute to a failure to reach consensus about the
need for key water-management actions.

The motivation of this work is to present an integration
of stochastic methods based on time-series modeling and
geostatistics applied to field data collection of water heads
and climatological observations, in order to provide
reliable information for decision making in groundwater
management and land-use planning. The aim is to
demonstrate, through a case study, the use of stochastic
approaches to explain observed phenomena, and commu-
nicate the results in a clear and understandable form, via
simulated scenarios of variations in expected water-table
levels. The study area is an outcrop zone of the Guarani
Aquifer System (GAS) in Brazil, one of the major water
reservoirs in the world, although little is known about its
dynamics and recharge processes.

Materials and methods

The nature of the problem
The GAS is a transboundary aquifer covering up to 1.2
million km² of the Argentinean, Brazilian, Paraguayan and
Uruguayan territories, encompassing almost all the Paraná
and Chaco-Paraná sedimentary basins. During the past
decade, efforts from the four countries were concentrated
on investigating this reservoir and obtaining knowledge
about its recharge and discharge mechanisms, in order to
achieve sustainable and optimal exploitation of the ground-
water. Due to the strategic, social and economic importance
of this aquifer to the four countries, it is necessary that use of
this water resource is coordinated (OAS 2009).

The implementation of a monitoring system, which
allows the acquisition of detailed information about the
condition and behaviour at specific sites within the GAS, is a
prerequisite for efficient management of the aquifer (Wend-
land et al. 2007). Stochastic approaches applied to reservoirs
as large as the GAS can give some information to decision
makers and water commissioners, which allows them to use
numerical intervals in risk analysis to solve real groundwater
problems. Predicting water levels at unvisited locations and
predicting extreme levels on specific dates allows inferences
to be made in both spatial and temporal dimensions of a
physically based water system (Manzione et al. 2010). There

are still many gaps inmonitoring network coverage for water
levels and quality in the GAS, and there is also a lack of local
knowledge about aquifer dynamics. With such general
deficiency in data acquisition, stochastic methods represent
an alternative way of dealing with uncertainties about water
quantification. Accounting for model uncertainty is impor-
tant for sustainable management of the enormous area
covered by the GAS, and for the protection of its recharge
areas.

Study area
The GAS was formed during the Jurassic (Botucatu
Formation) and Triassic (Piramboia Formation) periods.
The Piramboia Formation consists of silty-clayish sand-
stones of aeolian and restricted fluvial origins, and the
overlying Botucatu Formation consists of well-sorted
sandstones of aeolian origin (Sracek and Hirata 2002).
The Triassic sandstones usually have a larger amount of
clay in their lower layers, which diminishes, in relative
terms, their hydraulic efficiency (Rabelo and Wendland
2009). The sandstone outcrops on the borders of the
Paraná sedimentary basin are responsible for most of the
aquifer recharge, and the sandstone is mostly confined by
the Serra Geral basalt layer (Cretaceous). The region
chosen for the present monitoring work is the Onça Creek
watershed, which is located in the outcrop area of the
GAS, in the central region of the province of São Paulo,
Brazil (Fig. 1). This area of 5,800 ha possesses represen-
tative characteristics for the outcrop zone of the GAS and
has land uses that are typical of São Paulo province, like
sugarcane, reforestation (eucalyptus), citrus, pasture, and
some patches of natural Cerrado vegetation, a extensive
woodland-savannah present in several regions of South
America. The Onça Creek watershed is located between
22°10’ and 22°15’ south and 47°55’ and 48°00’ west,
being an affluent of Jacaré-Guaçú River. The Onça Creek
flows mainly over sandstone of the Botucatu Formation,
while at the basin outlet it flows over the Botucatu-basalt
complex. Cenozoic soils present in the area result from
sandstone weathering, showing homogeneous composi-
tion with almost no loam (Wendland et al. 2007). Climatic
classification for the region, following Koeppen, indicates
a humid subtropical climate (Cwa) with summer rains,
showing a variation to a tropical climate with dry winter
(Wendland et al. 2007). The mean annual precipitation is
about 1,300–1,400 mm, while the annual mean tempera-
ture in the region is 20.5 °C.

Data sets from the Onça Creek watershed
The Onça Creek watershed is equipped with 23 monitor-
ing wells (Fig. 1, with four wells outside the watershed
boundaries), three compact climatological stations and a
river station installed in the watershed for groundwater,
weather and creek-level monitoring. Water-table depths
were observed manually every 15 days, from April 2004
until July 2011, totalling more than 7 years of monitoring.
These wells were deliberately selected to cover the range
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of land uses and possible hydrogeological domains in the
area, in an attempt to characterize the different responses
of water-table depths in the watershed. The length of the
time series of water-table depths is 2,638 days. The filter
levels of the wells vary with soil depth, but are mostly
around 25 m below ground level. Also, 35-year datasets
for precipitation and potential evapotranspiration were
available from CRHEA/USP (Centre for Water Resources
and Applied Ecology of the University of São Paulo),
where climatologic data are collected continuously. These
data were available from 1974 until the present date, with
a daily frequency. The watershed is located approximately
1.5 km away from the CRHEA station.

Combining time-series models with geostatistics
on monitoring data
The characteristics of hydrogeologic systems can vary
greatly in space and time, but they are usually sparsely
sampled. Knowledge of system parameters is therefore
partial at best, and the most that can usually be done is to
quantify uncertainty through stochastic, or related, models
(Winter 2004). Time-series modeling provides an empir-
ical stochastic method to model monitoring data from
observation wells, without the complexity of physical
mechanistic models. Also, the stochastic component in the
model allows model uncertainty to be taken into account.
In time-series analysis, many authors refer to transfer
function-noise models to describe the dynamic

relationship between climatological inputs and water-table
depths (Box and Jenkins 1976; Hipel and McLeod 1994;
Tankersley and Graham 1994; Van Geer and Zuur 1997;
Yi and Lee 2003; Von Asmuth and Knotters 2004; Von
Asmuth et al. 2008). In the same way, geostatistical
methods are used to make probabilistic statements about
quantities of interest at non-measured locations (Kitanidis
1997; Pebesma 2006). In general, these studies measure
an attribute in relation to its spatial coordinates, but other
GIS datasets can provide additional information for spatial
prediction purposes, entering the prediction equations as
predictors in a regression model, or as correlated meas-
ures. Pebesma (2006) states that in an environmental
context, policy makers may be interested in aggregated,
regional estimates from certain smaller or larger regions.

Stochastic simulation of time-series models
and calculation of groundwater statistics
The first step in time-series analysis is to identify a model able
to describe the time processes (Hipel and McLeod 1994).
Ideally, the time-series model should not be based just on
statistical methods, but should also include some physical
insight about water-table dynamics. The PIRFICTmodel is an
alternative to discrete-time transfer function-noise models
(Von Asmuth et al. 2002). PIRFICT is an acronym for
“predefined IR function in continuous time”. The predefined
IR (impulse response) function is a Pearson III distribution
function (PIII df), which describes the model response (water-
table variation) to the system inputs. In addition, the PIRFICT

Fig. 1 Map of South America showing the Guarani Aquifer System outcrop areas and inset map of the Onça Creek watershed, located in
the central part of São Paulo province, Brazil
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model has a stochastic component (noise term) that accounts
for model uncertainty. The parameters of the adjusted IR
functions have a physical meaning, since they represent the
influence of drainage resistance, storage coefficient of the soil
and the dispersion time of precipitation through the unsatu-
rated zone (Von Asmuth and Knotters 2004).

In the simple case of an undisturbed phreatic system,
the relationship between water-table dynamics and system
inputs can be modelled as:

h tð Þ ¼
XN
i¼1

h�i tð Þ þ d þ r tð Þ ð1Þ

h�i tð Þ ¼
Z t

�1
Ri tð Þqi t � tð Þdt ð2Þ

r tð Þ ¼
Z t

�1
’ t � tð ÞdW tð Þ ð3Þ

where h [L] is the observed groundwater level at time t
[T], hi* [L] is the predicted groundwater-level change,
written as a convolution integral, at time t credited to
stress i, d [L] is the groundwater level corresponding to
the local drainage level estimated from the data, and r
represents the residuals series [L]. In the second and third
equations, Ri [L/T] is the value of stress i at time τ, θ is the
IR function [−], ϕ is the noise IR function [−] and W [L] is
a continuous white noise (Wiener) process with properties
E{dW(t)}=0, E[{dW(t)}2]=dt, E[dW(t1)dW(t2)]=0, t1≠ t2.

VonAsmuth et al. (2008) also introduced a more complex
approach using multiple input stress series. They distin-
guished several types of stress, including precipitation,
evapotranspiration, groundwater withdrawal (or injection),
surface-water levels, barometric pressure and hydrological
interventions. In the present study, hi*(t) is credited to the
precipitation and evapotranspiration stresses, modelled as
transfer function noise by the PIRFICT model as follows:

h�p tð Þ ¼
Z t

�1
p tð Þqp t � tð Þdt ð4Þ

h�et tð Þ ¼
Z t

�1
�et tð Þf qp t � tð Þdt ð5Þ

where p is the precipitation intensity at time t [L/T], et is
the evapotranspiration intensity at time t [L/T], and ƒ is a

reduction function for et [−] depending on soil and land
cover. The effect of evapotranspiration et on the ground-
water levels is the same as the effect of precipitation p, but
negative. When Eqs. 4 and 5 are summed as hi*(t) in
Eq. 1, evapotranspiration influence is subtracted from
precipitation, similar to a water balance. The calibrated IR
function θ and the noise IR function ϕ are responsible for
describing the local hydrogeological conditions found at
each well location. An important advantage in the use of
the PIRFICT model compared with discrete-time transfer
function-noise models (Von Asmuth and Bierkens 2005)
is that it can deal with input and output series which have
different observation frequencies and irregular time
intervals, as found with typical monitoring data.

Time-series models, calibrated with observed water-
table depths for a limited number of years, enable us to
simulate series of extensive length using precipitation
surplus/deficit as the input variable (Knotters and Van
Walsum 1997). The stochastic simulation of the PIRFICT
model is applied to simulate random realizations of the
model to predict extreme water-table levels over time. The
simulation generates long-term realizations, reconstructed
from longer climatological series of precipitation and
potential evapotranspiration (e.g. 30 years), or other
hydrological records, as inputs. Statistics of groundwater
levels can be estimated for the series generated by the
PIRFICT model simulation. In this procedure, the PIR-
FICT model works as a filter in time, given by a
convolutional process. Basically, the hypothesis is that
signals of finite duration, transmitted through a series of
linear systems, eventually assume a simple shape charac-
terized by the IR function adjusted for the system (Mass
1994). This operation considers the shape of the PIII df
adjusted from the parameters of each model. The
interactions between the input stress signals and the
system can be regarded as an operation in the time
domain between the frequency expansion of each input
signal and the frequency response of the groundwater
system. The word signal means an observed and measur-
able phenomenon, which changes its magnitude in the
course of time, and which has a property that is
propagated. The signal changes its shape while passing
through a system, so that it might be said that the system
transforms the signal and the IR function of the composite
system can be derived from those subsystems by
convolution. The resulting series will represent the
prevailing hydrological and climatic conditions, rather
than specific meteorological circumstances during the
monitoring period of water-table levels (Manzione et al.
2008). With this procedure, it is possible to avoid short-
term disturbances from extreme climate events in the
simulated time series, once the noise in the series has been
filtered out, based on the aquifer system response to model
climatological inputs (which is much slower than to
climate variations). Then, probability density functions
(PDF) are calculated for any date of interest in the
agricultural calendar of the region to account for extreme
levels. These levels are indicated by percentiles in the
PDFs. The assessment of risk requires an understanding of
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extreme events, which are far from average by definition
(Winter 2004). The uncertainty is taken into account by
the probabilities thresholds calculated from the PDFs and
established in risk management by the decision makers.

In this study, random sampling from a normal
distribution was applied, with March 18 and October 12
being chosen for the calculation of groundwater-level
statistics. For these dates, the mean highest and mean
lowest levels, respectively, were obtained from the
monitoring series. To enable risk management of extreme
water-table levels, two different levels of probability were
calculated, one for each selected date. First, a 95 %
probability level scenario was evaluated for March 18 as a
measure for shallow water-table risk. A shallow water
table can be a problem during the rainy season because it
can stop machinery and make ploughing and planting
operations impossible. Also, it can influence soil con-
ditions, decreasing soil redox potential, increasing pH in
acid soils, decreasing pH in alkaline soils and increasing
conductivity and ion-exchange reactions. These modifica-
tions in the soil conditions might influence plant growth,
by affecting the availability of nutrients and regulating
uptake in the rhizosphere. Using the 0.95 percentile of the
PDF, it can be said that in this area, the probability of the
water levels being higher than the values of the resulting
map is just 5 %, and 95 % for deeper water levels. The
limit established for risk of shallow water-table levels on
March 18 was 0.5 m below the ground surface. Second, a
5 % probability level was considered for October 12 as a
measure for water-shortage risk. Using the 0.05 percentile,
in this area, there is a 5 % probability that water levels will
be deeper than the values of the resulting map, and 95 %
for higher water levels. The limit established for water-
shortage risk on October 12 was 25 m, exceeding the
depth of all wells (dry wells characterize a scenario of
water shortage in the area). This can be a problem during
the beginning of the plants’ development, affecting water
availability and resulting in production losses. Mapping
these extreme levels, it is possible to determine areas
susceptible to extreme shallow and extreme deep levels in
the watershed.

Geostatistical analysis: predicting water-table levels
in time and space
The transfer function-noise models, once calibrated to a
set of time series observed in various wells in an area, can
have their predictions interpolated spatially, using ancil-
lary information related to the physical basis of these
models (Knotters and Bierkens 2001). Ancillary informa-
tion can be used to improve model predictions since there
is a strong relationship between the secondary variables
and the target variable. Also, using geostatistical inter-
polators is another approach to aggregating physical
knowledge about the processes into the statistical model.
When abundant ancillary information related to the
processes is available, it is possible to not only improve
the accuracy of the spatial predictions, but also yield more
plausible spatial patterns and enhance the physical

meaning of the maps, using digital elevation models
(DEM) and/or classified satellite images (Hengl et al.
2007; Manzione et al. 2010; Peeters et al. 2010).

In this approach, the spatial differences in water-table
dynamics are determined by the spatial variation in the
system properties, while its temporal variation is driven by
the dynamics of the input into the system. In this study
case, the values of simulated water-table levels are
interpolated spatially using geostatistical techniques
(Pebesma 2004). The variability of n observations Z(s),
with s denoting spatial location, is the sum of a trend m(s)
and a residual e(s):

Z sið Þ ¼ m sið Þ þ e sið Þ;
i ¼ 1; . . . ; n

ð6Þ

where the trend m(s) is a deterministic linear function of s
+1 unknown constants βi and known covariates fi(s), fitted
by linear-regression analysis:

m sið Þ ¼ b0 þ b1 � f1 sið Þ þ . . .þ bp � fp sið Þ þ e sið Þ ð7Þ
and the residual e(s) is a zero-mean random variable with
stationary covariance, dependent only on separation
vectors si – sj interpolated using kriging.

Complete coverage of f(s) in the database for predicting
Z(s0) at unobserved locations s0 of Z, can help to use all
information available optimally, find satisfactory agree-
ment between model and data and yield adequate
predictions (Pebesma 2006). The universal kriging pre-
dictor of Z(s0) is:

bZ s0ð Þ ¼ Pp
k¼0

bbk � fk s0ð Þ þPn
i¼1

li � e sið Þ
f0 sið Þ ¼ 1

ð8Þ

The βk are trend model coefficients estimated using
Generalized Least Squares (GLS), fk(s0) is the k-th
external explanatory variable (predictor) at location s0, p
is the number of predictors, λi are the kriging weights and
e(si) are the zero-mean regression residuals. The model is
considered to be the best linear predictor for spatial data
(Christensen 2001). The zero-mean spatially correlated
residual has its spatial-correlation structure characterized
by a semivariogram. The semivariogram is the spatial
estimator of dependence between observation points and
provides information to the kriging system when
performing spatial interpolation. The results of spatial
interpolation are evaluated using cross-validation (Chilès
and Delfiner 1999; Pebesma 2004).

The DEM with 10-m resolution was used as ancillary
information to predict water-table depths for the whole
Onça Creek watershed (Fig. 2). The resulting maps can be
used to evaluate possible states of the phreatic surface or
risk areas for extreme deep or shallow water-table levels
during any period of the year. This is valuable information
for decision making and water-management policies, in
order to balance economic and ecological purposes in
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groundwater exploitation. The method presented has
demonstrated potential for unconfined and porous aquifers
in Brazil. Manzione et al. (2010) presented the results of
stochastic modeling in the Brazilian Cerrados using maps
with physical meaning determined by the relationship
between water-table levels and elevation, considering
them more understandable for the general public, rather
than tables containing statistical intervals.

Results and discussion

Calibration and simulation of time-series models
in the Onça Creek watershed
The calibrations and simulations of the PIRFICT model
were performed for 21 wells. Two wells of the monitoring
network were removed from the analysis due problems in
the wells and discontinued monitoring (wells 1 and 6).
The calibration statistics calculated for these 21 wells are
presented in Table 1.

The calibrations suggest reasonable model perfor-
mance, with an average percentage of the variance
explained by the models (EVP) of 78.80 %; average root
mean square error (RMSE) of 0.530 m; and average root
mean squared innovation (RMSI) of 0.271 m. The RMSI
values represent the mean model error due to time lag (t
versus t – 1), and is understood as a measure of model
accuracy (Von Asmuth and Bierkens 2005). Since the
RMSI values are smaller than the RMSE values, the
PIRFICT-model assumptions are true, because the model
preserves the memory of previous time steps in order to
adjust the subsequent predictions to actual observations.
Considering the length of the time series, with 7 years of
monitoring data, the results are satisfactory. In some wells,
the results were affected by changes in land use. Well 8,
for example, had the land use changed from reforestation
with eucalyptus to sugar cane. The water demand from
these fields is different, and in this case, not only

precipitation and evapotranspiration can influence the
response of the aquifer system. Wells 9 and 10 are located
under reforestation with eucalyptus. During the monitor-
ing period the forest was cleared, and without the trees,
the water levels rose until the plants sprouted again and
started to intercept the meteoric water that reaches the soil
and infiltrates. In these cases, Von Asmuth et al. (2008)
recommend introducing other inputs into the PIRFICT
model in order to characterize the aquifer response due to
multiple stresses.

Figures 3 and 4 present the calibrated models for wells
16, 17, 18 and 19, and their adjusted IR functions,

Fig. 2 a Digital elevation model with 10-m resolution in m above sea level (asl); and b Landsat 5 R(5)G(4)B(3) image composition for
2008’s land use for the Onça Creek watershed

Table 1 Statistics of PIRFICT-model calibrations for 21 monitoring
wells in the Onça Creek watershed from April 2004 to July 2011

Well EVP (%) RMSE (m) RMSI (m)

2 75.02 1.026 0.479
3 84.55 0.230 0.117
4 90.69 0.221 0.085
5 87.62 0.281 0.155
7 73.22 0.780 0.325
8 69.78 1.137 0.538
9 62.18 1.285 0.350
10 68.00 0.777 0.210
11 86.20 0.297 0.236
12 78.20 0.809 0.473
13 78.27 0.512 0.319
14 79.64 0.492 0.310
15 82.30 0.409 0.180
16 86.31 0.260 0.148
17 79.16 0.568 0.355
18 75.87 0.804 0.597
19 80.74 0.762 0.422
20 79.41 0.239 0.136
21 68.14 0.099 0.102
22 82.63 0.128 0.087
23 86.95 0.063 0.063
Mean 78.80 0.530 0.271
SD 7.43 0.357 0.162

EVP percentage of explained variance; RMSE root mean squared
error; RMSI root mean squared innovation; SD standard deviation
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respectively. These wells are located in a transect, where
well 16 is the closest to the drainage and well 19 the more
distant, with wells 17 and 18 between them. The levels are
more superficial and react faster close to the river, as can
be seen in the behaviour of well 16. More distant from the
river, the soil coverage gets thicker and the memory of the
aquifer system increases.

Once the dynamic relationship between precipitation
surplus and water-table levels was established and
calibrated for all wells, the PIRFICT-model was simulated
more than 1,000 times. The resulting series are 1,000
realizations of the PIRFICT-model with 30-year lengths,
which were sampled for the dates March 18 and October
12. The procedure reconstructed the series of water-table
levels for the unobserved period, based on the available
precipitation and evapotranspiration climatological series
with longer length. The simulated series preserved the
seasonal patterns of water-table oscillation in each of the
wells, and the confidence intervals of each series were
narrow, denoting a good performance for the simulation.

Mapping simulated water-table levels for selected
dates
To estimate the water-table levels for the whole area of the
Onça Creek watershed, the spatial correlation structure of
the selected percentiles of the simulated time series for
March 18 and October 12 are characterized by semivario-
grams with a linear trend given by elevation. The
interpolation considered a linear combination of the
observed values and a deterministic trend derived from
the DEM with 10-m resolution in the universal kriging
system. The linear correlation between elevation values
and the target variable predicted water-table levels
determined by the coefficient of determination (r2) for
March 18 was 0.78 and for October 12 was 0.76. This
confirms the hypothesis that in the upper elevations, the

water levels are deeper than in the lower elevations (close
to the drainage), where the levels are shallow, following
the geomorphological patterns of the watershed (Kitanidis
1997). The relationship between variables not only
improved the estimations but also aggregated information
for the western part of the watershed where there were no
wells (see Fig. 1). The spatial structure modelled for both
scenarios was similar. For March 18, a spherical model
was used with 0.5 nugget effect, 20.5 sill and 1,000-m
range, and for October 12, a spherical model was used
with 0.5 nugget effect, 21.5 sill and 1000-m range. The
semivariance decreased 80 and 71 % for the two models,
respectively, adding elevation as ancillary information to
estimate water-table levels when compared with semi-
variograms using only water-level observations to model
the spatial structure of the simulated levels.

The maps with the 0.95 percentile of the water-table
level PDF simulated for March 18 and detected risk
areas of shallow water-table levels are presented in
Fig. 5. In wet years, the map of 0.95 percentiles can
be used, for instance, to select areas with risk of
shallow levels that can stop machinery and delay field
operations (Manzione et al. 2010). In the case of
March 18, the two risk spots shown in Fig. 5b
correspond to a wetland in the outlet of the watershed
where no agricultural practice takes place and to a
barrage built for irrigation purposes. The maps with
the 0.05 percentile of the water-table level PDF
simulated for October 12 and detected risk areas of
water-table levels deeper than 25 m are presented in
Fig. 6. In dry years, the map of 0.05 percentiles can
be used to select areas with risk of water shortage and
dry wells (Manzione et al. 2008). In Fig. 6, it is
possible to detect four spots with risk of levels deeper
than 25 m. The spots on the borders of the watershed
deserve attention because of the high uncertainty about
the predictions, and the spot in the eastern part of the

Fig. 3 Examples of PIRFICT-model calibrations for water-table level time series at wells 16, 17, 18 and 19 in the Onça Creek watershed
(symbols=observations; lines=modeling results)
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watershed because it is close to irrigated citrus fields.
These limits are just examples and can be changed and
adjusted for different purposes.

The scenarios presented for March 18 and October 12
contain valuable information about groundwater dynamics
in the watershed, even with all the sources of uncertainty
already mentioned. From these maps, water boards and
land-use planners can start a discussion about strategies
for the next cultivation season and/or harvest planning,
based on the prevailing climatological condition and soil-
water balance. It is important to mention that areas with
shallow levels represent more liability than areas with
deep levels, since the range of the variation is much
smaller and less uncertain. It is also an indicator that
efforts to improve the monitoring network should be
concentrated on those areas with large uncertainty, if it is
desired to improve model results. Some would say that
scenarios for extreme percentiles are unrealistic, since it

would be impossible to imagine that in all spots in an area
the water-table levels are reaching such extreme thresh-
olds. However, for planning activities, these maps could
reveal potential risk areas that deserve attention during
land-use regulation and when assessing the resilience of
agricultural activities. Resilient systems can have a higher
probability of success in these uncertain times of climate
change.

The results of the spatial interpolation for March 18
and October 12 were evaluated by cross-validation
(Table 2). For March 18, the standard deviation (SD)
values for the observations are higher than those of the
predictions, pointing to smoothed interpolation values (for
example, 8.38 versus 7.33). The mean predicted values
reflect the mean observed water-table levels. Also, the
mean interpolation errors are small (−0.04 m). The mean
and standard deviation of the Z-score had values close to
zero and one, respectively, characteristics of the kriging

Fig. 4 Impulse response functions adjusted for the input series of precipitation, for wells 16, 17, 18 and 19 in the Onça Creek watershed

Fig. 5 a Estimated water-table depths that will be exceeded with 5 % probability; and b areas with risk of water-table depths shallower
than 0.5 m; on March 18, for the Onça Creek watershed
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system (Chilès and Delfiner 1999; Christensen 2001) as a
BLUE (Best Linear Unbiased Estimator). For October 12,
the SD values for the observations are also higher than
those of the predictions (for example, 8.10 versus 6.89).
The mean predicted values reflect the mean observed
water-table levels and the mean interpolation errors are
small (−0.01 m). The mean and standard deviation of the
Z-score had values close to zero and one, respectively. The
results for both dates suggest good performances of the
kriging system and the estimations.

Due to the lack of information, to obtain better results
in the spatial interpolation, the degree of uncertainty in the
maps should be considered for further analysis. The
sources of uncertainty can be explained as resulting from
different sources: uncertainties related to the data (ob-
served water-table levels, climatic database, measured and
estimated quantities); uncertainty associated with time-
series modeling (model calibrations); and with the model
of spatial variation (lack of data to cover all the watershed
and description of the spatial structure of the phenomena).
However, understanding these errors gives a margin for
water planning; for example, installing longer cables and
connections during well construction and positioning
the water pump 10 m deeper for operation. Also, for
more than half of the watershed area, there was no

information about the water-table dynamics. Now it is
possible to imagine its behavior from the geomorphol-
ogy of the region, based on the physical meaning of the
final maps.

Integration of stochastic methods as a framework
to predict water-table levels for GAS
This kind of integration of methods deserves attention
because it can offer a framework for establishing a
dialogue between basic research and applied technology
(Christakos 2004). Stochastic models can capture the
evolution of risk as a dynamic concept, essentially a
probabilistic concept that changes in space and time
(Winter 2004). For Freeze (2004), there is a need to
adjust the complexity of modeling with decision-makers
expectations, and, he remarks that uncertainty analysis
feeds risk analysis and consequently economic analysis. In
developing counties like Brazil, where data scarcity is
often a problem, sometimes model simplicity is required
to see modelling results applied in decision systems as
routine. It helps clients to select the most cost-efficient
strategies for their purposes. Pappenberger and Beven
(2006) said that users need predictions for future decisions
based on an assessment of potential future states and the
risk associated with them, products of uncertainty estima-
tion. For Neuman (2004), real-world situations must be
analyzed using methods that incorporate realistic combi-
nations of randomness (stochasticity) and determinism
(via conditioning). Dagan (2002), Neuman (2004) and
Renard (2007) highlight the promotion of stochastic
software to facilitate application of these concepts by
practitioners. In addition, it is recommended that visual-
izations of evaluated scenarios are provided, to enhance
the interpretation of the results via maps. The fact that
many decision makers cannot deal with uncertainty, a
topic addressed by Pappenberger and Beven (2006),
Christakos (2004), Freeze (2004), Sudicky (2004), Renard

Fig. 6 a Estimated water-table depths that will be exceeded with 95 % probability; and b areas with risk of water-table depths deeper than
25 m; on October 12, for the Onça Creek watershed

Table 2 Summary of cross-validation for spatial interpolation of
water-table levels at March 18 and October 12

Observed Predicted Pred. –
Obs.

Pred.
SD

Z-score

March 18
Mean −10.44 −10.44 −0.04 3.07 −0.02
SD 8.38 7.33 5.26 1.37 1.27
October 12
Mean −11.49 −11.49 −0.01 3.13 −0.01
SD 8.10 6.89 5.36 1.41 1.30

Pred. – Obs. predicted minus observed values; SDstandard
deviation; Z-score=(Pred – Obs)/kriging variance. All units: meters
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(2007) and others, motivates efforts to familiarize the
general public with probabilistic concepts and to develop
tools which allow the results to be visualized. In this
process, is necessary to continue and increase the
communication of these kinds of results from academia
and from professionals familiar with stochastic theories
(Ginn 2004; Renard 2007). Maps containing physical
information about the underlying problem are important,
since the visualization of groundwater scenarios is difficult
for many people. The degree of uncertainty contained in a
map should be evaluated and taken into account. Depend-
ing on the purpose of the study, the level of uncertainty
can be established and used as a risk measure.

The Brazilian government and local authorities are making
several efforts to improve the GAS monitoring network
coverage for hydro-climatological purposes. In the near future,
a wide range of time series will be available for practitioners,
so that they can analyse the data for specific studies. The
results of the environmental protection and sustainable
development of the Guarani Aquifer System project (OAS
2009) are already available, and present new discoveries about
the reservoir. New agreements have been reached to continue
these studies. All sources of information can be aggregated in
the decision-making processes, to help groundwater manage-
ment at different scales, from thewatershed scale (which forms
the basis of the Brazilian National Water law), to the regional
and continental domains of the GAS. In particular, for
groundwater and for GAS, it is an opportunity to reset what
Hunt and Doherty (2011) called the balance of theory and
application. The authors ask for a renewed emphasis on
applications designed to test theoretical constructs from the
collaboration between theoretical and applied researchers, with
training elements explicit in the work plan, not left to chance.
Sustainable management and protection of GAS resources can
be achieved by analysing the aquifer globally but acting
locally onwater-management issues. Accurate predictions will
be difficult to reach for the whole aquifer domain. Local
actions should be based on local analysis of aquifer dynamics
and possible states or scenarios for groundwater management
evaluated, discussed and considered. Stochastic methods
appear to be a useful alternative, to introduce research and
field monitoring results into the discussion meetings. Under-
standing model uncertainty and experimenting with these
results is desirable for this purpose.

Conclusions

Time-series analysis, combined with geostatistics, mod-
elled the dynamic behaviour of water-table levels in the
Onça Creek watershed, resulting in maps with possible
water-table levels for specific dates. The PIRFICT model
described different hydrological behaviours within a
watershed, from the same data set, and simulated water
levels for the selected dates of March 18 and October 12.
Stochastic hydrogeology applications can provide useful
information for real-world application and assist the
decision-making processes in groundwater management
and long-term water policy. The visualization of the final

results in the form of maps enhanced the comprehension
of the stochastic results, as is routine in land-use planning
and evaluation of natural resources. For large aquifers like
the GAS, it is important to explore and aggregate different
sources of information when modeling monitoring data,
and to consider uncertainty in the decision-making
processes for groundwater management and quantitative
estimations.
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