Application of “panel-data” modeling to predict groundwater levels

in the Neishaboor Plain, Iran

A. Izady - K. Davary - A. Alizadeh - B. Ghahraman -
M. Sadeghi - A. Moghaddamnia

Abstract The aim of this research was to predict
groundwater levels in the Neishaboor plain, Iran, using a
“panel-data” model. Panel-data analysis endows regres-
sion analysis with both spatial and temporal dimensions.
The spatial dimension pertains to a set of cross-sectional
units of observation. The temporal dimension pertains to
periodic observations of a set of variables characterizing
these cross-sectional units over a particular time span.
Firstly, the available observation wells in the Neishaboor
plain were clustered according to their fluctuation behav-
ior using the “Ward” method, which resulted in six areal
zones. Then, for each cluster, an observation well was
selected as its representative, and for each zone, values of
monthly precipitation and temperature, as independent
variables, were estimated by the inverse-distance method.
Finally, the performance of different panel-data regres-
sion models such as fixed-effects and random-effects
models were investigated. The results showed that the
two-way fixed-effects model was superior. The perfor-
mance indicators for this model (R*=0.97, RMSE=
0.05m and ME=0.81m) reveal the effectiveness of the
method. In addition, the results were compared with
the results of an artificial-neural-network (ANN)
model, which demonstrated the superiority of the
panel-data model over the ANN model.
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Introduction

Groundwater resources are considered to be significant
and economical water resources. The comprehensive
recognition and proper utilization of this valuable
resource, especially in arid and semi-arid areas, has an
important influence on the sustainable development of
social and economic activities. Insufficient recognition
and over-exploitation of aquifers leads to ever-growing
depletion of the groundwater resources over time, man-
ifested in declining groundwater levels. This results in
decreasing discharge from ganats and springs, water-
supply rationing, excessive reductions in agricultural
yields, emergence of dry wells, groundwater quality
deterioration and groundwater-flow pattern variations
(Nayak et al. 2006). Therefore, it is necessary to predict
groundwater-level fluctuations for a better understanding
of the aquifer behavior in these areas. Prediction of water
levels, if forecasted well in advance, may help the
administrators to better plan and manage the groundwater
utilization.

To date, a wide variety of models have been developed
for and applied to groundwater-level forecasting. These
include empirical time-series models, physically based or
mechanistic models, and artificial-intelligence models
(such as artificial neural networks and fuzzy logic).
Empirical time-series models have been widely used for
water-table depth modeling (e.g. Bierkens 1998; Knotters
and Van Walsum 1997; Tankersley et al. 1993; Van Geer
and Zuur 1997). The major disadvantage of an empirical
approach is that these models are not adequate for
forecasting when the dynamic behavior of the hydrolog-
ical system changes with time (Bierkens 1998). On the
other hand, the major disadvantage of physically based
models is that they require enormous quantities of data
that are generally difficult or expensive to collect,
especially in developing countries. In an aquifer, the
relationships between precipitation, aquifer abstractions,
temperature, and groundwater levels are likely nonlinear
rather than linear, and the models that approximate the
processes in a linear form fail to represent the processes
effectively (Bierkens 1998). Artificial neural network
(ANN) and fuzzy-logic models (e.g. Allen et al. 2007,
Maier and Dandy 2000; Sami et al. 2002) are greatly
suited to dynamic nonlinear system modeling. However,
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these models tend to be used when understanding of the
system is inadequate, and obtaining accurate predictions is
more important than conceptualizing the actual physics of
the system (Daliakopoulos et al. 2005).

Empirical time-series models can predict groundwater
levels in observation wells separately. However, Izady et
al. (2009) developed a new model based on time-series
data that can predict groundwater levels in multiple
observation wells at the same time. Although the results
of the model were good, the physics of the system were
not considered in the model. In comparison, the “Panel-
data” model (Arellano 2003; Baltagi 2005; Hsiao 2003) is
able to predict groundwater levels in different observation
wells simultaneously. Moreover, its most important bene-
fits are two-fold: (1) to improve the efficiency of
estimates; and (2) to broaden the scope of inference
(Baltagi 2005; Hsiao 2003). In other words, panel-data
models are better able to study the dynamics of adjust-
ment. Indeed, cross-sectional distributions (datasets that
are spatially distributed but at a single moment in time)
that look relatively stable hide a multitude of changes.
Actually, many effects that are simply not detectable in
pure cross-sectional or pure time-series data can be
analyzed and explained using panel-data modeling.

The term “panel-data” refers to the pooling of
observations on a cross-section of observation wells over
several time periods. This can be achieved by surveying a
number of observation wells and following them over
time. On the other hand, panel-data analysis endows
regression analysis with both a spatial and temporal
dimension. The spatial dimension pertains to a set of
cross-sectional units of observation. The terms spatial and
cross-sectional are used here in the sense of data, and not
in the sense of physical landforms. In other words, a
cross-section is a set of records/data at specific locations at
the same time. The temporal dimension pertains to
periodic observations of a set of variables characterizing
these cross-sectional units over a particular time-span
(Yaffee 2003). The combination of time-series with cross-
sections enhances the quality and quantity of data in ways
that would be impossible if only one of these two
dimensions were used (Gujarati 2003). Moreover, an
important advantage of the panel-data model is that
valuable information about relationships between different
observation wells can be extracted (Hsiao 2003). Panel-
data models can be placed into two categories: static and
dynamic models. Each of these can be sub-categorized
into complete or balanced, with the same temporal length
for all individuals, and incomplete or imbalanced, with
different temporal lengths.

Unfortunately, application of panel-data modeling in
the field of water resources management has so far been
limited, although it has been widely applied in economics
research (e.g. Arbués et al. 2004; De Cian et al. 2007;
Moeltner and Stoddard 2004; Zhang and Fan 2001). The
objective of this study was to investigate the capabilities
and potential of panel-data modeling as a tool for the
prediction of groundwater-level fluctuations in the Neish-
aboor plain, Iran. A thorough review of panel-data history
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is given by Nerlove (2000), who identified papers by
Hildreth (1949 and 1950) as the first published works
about the panel-data technique. Interested readers are
referred to Baltagi (2005) and Hsiao (2003).

Study area and datasets

Study area
The Neishaboor plain is located between 35°40’ N to 36°
39" N latitude and 58°17" E to 59°30" E longitude with
semi-arid to arid climate, in the northeast of Iran as shown
in Fig. 1. Its hydrological boundaries are with the
Yengcheh watershed in the north, the Mashhad and Sang
Bast watersheds in the east, the Jolgeh Rokh watershed in
the south, and Sabzevar and Soltan Abad watersheds in
the west. The total geographical area is 7,350 km?,
consisting of 3,160 km® mountainous terrain and about
4,190 km? of plain. The maximum elevation is located in
Binalood Mountains (3,300 m above sea level), and the
minimum elevation is at the outlet of the plain (Hosein
Abad Jangal) at 1,050 m above sea level. The average
annual precipitation is 234 mm, but this varies consider-
ably from one year to another. The mean annual temper-
atures at the Bar-Aria station (in the mountainous area)
and Mohammad Abad-Fedisheh station (in the plain area)
are 13 and 13.8°C, respectively. The annual potential
evapotranspiration is about 2,335 mm (Velayati and
Tavassloi 1991). According to governmental reports,
about 93.5% of the withdrawals in the Neishaboor
watershed are consumed by agriculture, mostly in irriga-
tion. Moreover, the share of surface-water resources in
total withdrawals is about 4.2%. It means that groundwa-
ter is a primary source of water for different purposes and
surface water plays a minor role in providing water supply
services in the Neishaboor watershed. Therefore, crop
evapotranspiration (ET.— evapotranspiration from dis-
ease-free, well fertilized crops, grown in large fields,
under optimum soil water conditions, and achieving full
reduction under the given climatic conditions—is respon-
sible for about 90% of water-resources consumption
(Hoseini et al. 2005).

During the last decade, the Neishaboor plain has faced
a severe problem of depletion of groundwater resources,
which has resulted in the general prohibition, since 1986,
of any further water-resources development in this area by
the Iranian Energy Ministry (Hoseini et al. 2005). There
are many unauthorized wells in the plain and pumping is
not regulated, resulting in over-exploitation of the aquifer,
which has caused an annual decline in groundwater level
of about 0.90 m in recent years. Moreover, some recent
studies have revealed an increasing trend in long-term
mean annual precipitation (Ghahraman 2006; Ghahraman
and Taghvaeian 2008). These studies have also revealed a
similar and more quickly increasing trend in evapotrans-
piration. This has resulted in an increase in irrigation
water requirement and subsequently greater deficiency in
agricultural water resources. More conflicts and complex-
ities are bound to occur over the plain, unless some
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Fig. 1 Location of the study area in Khorasan-Razavi province in northeastern Iran

profound water-resources management programs are put
into action.

Description of datasets

With respect to the aquifer conceptual model, the
relationship between independent and dependent variables
can be described as follows:
[_[iJrl :f(l_ll77P177ET'17) (1)
where H is groundwater level for each month as measured
in observation wells (m asl), P is monthly precipitation
(mm), ET is monthly reference evapotranspiration (mm)
and 1 is the time step (monthly). Therefore, i+1 refers to
the next month, while i-... refers to current and previous
months.

The monthly averages of precipitation and temperature
were derived from data collected from the available
stations within and outside the Neishaboor plain (Fig. 1).
The temperature values were used to compute reference
evapotranspiration (ET)—evapotranspiration from a ref-
erence surface—using the method of Hargreaves and
Samani (1982), which was chosen because of its simplic-
ity and the general availability of data. The Penman-
Monteith (Allen et al. 1998) and Blaney and Criddle
(1950) methods could not be used because of insufficient
data. Precipitation and ET,, were selected as surrogates of
groundwater recharge and withdrawal respectively. The
use of these parameters has been widely reported in the
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literature for groundwater-level predictions (Coppola et al.
2003; Coulibaly et al. 2001; Daliakopoulos et al. 2005).
The raw data for all these parameters were available for
the period 1992-2003. Missing values (9 monthly values)
within the collected data were interpolated from the
existing measurements with the help of a cubic-spline
method (Daliakopoulos et al. 2005).

For the verification of observation well records,
available length of record and distance from external
influences were taken into account. External influences
include: rivers, mountains and agricultural wells, which
can all affect the groundwater-level fluctuations. It was
obvious that groundwater-level fluctuations for any obser-
vation well near agricultural wells and/or rivers were
higher than other places in the plain. It means that
groundwater-level fluctuations are affected by the men-
tioned external influences and groundwater-level of these
observation wells is not reliable. To assure the validity of
data from the observation wells, water-resources experts
were consulted in order to capture their experience. In
conclusion, observation wells for which the length of
record was too short were omitted, and out of 54
observation wells in the study area, only 39 were selected
(Fig. 2; Table 1).

Methodology

This study was undertaken in four steps, namely: (1)
clustering of the observation wells; (2) data preparation
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Fig. 2 Existing and selected observation wells in the Neishaboor plain

for each clustered zone; (3) groundwater-level model-
ing via panel-data and ANN models; and (4) a
comparison between the results of the two models.
These steps are briefly described in this section, while
a thorough review of panel-data theory is given in
section Theory of panel-data regression modeling. Four
measures to compare the results are discussed at the
end of this section. Comparison between the results of
the two models is presented in section Analysis of
modeling results.

Cluster analysis classifies a set of observations into two
or more mutually exclusive unknown groups based on
combinations of interval variables (David 1997). To
reduce the number of contributing observation wells and
to give equal weights to each zone, cluster analysis was
applied in this study. The 11 average monthly groundwa-
ter-level datasets were used for clustering. Being a popular
technique, Ward’s clustering method was employed using
Minitab 15.0 software (www.minitab.com/education). In
this process, cluster membership is assessed by calculating
the total sum of squared deviations from the mean of a

cluster. The criterion for fusion is that it should produce
the smallest possible increase in the error sum of squares
(Ward 1963):

K m Nk 2
TSSDM =235 (o - 2k) @)
k=1 j=1 i=1
Ni
it
k i=
: 3
Y= 3)

where TSSDM is the total sum of squared deviations from
the mean, &, j and i denotes the clusters, time-series and
cross-section dimension, respectively, K is the number of
clusters, m is the number of variables (11 average monthly
groundwater levels), Nk is the number of members
(observation wells) within each cluster, yk is the
dimensionless mean value of water table fluctuations for

Table 1 Names and codes of the selected observation wells in Neishaboor plain (locations shown on Fig. 2)

Code Name Code Name Code Name

1 Poshte Khakriz 14 Arazie Raeisi 27 Soltan Abad

2 Jadeh Mashhad - Neishaboor 15 Rahe Derakht Senjed 28 Gharbe Soltan Abad
3 Arazia Nobahar 16 Mohammad Abad 29 Esmat Abad

4 Filkhaneh 17 Garmab 30 Kale Tangale Khoshk
5 Rahe Baghrood 18 Zarin Dasht 31 Chahe Ghargh

6 Baghshan Gach 19 Amir Abad 32 Arazia Mohandes

7 Seyyaed Abad 20 Ardameh 33 Mozaffar Abad

8 Aman Abad 21 Jonobe Shahr Abad 34 Dakale 79

9 Saleh Abad 22 Jonobe Hosein Abad 35 Ghabrestane Salari
10 Hasht Kilomertia Shahrak 23 Shomale Hosein Abad 36 Arazia Rahim Abad
11 Koshkak Rahe Shahrak 24 Restorane Binalood 37 Dah Shib

12 Eghbalia 25 Arazia Chehl Moghrian 38 Kazem Abad

13 Ahmadia 26 Baghriah 39 Deh Molla
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month j in cluster K and y{} is the dimensionless value of j
related to i in cluster K.

After clustering, data preparation for each zone was
performed. An observation well was assigned as cluster
representative for each cluster. For this reason, the sum of
squared deviations from the mean of a cluster (SSDM) for
all observation wells in that cluster were computed. Then,
for each cluster, the observation well with the least SSDM
was selected as its representative. Finally, values of
monthly precipitation and temperature, as independent
variables, were estimated by the inverse-distance method
(Alsaaran 2005; Tabios and Salas 1985) for each zone,
according to the coordinates of each cluster’s representa-
tive observation well. At this stage, for both types of
model (panel-data and ANN), available data were divided
into two sub-sets for training (parameter estimation) over
the period 1992 to 2002, and validation over the period
2002 to 2003.

To avoid a lengthy explanation, only a few important
facts about ANNs are included here. A “generalized feed-
forward” network was used in this study because this type
of network has been widely applied for groundwater
prediction and forecasting (Coppola et al. 2003; Coulibaly
et al. 2001; Daliakopoulos et al. 2005; Nayak et al. 20006).
This type of network was suggested by Maier and Dandy
(2000) because: (1) it has been found to perform well in
comparison with recurrent networks in many practical
applications; (2) it has been used almost exclusively for
the prediction and forecasting of water-resources varia-
bles; and (3) its processing speed “is among the fastest of
all models currently in use” (Masters 1993). Also,
sigmoidal-type transfer functions (in the hidden layers)
and linear transfer functions (in the output layer) were
employed, as suggested by numerous researchers (Kaastra
and Boyd 1995; Karunanithi et al. 1994).

For the panel-data model, Chow ( 1960), Breusch-
Pagan Lagrange Multiplier (LM) (Breusch and Pagan
1980) and Hausman-Wu (Hausman 1978) tests were
applied to select the best model in the training phase
(1992-2002). A Chow test is simply a test of whether the
coefficients estimated over one group of the data are equal
to the coefficients estimated over another. The Breusch-
Pagan test fits a linear-regression model to the residuals of
a linear-regression model and rejects the model if too
much of the variance is explained by the additional
explanatory variables. The Hausman-Wu specification test
is the classical test of whether a fixed or random-effects
model should be used. Then, using the best selected
model, groundwater levels were predicted for the valida-
tion phase (2002-2003).

Four different criteria were used in order to evaluate
the effectiveness of the model and its ability to make
predictions, as well as to compare the two models. These
included Coefficient of Determination (R?), root mean
square error (RMSE), maximum error (ME) and mean
normalized error (MNE). MNE was employed because the
range of groundwater-level fluctuation in the validation
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period was different for each observation well, and it
seemed that the normalized error value would be more
helpful. The MNE for each observation well was
calculated as follows:

hin—he
MNE — 2= 5] |NA” (4)

where h, and h. are the measured and estimated
groundwater levels, respectively, AZ is the range of
groundwater-level fluctuation in the period under consid-
eration, and N is the number of measured values.

Theory of panel-data regression modeling

Introduction

As already mentioned, panel-data analysis endows regres-
sion analysis with both a spatial and temporal dimension.
The spatial dimension pertains to a set of cross-sectional
units of observation. The temporal dimension pertains to
periodic observations of a set of variables characterizing
these cross-sectional units over a particular time-span.
Such models can be viewed as follows (Arellano 2003;
Mundlak 1978; Wooldridge 2002; Yaffee 2003):
yi=a+ BXytuy i=1,2,...N; t=1,2,.... T (5)
where i and ¢ denotes the cross-section and time-series
dimension, respectively, N is the number of cross-sections,
T is the length of the time-series for each cross-section, y
is a dependent-variable vector, X is an independent-
variable matrix, « is a scalar, 3 is the coefficient of the
independent-variable matrix and u is the error component
in the model.

The performance of any estimation procedure for the
model regression parameters depends on the statistical
characteristics of the error components in the model. The
panel-data procedure estimates the regression parameters
in the preceding model under several common error
structures. These error structures consist of one and two-
way fixed and random-effects models. If the specification
is dependent only on the cross-section to which the
observation belongs, such a model is referred to as a
model with one-way effects. A specification that
depends on both the cross section and the time-series
to which the observation belongs is called a model
with two-way effects. Therefore, the specifications for
the one-way model are (Baltagi 2005; Hsiao 2003;
Wooldridge 2002):

(6)

where p; denotes the unobservable individual-specific
effect and v;; denotes the remainder disturbance. Note that
u; is time-invariant and it accounts for any individual-
specific effect that is not included in the regression. The

Uiy = Ui + Vit
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remainder disturbance v;; varies with individuals and time
and can be thought of as the usual disturbance in the
regression. Similarly, the specifications for the two-way
model are:

(7)

where A; denotes the unobservable time-specific effect.
Note that A, is individual-invariant and it accounts for
any time-specific effect that is not included in the
regression.

Apart from the possible one-way or two-way nature of
the effect, the other dimension of difference between the
possible specifications is that of the nature of the cross-
sectional or time-series effect. The models are referred to
as fixed-effects models if the effects are non-random and
as random-effects models otherwise (Baltagi 2005; Hsiao
2003; Wooldridge 2002).

Ui = M +Ai + vyt

The one-way fixed-effects model

In this case, the p; are assumed to be fixed parameters to
be estimated and the remainder disturbances stochastic
with +v; independent and identically distributed
IID(0,0%). Note that o2 is variance of the remainder
disturbance. The X|; are assumed independent of the v;
for all i and ¢ (Baltagi 2005; Hall 1987; Hsiao 2003;
Kangasharju 2000). Then Ordinary Least Squares (OLS)
estimator (Leng et al. 2007) is performed on Eq. (5) to get
estimates of o, B and p. If N is large, Eq. (5) will include
too many individual dummies, and the matrix to be
inverted by OLS is large and of dimension N+,
where k is the number of independent variables. In
fact, since o and 3 are the parameters of interest, the
least squares dummy variables (LSDV) estimator can
be obtained from Eq. (5), by pre-multiplying the model
by @ and performing OLS on the resulting transformed
model (Qy=0XB3+Qv) to get the coefficients. Note
that @ is a matrix which obtains the deviations from
individual means.

The one-way random-effects model

In this case, pui ~ IID QO, aé)mn ~1ID(0,0%) and the
u; are independent of the Vvj. In addition, the Xj; are
independent of the p; and vj., for all ; and 7. From
Eq. (5), the variance—covariance matrix of error can be
computed (Baltagi 2005; Hsiao 2003; Wooldridge
2002):
Q=Eui)=Z,Eu)Z,+ E(W) (8)
Note that € is variance—covariance matrix of error,
Z, = Iy ® Ir; where Iy is an identity matrix of dimension
N, 11 is a vector of ones of dimension 7 and & denotes the
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Kronecker product (Liu 1999; Trenkler 1995). Indeed, Z,,
is a selector matrix of ones and zeros, or simply the matrix
of individual dummies that may be included in the
regression to estimate the p; if those are assumed to be
fixed parameters.

In order to obtain the generalized least square (GLS)
estimator (Browne 1974) of the regression coefficients, the
Q! is required. This is a huge matrix for typical panels
and is of dimension (NT+NT). After calculating €'
using a method developed by Wansbeek and Kapteyn
(1982, 1983), GLS can be used as a weighted least-
squares estimator to obtain coefficients for Eq. (5). For
more information on the derivation of these equations,
refer to Baltagi (2005), page 16.

The two-way fixed-effects model

If the yu; and A; are assumed to be fixed parameters to
be estimated and the remainder disturbances stochastic
with vy ~ IID(0,02), then Eq. (7) represents a two-
way fixed-effects-error-component model. The X, are
assumed independent of the v; for all i and 7 One,
would perform the regression of y=Qy on X = QX to

get Bors = (X'OX)™ X'Qy.

The two-way random-effects model

If i ~ 1ID (‘;), v ), ~ IID(0,03%) and vy ~ IID(0,073)
independent” of €ach other, then this is the two-way
random-effects model. In addition, X, is independent of
u;, A and vy, for all i and ¢. From Eq. (7), the variance—
covariance matrix of error can be computed as follows
(Arellano 2003; Baltagi 2005; Hsiao 2003; Wooldridge
2002):

Q=E(w')=Z,Euu)Z,+ Z EQ))Z; + iy (9)
where Z, is the matrix of time dummies that may be
included in the regression to estimate the A if they are
fixed parameters and Iyt is an identity matrix of
dimension NT. In order to obtain the GLS estimator of
the regression coefficients, the Q' is required. After
calculating €' using a method developed by Hsiao
(2003), GLS can be used as a weighted least-squares
estimator to obtain coefficients. For more information on
the derivation of these equations, refer to Baltagi (2005),
p. 36.

Fixed or random effects model

Having discussed the fixed-effects and the random-
effects models and their underlying assumptions, the
question now arises of which one to choose. To
answer this question, the following steps were taken.
Firstly, data “poolability” must be examined. The
critical assumption behind pooling data into a panel
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is that the regression coefficients are constant across
individuals (either all coefficients in the vector & or at
least the slope coefficients (). The pooled model
therefore has constant coefficients. The Chow test
(Chow 1960), was used to examine data poolability,
as follows:

Hy, No individual fixed effects (the pooled model)
61=6=...=6n =)

H; Individual fixed effects exist (61 # 62 # ... # 6N)

It is notable that the appropriate statistic for this
hypothesis is the F-statistic:

F _ R —RY)/(n—1)(k+1) (10)
(1) (ke 1)n(T= (k4 1)) RJn(T —(k+ 1))

18

M LT IKilometers
o 3 6 12 13 24

where R is the Sum Square Error (SSE) of the pooled
model and R? is the SSE of the fixed effects model. If
F is larger than a critical (tabulated) value, then the
null hypothesis is rejected. It reveals the existence of
fixed effects between unobservable individual-specific
effects and regressors. After understanding the existent
effect between individuals, it is necessary to find
whether there are any random effects between individ-
uals. With regard to this objective, different tests are
proposed.

For the random two-way error-component model,
Breusch and Pagan (1980) suggested the Lagrange
Multiplier (LM) test. The assumptions follow:

H,  No random effects (the pooled model) (07 = 03 = 0)
H, Random effects exist (¢} > 0 and o7, > 0)

= Representative well of each cluster
#  Selected observation wells

I:l Cluster boundary
Thiessen boundary

Fig. 4 The selected observation wells in the Neishaboor plain, the six zones from the cluster analysis (numbered in red), and their

representative wells
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Table 2 Architectural description of the ANN model®

Name of observation =~ ANN Hidden layer Output layer Architecture (i- Epoch
well model Activation Learning Activation Learning h-o0)
function algorithm function algorithm

Soltan Abad GFF Sigmoid CG Linear CG 16-2-1 1000
Filkhaneh GFF Sigmoid CG Linear CG 16-8-1 1000
Aman Abad GFF Sigmoid CG Linear CG 16-3-1 1000
Arazie Mohandes GFF Sigmoid CG Linear CG 16-3-1 1000
Amir Abad GFF Sigmoid Mom Linear Mom 16-37-1 1000
Jonobe Hosein Abad  GFF Sigmoid Mom Linear Mom 16-39-1 1000

* GFF generalized feed-forward network; CG conjugate gradient; Mom momentum; i number of input nodes; 4 number of hidden nodes; o

number of output nodes

The LM test statistic is given by:

~/I ~2
LM = LM, + LM, = ) [1— “ | N®JT)"}

u'u

LT [1 - ﬂ/(JIi%IT)E]Z
uu

(11)

where ii is the SSE of the pooled model and J is a matrix
of ones of dimension T or N. LM is asymptotically
distributed as a x> If LM is larger than the critical value,
then the null hypothesis is rejected. It means that there are
random effects between unobservable individual-specific
effects and regressors.

The Hausman specification test (Hausman 1978) is
another classical test of whether the fixed- or random-
effects model should be used. The main question here is
whether there is significant correlation between the
unobserved individual-specific random effects and the
regressors. If there is no such correlation, then the random
effects model may be more powerful. If there is such a
correlation, the random effects model would be inconsis-
tently estimated, and the fixed effects model would be the
model of choice, as follows:

Ho E(Xiyu)=0— No correlation; random effects con-

sistent and efficient

Hy E(Xyu)#0— Correlation exists; fixed effects
consistent

Hence, the Hausman test statistic is given by:

m= (BGLS - IEOLS)/ [Var (BGLS - BOLS)} B (NGLS - :BOLS)
(12)

The statistic m is asymptotically distributed as %
where k& denotes the number of regressors. If m is larger
than the critical value, then the null hypothesis is rejected
and the fixed effects model is selected. To implement the
theory and estimate or analyze panel-data models, SAS
software ver. 9.1 was used.

In summary, panel-data analysis is a method of
studying a particular subject within multiple sites, period-
ically observed over a defined time frame. Moreover, with
spatial observations and enough cross-sections, panel-data
analysis permits the researcher to study the dynamics of
change with time-series.

Analysis of modeling results

Cluster analysis

As stated earlier, the Ward method was used for
cluster analysis. The tree diagram (dendogram) of
clustering is shown in Fig. 3. Regarding physical
facts, 90% similarity is considered for clustering the
observation wells. The cluster analysis identified 6
homogeneous zones. After clustering, for each zone,
the observation well with the least SSDM was selected
as its representative. The representative wells are

Table 3 Performance indices during validation period for different clusters, comparing the panel-data and ANN models

Number of cluster Name of observation well R? RMSE ME MNE
PD? ANN PD ANN PD ANN PD ANN

1 Soltan Abad 0.97 0.97 0.18 0.14 -0.41 -0.39 0.05 0.04
2 Filkhaneh 0.89 0.85 043 0.58 1.32 —-1.14 0.09 0.14
3 Aman Abad 0.83 0.86 0.05 0.08 —-0.12 -0.14 0.10 0.17
4 Arazie Mohandes 0.93 0.93 0.24 0.27 0.49 —0.71 0.06 0.07
5 Amir Abad 0.55 0.42 0.45 0.52 0.81 -1.16 0.16 0.18
6 Jonobe Hosein Abad 0.94 091 0.14 0.16 0.31 -0.37 0.06 0.07

* PDpanel data
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Fig. 5 Plots of observed and computed groundwater levels during the validation period for a Soltan Abad, b Filkhaneh, ¢ Aman Abad, d
Arazie Mohandes, e Amir Abad and f Jonobe Hosein Abad, the representative wells for clusters 1-6, respectively

Soltan Abad, Filkhaneh, Aman Abad, Arazie Mohandes, After the selection of representative wells, the results
Amir Abad and Jonobe Hosein Abad, for zones 1-6 were discussed with local water resources officers and
respectively. experts. In two cases the selected observation wells were

Table 4 Selected independent variables using 95% p-value

Model Selected variable

ETy Precipitation Groundwater level
One-way fixed effects E(t=0)* P(t=0) W(t=—4) W(t=0)
Two-way fixed effects E(t=-2) E(t=—1) E(t=0) P(t=—1) P(t=0) W(t=—4) W(t=0)
One-way random effects E(=0) P(t=0) W(t=—4) W(t=-2) W(t=0)
Two-way random effects E(t=—1) E(t=0) P(t=0) W(t=—4) W(t=-2) W(¢t=0)

#Numbers in parenthesis refer to antecedent time lags, in months
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Table 5 Computed and critical values of the Chow and Hausman

tests
Test Computed value (using Critical value
SAS software) (F / x* Distribution)
Chow 2.74 2.39
Hausman 6.15 0.352

not considered suitable, due to some local considerations.
Therefore, two other wells, within the same clusters, were
nominated as representative wells. Moreover, it should be
mentioned that the change was made after a detailed check
on ward-clustering results and on behavior resemblance
for each pair of observation wells. Figure 4 shows the
existing observation wells, the six zones, and representa-
tive wells (shown with bold symbols). The important
thing to note is that Fig. 4 is just a schematic
representation. Obviously, each clustering zone has a
region of influence which is the sum of regions of
influence of its consistent observation wells. Usually, the
region of influence for each observation well is repre-
sented by Thiessen polygons. However, the real region of
influence, from the point of view of groundwater behavior
may be different. For areas near watershed boundaries,
where there are no observation wells, no clustering was
performed. It should be noted that agricultural wells were
not used as a complementary set, because of incomplete
data and poor data quality. Finally, for each zone, values
of independent variables were estimated by inverse-
distance method.

ANN model

Inputs of panel-data and ANN models were the same.
Table 2 shows the architectural description of the ANN
model. Input variables were selected using sensitivity
analysis. Sensitivity analysis using the p-values at the
95%-significance level showed that ET and groundwater-
level variables had significant effect until 4 antecedent
time lags, but precipitation had significant effect until 5

0.5

00

-0.5

Prediction Error {m)

] 5 10 15 20 25

Time (month)

antecedent time lags. The number of input variables used
in the network was 16. The number of hidden nodes in the
hidden layer was obtained using trial and error. The
statistical adequacies of the applied ANN model for
forecasts 1 month ahead are summarized in Table 3, from
which it can be seen that the model performance is good,
except for Filkhaneh and Amir-Abad observation wells.
Also, the maximum error for these observation wells is not
within the £0.5 m that is suggested by Daliakopoulos et al.
(2005). Figure 5 shows the prediction results for 1-month
ahead for the six selected observation wells, from which it
can be seen that the ANN model cannot recognize the
behavior of groundwater levels in Filkhaneh, Aman-Abad
and Amir-Abad observation wells.

“Panel-data” model

As stated earlier, the groundwater level, precipitation and
temperature at some antecedent monthly time lags were
considered to be independent variables, and groundwater
level for a subsequent period as a dependent variable. At
first, the one-way and two-way fixed and random effects
were trained. Sensitivity analysis revealed that some
variables had no significant effect (i.e. the p-value was
more than 0.05), meaning that these variables were not
significant at the 95%- significance level. The resulting
selected variables are shown in Table 4.

After training and determining the structures of all
models (over the period 1992-2002), the Chow and
Hausman tests were applied to find the best model. Firstly,
the Chow test was performed; and the fixed-effects model
was found to be superior to the pooled model. Then, the
results of the Hausman test showed that the two-way
fixed-effects model was again superior to the random-
effects model. Table 5 shows the computed and critical
values for the Chow and Hausman tests. The computed
values were obtained using SAS software. Consequently,
the two-way fixed-effects model was selected as being the
best model. This result is logical, since the groundwater
levels at observation wells at different locations and time
periods are indeed influencing each other.

0 5 10 15 20 25
Time (month)

Fig. 6 The error plots during the validation period. Legend: a Soltan Abad, b Filkhaneh, ¢ Aman Abad (on the lefi-hand graph), and d
Arazie Mohandes, e Amir Abad and f Jonobe Hosein Abad (on the right-hand graph), the representative wells for clusters 1-6 respectively
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Fig. 7 The plots of observed groundwater levels. Legend: a Soltan Abad, b Filkhaneh, ¢ Aman Abad, d Arazie Mohandes, e Amir Abad
and f Jonobe Hosein Abad, the representative wells for clusters 1-6 respectively

Validation of model

As mentioned earlier, the two-way fixed-effects model was
selected as the best model in the training phase. Conse-
quently, groundwater levels were predicted in the test phase
(2002-2003) for validation of the model. According to the
performance indicators (RMSE, R?, ME and MNE) the
model predicted the water levels well, as demonstrated by
Table 3. The correlation statistic (R), that evaluates the
linear correlation between the observed and the computed
groundwater levels, is in a good range; except for Amir Abad
observation well. The RMSE statistic, which is a measure of
the global goodness of fit between the computed and
observed groundwater levels, was good, as is evidenced by
a low RMSE value (<0.5 m). The ME statistic, which shows
the maximum error between the observed and the computed
groundwater levels, was good, as it was less than the value
suggested by Daliakopoulos et al. (2005). Since the range of
groundwater-level fluctuation during the validation period is
different for each observation well, it seems that the
normalized error value would be more helpful. The

1220

normalization for each observation well was calculated
with regard to its range of fluctuation. The range of
fluctuation during the validation period for Soltan
Abad, Filkhaneh, Aman Abad, Arazie Mohandes, Amir
Abad and Jonobe Hosein Abad observation wells were
2.64, 3.45, 0.4, 3.11, 2.36 and 1.70 m, respectively. It
is obvious from Table 3 that the panel-data model is
superior to the ANN model for this dataset. Spatial
correlation was not found to be the source of variation
of regression errors. However, it seems that the error is
less if the observation well is near to recharge
boundaries and/or extraction focal points. More re-
search is needed to identify the reason for error
variations.

Figure 5 compares the observed groundwater levels
against the computed values in the test phase for all the
representative wells of the clusters. It can be seen from
Fig. 5 that the Soltan Abad, Arazie Mohandes, Aman
Abad and Jonobe Hosein Abad tend to underpredict, but
Filkhaneh, and Amir Abad tend to underpredict and
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Fig. 8 The plots of simulated groundwater levels during the validation period. Legend: a Soltan Abad, b Filkhaneh, ¢ Aman Abad, d
Arazie Mohandes, e Amir Abad and f Jonobe Hosein Abad, the representative wells for clusters 1-6 respectively
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overpredict at various different times. Note that over-
prediction denotes more negative depth than the observed,
whereas underprediction means an observation depth
more than the computed one. In this case, overprediction
is preferred, because it offers more reliability in judgments
(Coulibaly et al. 2001). The results suggest that the two-
way fixed-effects model can offer a reliable framework for
the prediction of water-level fluctuations.

As all performance evaluation measures employed so
far were global, they do not reveal any information about
the errors during the validation period. Figure 6 shows the
behavior of errors during the validation period. Note that
in this figure a positive sign indicates underestimation and
a negative sign indicates overestimation by the model. It
can be seen from Fig. 6 that the prediction error for the
whole range of water levels is mostly within 0.5 m. Only
for some clusters such as Amir Abad and Filkhaneh, can
larger errors be seen.

Comparison of ANN and panel-data models

The results of panel-data models were compared with
those of ANN models. The comparison showed that the
panel-data model had a better performance over the ANN
for this particular dataset. However, the relative perfor-
mance of the two models was close and both can be
considered to have good performance in predicting
groundwater levels. However, the panel-data model can
be applied in preference to the ANN model for the
purpose of water-resources management, because: (1) it is
able to consider spatial and temporal dimensions for
several observation wells simultaneously; (2) it has a
simpler theory than ANN; and (3) it represents a lucid
model where variables are related simply via a mathemat-
ical function, just like any other regression.

Summary and conclusion

In this study, the application of panel-data modeling as a
useful, robust and efficient technique for the prediction of
groundwater levels was investigated for the Neishaboor
plain. A significant advantage of this type of model is that
it can provide satisfactory predictions while considering
several observation wells simultaneously. That is to say,
panel-data analysis endows regression analysis with both
spatial and temporal dimensions. It was found that the
two-way fixed-effects model is the most suitable for
groundwater level modeling in Neishaboor plain (for this
particular dataset) with regard to Chow and Hausman
tests. Figure 7 shows the historical behavior of ground-
water levels in the six observation wells. It can be seen
from this figure that during the period 1992-2003
(132 months) a certain relationship between the ground-
water levels in the six observation wells always applies,
namely: a>b>d>c>e>f; which is the observed reality of
the regional water table. Figure 8 gives the simulated
behavior of groundwater levels for the 24-month valida-
tion period (2002-2003), for the six observation wells.

Hydrogeology Journal (2012) 20: 435-447

The same relationship between the observation wells is
evident in this figure, too. The general resemblance
between the behaviors shown in Figs. 7 and 8 demonstrate
that the model has captured the physical phenomena of
groundwater in Neishaboor plain. The performance
evaluation criteria, namely the R?, RMSE, MNE and
ME, were found to be good in both the training and
validation phases. Soltan Abad and Aman Abad respec-
tively showed the best and worst fits to the model in the
test phase. Furthermore, the prediction error during the
validation period was within the reasonable limits. In
addition, the results of the panel-data model were
compared with the results of an ANN model, with the
panel-data model considered to be superior to the ANN
model, for this dataset.

The application of panel-data modeling to water-
resources management is new, not having been previously
applied for that purpose. Its successful application in this
study suggests that there is a promising future for the
application of this type of model in different fields of
water resources. In this study, complete panels or a
balanced panel were used (referring to the individuals
that have the same temporal length over the entire sample
period). In contrast, incomplete panels are more likely to
be the norm in typical cases of water resources and
hydrological systems, because hydrological data from
different stations usually differ in temporal length.
Additionally, when panel data include auto regressive
components, they are called dynamic panel data, and are
able to deal with dynamic systems. Obviously, many
water resources and hydrological systems are dynamic in
nature, and therefore researchers can employ this tech-
nique to better understand the dynamics of phenomena.
Hence, the application of incomplete and dynamic panels
to the field of water resources can be the focus of future
research.
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