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Abstract Data integration is challenging where there are
different levels of support between primary and secondary
data that need to be correlated in various ways. A
geostatistical method is described, which integrates the
hydraulic conductivity (K) measurements and electrical
resistivity data to better estimate the K distribution in the
Upper Chicot Aquifer of southwestern Louisiana, USA.
The K measurements were obtained from pumping tests
and represent the primary (hard) data. Borehole electrical

resistivity data from electrical logs were regarded as the
secondary (soft) data, and were used to infer K values
through Archie’s law and the Kozeny-Carman equation. A
pseudo cross-semivariogram was developed to cope with
the resistivity data non-collocation. Uncertainties in the
auto-semivariograms and pseudo cross-semivariogram
were quantified. The groundwater flow model responses
by the regionalized and coregionalized models of K were
compared using analysis of variance (ANOVA). The
results indicate that non-collocated secondary data may
improve estimates of K and affect groundwater flow
responses of practical interest, including specific capacity
and drawdown.

Résumé L’intégration de données entre en jeu lorsque
plusieurs niveaux intermédiaires d’assistance sont
nécessaires pour corréler données primaires et second-
aires de diverses manières. Le présent article décrit
une méthode géostatistique qui intègre les mesures de
conductivité hydraulique (K) et les données de résisti-
vité électrique, afin d’estimer plus efficacement la
distribution de K dans l’Aquifère Supérieur de Chicot,
au sud-ouest de la Louisiane (Etats-Unis). Les mesures
de K sont issues des pompages d’essai et représentent les
données primaires (“dures”). Les données des diagra-
phies de résistivité électrique ont été considérées comme
des données secondaires (“molles”), à partir desquelles
les valeurs de K ont été déduites, par la loi d’Archie et
l’équation de Kozeny-Carman. Un pseudo semi-vario-
gramme croisé a été développé afin de pallier à l’absence
de colocalisation des données de résistivité. Les incerti-
tudes sur les semi-variogrammes automatiques et sur les
pseudo semi-variogrammes croisés ont été quantifiées.
Les réponses du modèle d’écoulement des eaux souter-
raines aux modèles régionalisés et co-régionalisés de K
ont été comparés, par les analyses de variance
(ANOVA). Les résultats montrent que les données
secondaires non-colocalisées peuvent améliorer les
estimations de K, et affecter efficacement les réponses
des écoulements souterrains, y compris les débits
spécifiques et les rabattements.
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Resumen La integración de datos es un gran desafío
cuando existen diferentes niveles de apoyo entre datos
primarios y secundarios que es necesario correlacionar de
varias maneras. Se describe un método geoestadístico el
cual integra mediciones de conductividad hidráulica (K) y
datos de resistividad eléctrica para tener una mejor
estimación de la distribución de K en el Acuífero Chicot
Superior del suroeste de Luisiana, Estados Unidos de
América. Las mediciones de K se obtuvieron de pruebas
de bombeo y representan los datos primarios (duros). Los
datos de sondeos de resistividad eléctrica se consideraron
como datos secundarios (suaves) y se usaron para inferir
valores de K a través de la ley de Archie y la ecuación de
Carman-Kozeny. Se desarrolló un pseudo semivariograma
cruzado para enfrentar la falta de colocación de datos de
resistividad. Se cuantificaron las incertidumbres en los
auto-semivariogramas y en los semivariogramas cruzados.
Las respuestas del modelo de flujo de agua subterránea
por los modelos coregionalizados y regionalizados de K se
compararon usando el análisis de varianza (ANOVA). Los
resultados indican que los datos secundarios no colocados
pueden mejorar los estimados de K y afectar las respuestas
de flujo de agua subterránea de interés práctico,
incluyendo capacidad específica y descenso.

Keywords Groundwater management . Geostatistics .
Variogram uncertainty . ANOVA . USA

Introduction

Groundwater flow models have been used in many
regulatory applications such as well pumping, aquifer
sustainability, and capture zone analysis. Simulated
drawdown from a groundwater flow model has also been
used to determine well specific capacity. Specific capac-
ities reflect hydraulic conductivity or potential of the
aquifer, which affects groundwater resource management.
For example, management guidelines may stipulate that
the average water level for a region should not drop below
specified levels. Therefore, uncertainty in model responses
leads to uncertainty in the management field.

Groundwater modeling requires hydrogeological
parameters as well as other information, e.g., initial/
boundary conditions and discharge/recharge fluxes, to
constitute a model structure. Although mathematical
problems associated with model structure account for all
components in the groundwater model, hydraulic conduc-
tivity is one of the most essential aquifer parameters in the
inverse problem of groundwater hydrology (McLaughlin
and Townley 1996). The importance of studying hydraulic
conductivity arises from its wide spatial variability
(Koltermann and Gorelick 1996) and its significant
influence on dispersion and mass transport (Rehfeldt et
al. 1992; Neuman 1990; Poeter and Gaylord 1990).

A number of studies have attempted to evaluate and
compare various techniques for estimating hydraulic

conductivity fields. Ritzi et al. (1994) compared three
indicator-based geostatistical methods to predict zones of
higher hydraulic conductivity. Eggleston et al. (1996)
compared the hydraulic conductivity field and its sensi-
tivity by using two estimation methods (i.e., kriging and
conditional mean) and two simulation methods (i.e.,
sequential Gaussian and simulated annealing) and found
that simulation methods are better at reproducing local
contrasts and large-scale features. Boman et al. (1995)
studied the response of a transport model to four schemes
(three deterministic and one fractal-based stochastic) to
interpolate field-measured hydraulic conductivity data,
concluding that kriging and fractal interpolation were not
significantly better than simpler methods; this study was
based on densely sampled measurements which may not
be typical of groundwater studies.

In groundwater studies, measurements of hydraulic
conductivity are typically sparse. Conductivity fields
estimated using regionalized (univariate) models such as
kriging or simulation are therefore highly uncertain, as
these methods depend on data density. Eggleston et al.
(1996) studied a heavily sampled aquifer and reported that
the number of data points significantly affects permeabil-
ity field models. Therefore, data integration from various
sources is essential. Hydraulic conductivity estimation
with hydrologic data (e.g., hydraulic heads) has been
extensively studied through the Bayesian maximum
likelihood estimation (Carrera and Neuman 1986) and
geostatistics of cokriging (Kitanidis and Vomvoris 1983).
Many types of geophysical data have been incorporated in
hydraulic conductivity estimation due to their relatively
low cost, abundant field measurements, and high correla-
tion with hydraulic conductivity. Geophysical data inte-
gration through geostatistics improves the estimation of
conductivity (Gloaguen et al. 2001).

In a hydrogeological framework, the spatial structures
are constructed from field-measured data. However, field
measurements are always limited. Uncertainties associated
with the field measurements lead to uncertainties in the
correlation structure. Kitanidis (1986) examined the effect
of semivariogram model uncertainty in a Bayesian
framework. Feyen et al. (2003) examined semivariogram
model uncertainty for capture zones in a Bayesian
framework, concluding that predictions based on fitted
models do not reflect field variance.

This research focuses on a real-world case study, in the
estimation of hydraulic conductivity of the Upper Chicot
Aquifer, Acadia Parish, in southwestern Louisiana using
hydrogeological data and geophysical data. The case study
presents many challenges that are commonly encountered
in regional groundwater modeling. First of all, the
measured hydraulic conductivity data (primary data) from
pumping tests and the borehole electrical resistivity data
(secondary data) are integrated through a geostatistical
approach to better estimate the hydraulic conductivity
field. Borehole resistivity data correlate well with the
effective porosity of a saturated formation (Archie 1942),
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which consequently infers the hydraulic conductivity.
Second, a pseudo cross-semivariogram is introduced in
the geostatistical framework to cope with the estimation
challenge stemming from non-collocation of the resistivity
logs and pumping test sites. This study adopts the
approach suggested in Clark et al. (1989) to calculate the
pseudo cross-semivariogram of these two data sets.
Details of the pseudo cross-semivariogram technique are
given in Myers (1991). Third, the semivariogram uncer-
tainty due to data scarcity is quantified in terms of mean
and variance of the semivariogram at each lag distance
using an approach suggested by Ortiz and Deutsch (2002).
Assuming lognormal distribution in auto-semivariograms
and pseudo cross-semivariograms, the upper and lower
limits of the semivariograms, given a confidence interval,
are obtained with the requirement of positive definiteness
(Goovaerts 1997). The study uses the mean, upper limit
and lower limit semivariograms to examine the impact of
semivariogram uncertainty on the aquifer hydraulic
responses. Fourth, this study develops a groundwater flow
model to examine the impact of regionalized and
coregionalized hydraulic conductivity fields, semivario-
gram uncertainty, and simulation processes in a ground-
water system. Two regionalized models (kriging and
sequential Gaussian simulation) and two coregionalized
models (cokriging and cosimulation) are compared.
Analysis of variance (ANOVA) assesses the significance
of secondary data, interpolation method, and semivario-
gram uncertainty on the groundwater flow behavior. The
relevant methods are discussed first. Data and modeling
results for the parish-scale study (25 km2) are then
described. Finally, the results are interpreted statistically
and implications for model choice and interpretation are
presented.

Hydrogeologic interpretation of borehole electrical
resistivity data

Borehole electrical resistivity readings reflect the combi-
nation of geologic formation and water ionic content with
depth. In general, when fresh groundwater is present,
electrical resistivity identifies the interfaces between the
clay layers (low resistivity value) and sand aquifers (high
resistivity value) due to high clay porosity and conductive
minerals on the clay surface. Another strong influence on
electrical resistivity is the presence of fluid salinity; erratic
electrical resistivity readings are often found in sand
aquifers when salt water is present.

Typical resistivity data for the Chicot Aquifer are
shown in Fig. 1. The resistivity readings distinguish the
Upper Chicot Aquifer and Lower Chicot Aquifer, sepa-
rated by a thin clay layer with low resistivity around a
depth of 122 m (400 ft). The erratic resistivity readings in
Fig. 1b also show the salt-water intrusion in deep aquifers
due to heavy pumping activity. The areas affected by salt
water will not be considered in this study.

Borehole resistivity in the saturated sand aquifer has a
high correlation to the formation porosity and water
resistivity, which is often expressed as Archie’s law
(Archie 1942):

R0 ¼ aF�mRw ð1Þ

where R0 is the resistivity of the saturated formation, Rw is
the formation water resistivity, Φ is the sand porosity. Two
parameters a and m in Eq. (1) represent the pore geometry
coefficient and the cementation factor, respectively.
Typically, the pore geometry coefficient a varies between
0.62 and 2.45, and the value of the cementation factor m
has a range between 1.08 and 2.15 depending on the
formation type (Asquith and Gibson 1982). The formation
water resistivity varies with local geochemical and ionic
content. However, when fresh groundwater is considered,
the variation is not significant. Assuming constant
formation water resistivity is reasonable.

The formulas for determining hydraulic conductivity
from particle-size distribution are reduced to the following
generalized formula (Vukovic and Soro 1992).

K ¼ +w
�w

CG Fð Þd2e ð2Þ

where K is the hydraulic conductivity, γw is the specific
weight of water, μw is the dynamic viscosity of water, C is
a dimensionless parameter, G(Φ) is the function of
porosity, and de is the effective grain diameter. The term
CG Fð Þd2e in Eq. (2) refers to the soil permeability. In
Eq. (2), the hydraulic conductivity can be evaluated with
the resistivity data and Archie’s law. In this study, the
Kozeny-Carman equation (Carman 1956) is adopted,
where C=1/180 and G Fð Þ ¼ F3 1� Fð Þ�2. Substituting
Eq. (1) into Eq. (2), the hydraulic conductivity relating to
formation/water resistivity results and is denoted as KF:

KF ¼ +w
180�w

R0=Rwð Þ�1=ma3=m

R0=Rwð Þ1=m � a1=m
h i2 d2e ð3Þ

where the ratio R0/Rw is defined as the formation factor
(Archie 1942). The formation factor obtained from
borehole resistivity logs (Asquith and Gibson 1982) is a
relatively common and low-cost measurement, particular-
ly compared to pumping tests. Kelly (1977) and Kosinski
and Kelly (1981) studied site-specific electrical resistivity
and hydraulic conductivity and established empirical
relationships between the formation factor and hydraulic
conductivity. However, their studies did not investigate
the theoretical basis for the correlation and the empirical
relationship is not necessarily applicable to other sites.
The study reported here interprets the hydraulic conduc-
tivity using the geophysical resistivity data through
Archie’s law (1942) and the Kozeny-Carman equation
(Carman 1956) for sand units.
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Data integration and simulation via geostatistics

Data non-collocation and pseudo
cross-semivariogram
Data integration of the resistivity-driven hydraulic con-
ductivity and the measured hydraulic conductivity by
pumping tests is possible through a geostatistical ap-
proach. Commonly, the measured hydraulic conductivity
denoted as Ky is considered as the primary data because
the hydraulic conductivity is measured directly through
the groundwater responses. The measured and resistivity-
driven hydraulic conductivity data are considered as the
random fields and are transformed to a normal distribution
(the hydraulic conductivity is usually considered as a
lognormal distribution) such that these two types of data
are classified as second-order stationary. Let Y and F be
the data transform of KY and KF, respectively. If both Y
and F have sample values at the same locations, the cross-
semivariogram of Y and F can be obtained for the
collocated data

b+YF hð Þ ¼ 1

2nc hð Þ
Xnc hð Þ

i¼1

Yi � Yiþhð Þ Fi � Fiþhð Þ ð4Þ

where Yi ¼ Y xið Þ; Yiþh ¼ Y xi þ hð Þ; h is the lag distance
between a pair of sample data; nc is the number of pairs of
Y or F at a distance h apart. However, in practice the
electrical resistivity log sites rarely coincide with the
pumping test sites. Equation (4) fails for non-collocated
data and a cross-semivariogram between Y and F cannot
be obtained. To cope with this problem, a pseudo cross-
semivariogram has to be introduced to replace Eq. (4). For
this study, the pseudo cross-semivariogram introduced by
Clark et al. (1989) was used, where the two random
functions must have the same unconditional mean and
unconditional variance. The easiest way to achieve this
requirement is to transform the primary and secondary
data into the standard normal distribution (normal score)
that has zero mean and unity variance (Deutsch and
Journel 1998). In this study, the KY and KF are trans-
formed to the normal scores y and f, respectively, with
zero means and unity variances. The pseudo cross-semi-
variogram is given by the expected squared difference
between y and f measured at different locations,

e+yf hð Þ ¼ 1

2nyf hð Þ
Xnyf hð Þ

j¼1

yj � fjþh

� �2 ð5Þ

Fig. 1 a Cross section G-G’ through southern Acadia Parish, (location also shown in Fig. 2) b geophysical log illustrating the various
horizons in the Chicot Aquifer, Acadia Parish, Louisiana (well No. 078272; after Hanson et al. 2001). The wavy lines in boreholes indicate
that they continue beyond the depth shown in the figure
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where e+yf is the pseudo cross-semivariogram; and nyf is
the number of pairs of y and f at a distance h apart. It can
be shown that e+yf hð Þ ¼ e+fy �hð Þ. The auto-semivariograms
for y and f are:

b+yy hð Þ ¼ 1

2nyy hð Þ
Xnyy hð Þ

j¼1

yj � yjþh

� �2 ð6Þ

and

b+ ff hð Þ ¼ 1

2nff hð Þ
Xnff hð Þ

j¼1

fj � fjþh

� �2 ð7Þ

Details of the pseudo cross-semivariogram technique can
be found in Myers (1991). Due to the normalization, the
sills for b+yy, b+ ff , and e+yf are unity as the unconditional
variance. Moreover, the Cauchy-Schwarz inequalitye+yf � ffiffiffiffiffiffiffiffiffiffiffiffib+yyb+ ffq

is required to ensure the positive definiteness
in the following cokriging method. The Cauchy-Schwarz
inequality will be used determine the lower and upper
limits of the auto- and pseudo cross-semivariograms when
semivariogram uncertainty is considered in the section
Significance analysis using ANOVA.

Conditional estimation using hydrogeological data
and resistivity data
The conditional estimation of the normalized hydraulic
conductivity is made through a linear-weighted interpola-
tion form, which honors the normalized primary and
secondary data:

byCoK ¼
Xny
j¼1

1jyj þ
Xnf
‘¼1

�‘ f‘ ð8Þ

where by is the estimate of y; 1j and � ‘ are the weighting
coefficients that need to be determined. ny is the number
of primary data; and nf is the number of the secondary
data. The conditional estimate of hydraulic conductivity is
obtained via the back transformation of the normal score.
By minimizing the variance of estimation error by x0ð Þ�½
y x0ð Þ� at an unsampled site x0, the optimal weighting
coefficients 1j and � ‘ are obtained by the following set of
linear equations,

Pny
j¼1

1jb�yy xk; xj
� �þ Pnf

‘¼1
�‘e�yf xk; x‘ð Þ þ � ¼ b�yy x0; xkð Þ; k ¼ 1; 2; � � � ; nyPny

j¼1
1je�fy xi; xj

� �þ Pnf
‘¼1

�‘b�ff xi; x‘ð Þ þ � ¼ e�yf x0; xið Þ; i ¼ 1; 2; � � � ; nfPny
j¼1

1j þ
Pnf
‘¼1

�‘ ¼ 1

8>>>>>>><>>>>>>>:
ð9Þ

where μ is the Lagrange multiplier. Equation (9) involves
auto-semivariograms of y and f as well as the pseudo
cross-semivariogram for non-collocated data fusion.

If primary data are sparse and more densely sampled
secondary data are strongly correlated to the primary
variable, geostatistics of cokriging can help improve
estimates of the primary variable. In this work, the
secondary data (the borehole resistivity logs) are non-
collocated with the pumping test sites. Therefore, a
pseudo cross-semivariogram, e+yf has to be used to replace
the cross-semivariogram. For the comparison purpose, the
kriging conditional estimation, which uses only the
measured hydraulic conductivity data, is also considered

byOK ¼
Xny
j¼1

1jyj ð10Þ

Therefore, Eq. (9) is reduced to the following for y,

Pny
j¼1

1jb�yy xi; xj
� �þ � ¼ b�yy x0; xið Þ; i ¼ 1; 2; � � � ; nyPny

j¼1
1j ¼ 1

8>>><>>>:
ð11Þ

Conditional simulation and cosimulation of hydraulic
conductivity
The conditional estimation of hydraulic conductivity
obtained by the kriging and cokriging methods is a
smoothed distribution over the region, which does not
reveal the actual variability of the hydraulic conductivity.
However, the K variability has a significant influence on
the groundwater responses when a groundwater flow
model is adopted (Fogg 1986). In this study, conditional
simulation and conditional cosimulation will be conducted
to study the K variability in relation to groundwater model
responses in the real-world case study. Moreover, the
significance analysis using the conditional cosimulation
against conditional simulation in groundwater responses
will be conducted using analysis of variance (ANOVA),
and is discussed later. Conditional simulation and cosi-
mulation techniques simulate the estimation error (kriging
error) as a correlated random process using the semivario-
gram and cross-semivariogram. For non-collocated data, a
pseudo cross-semivariogram is adopted in the cosimulation
process.This sectionprovides the informationandprocedure
for conducting cosimulation of the measured hydraulic
conductivity and the resistivity-derived hydraulic conduc-
tivity in the study. The K simulation using measured
hydraulic conductivity can be inferred by reducing the
cosimulation procedure for a univariate model.
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A cosimulated hydraulic conductivity field is generated
by using a full linear model of cross covariance. The steps
followed in the cosimulation algorithm include (1)
modeling b+yy, b+ ff , and e+yf for ensuring positive definite-
ness; (2) obtaining a cokriged estimate of the secondary
data bfCoK at computation grids; and (3) calculating
hydraulic conductivity estimates (using SGSIM_FC
subroutine; C.V. Deutsch, University of Alberta, Canada,
personal communication, 2003). In the study area, the
number of borehole resistivity data points is approximate-
ly the same number as that of the measured hydraulic
conductivity data points. Therefore, the information from
the primary data (yj) for the secondary data estimation
(bfCoK) is important. This was verified by comparing the
kriged estimate against the cokriged estimate of bfCoK. A
hybrid method was used to impose joint correlation and
the correct variability in the cosimulation procedure:

Step 1. Obtain a cokriged estimation of secondary databfCoK over the field.
Step 2. Obtain a single-variable simulation of the corre-

lated residual of the secondary variable only,
using the semivariogram for the secondary data
and zero at the secondary data locations.

Step 3. Sum the simulated result in step 2 and the
cokriged results in step 1.

Step 4. Use SGSIM_FC with the normal score transform
of the conductivity data and results from step 3 in
place of the secondary variable simulation.

Step 5. Back-transform from normal score values of the
primary data to the hydraulic conductivity values.

The aim here is to get the primary variable structure
into the secondary variable via the cokriging step, with the
assumption that the mean carries most of the information;
the secondary residual is approximated as uncorrelated
with the primary data.

Due to scarcity of measured hydraulic conductivity
data and electrical-log data, one needs to investigate the
uncertainty embedded in the semivariograms b+yy, b+ ff , ande+yf . From Eq. (5), the mean or expected pseudo cross-
semivariogram is given by

E e+yf hð Þ
h i

¼ 1

2nyf hð Þ
Xnyf hð Þ

j¼1

E yj � fjþh

� �2 ð12Þ

The variance of the pseudo cross-semivariogram is
given by

�2 e+yf hð Þ
h i
¼ 1

4n2yf hð Þ
Xnyf hð Þ

i¼1

Xnyf hð Þ

j¼1

E yi � fiþhð Þ2 yj � fjþh

� �2h i

� E e�yf hð Þ� �� �2 ð13Þ

The covariance of yi � fiþhð Þ2 and yj � fjþh

� �2
is

eCyf xi; xj hj
� �¼ E yi � fiþhð Þ2 yj � fjþh

� �2h i
� E fi � fiþhð Þ2

h i
E fj � fjþh

� �2h i ð14Þ

Substituting Eq. (11) into Eq. (10), the pseudo cross-
semivariogram variance is

�2 e+yf hð Þ
h i

¼ 1

4n2yf hð Þ
Xnyf hð Þ

i¼1

Xnyf hð Þ

j¼1

eCyf xi; xj hj
� � ð15Þ

Similarly, the auto-semivariogram variances for y and f
are

�2
+yy hð Þ ¼

1

4n2yy hð Þ
Xnyy hð Þ

i¼1

Xnyy hð Þ

j¼1

bCyy xi; xj hj
� � ð16Þ

and

�2
+ff hð Þ ¼

1

4n2ff hð Þ
Xnff hð Þ

i¼1

Xnff hð Þ

j¼1

bCff xi; xj hj
� � ð17Þ

where bCyy is the covariance of yi � yiþhð Þ2 and yj � yjþh

� �2;
and bCff is the covariance of fi � fiþhð Þ2 and fj � fjþh

� �2.
Equations (16) and (17) represent the variances of the
semivariograms for a given lag distance, which are the
average covariances between pairs of pairs used to
calculate the semivariograms. If the data in yi and fj are
Gaussian distributions, eCyf , bCyy and bCff can be evaluated
by the methods described in Ortiz and Deutsch (2002).

As for the semivariogram uncertainty analysis, the
specific lower-limit and upper-limit semivariograms using
the semivariogram variances for the auto-semivariogram
models and pseudo cross-semivariogram models will be
determined according to the real data. The lower and
upper limit semivariograms along with the mean semi-
variograms will be used for the significance analysis using
ANOVA.

Significance analysis using ANOVA

A single estimate of hydraulic conductivity cannot
simulate the actual heterogeneity and complexity. In order
to better understand the influence of the coregionalized
model, ANOVA (analysis of variance) was adopted to
differentiate the statistical significance among different
approaches on generating K distributions. ANOVA is able
to make inferences about mean differences by comparing
variances among different groups (between-group vari-
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ance) to the variance within the groups (within-group
variance) using F-test (Fisher 1935). Donnelly-Mako-
weckia and Moore (1999) used a combination of ANOVA
and jackknife to test the statistical significance of differ-
ences in a hydrologic model performance using different
factors. Rong (2002) used ANOVA to compare MTBE
(methyl tertiary-butyl ether) concentrations in sand/gravel
and fine-grained soils. Ikem et al. (2002) used ANOVA to
compare upgradient and downgradient contaminant concen-
trations near a waste site to find the impact of the waste site
on the groundwater quality.

In this study, four groups of simulations, each using an
alternative hydraulic conductivity field created by kriging,
cokriging, simulation, and cosimulation, were run with
variogram means, upper and lower bounds. Statistics from
various flow responses are calculated and the significance
of the (1) process (kriging versus simulation and cokriging
versus cosimulation); (2) variables (kriging versus cokrig-
ing and simulation versus cosimulation); and (3) vario-

gram variance (mean, 95% upper and lower bounds) are
tested using a multifactor ANOVA test.

Case study

Semivariogram estimation and uncertainty
in the upper Chicot Aquifer
The Chicot aquifer system is the principal groundwater
source for southwestern Louisiana, which underlies 15
parishes. It is also the most heavily pumped aquifer in
Louisiana. Rice irrigation accounts for about 85% of the
groundwater pumped from the aquifer in Acadia Parish
(Sargent 2002). The Chicot system in Acadia Parish is
divided into Upper and Lower Chicot units (sandy
aquifers) separated by clay lenses referred to as the
Upper/Lower confining zone (Fig. 1). This study focuses
on the hydraulic conductivity estimation in the Upper
Chicot Aquifer in Acadia Parish.

Fig. 2 a Study area in Louisiana State; adjacent to Texas (Tx), b Chicot Aquifer model grid with parish boundaries, c Acadia Parish model
grid with location of hydraulic conductivity data points and geophysical logs
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The local characterization of the Chicot Aquifer in
Acadia Parish was developed using geophysical resistivity
logs obtained from 74 oil and gas exploration wells. Note
that not all the geophysical logs could be used; only 53 of
them were used in the cokriging method as some of them
did not cover the Upper Chicot Aquifer. The geology is
divided into: confining clay layer, Upper Chicot Aquifer,
dividing layer, Lower Chicot Aquifer. Figure 1a shows a
west-east cross section of the local model.

Field K measurements
There are 42 hydraulic conductivity values (Fig. 2c)
determined from specific capacity tests according to
Eq. (15) (Bradbury and Rothschild 1985),

KY ¼ Q

4�b s� CQ2ð Þ ln
2:25Kt

r2wSs

� 	
þ 2

1� ‘s=b

‘s=b
ln

b

rw
� G

� 	
 �
ð18Þ

where Q is the pumping rate; s is drawdown at time t; b is
the Upper Chicot Aquifer thickness; ‘s is the length of
screen interval; rw is the well radius; and Ss is the specific
storage. The term CQ2 represents the well loss, where C is
the well loss constant. The second term in the bracket

corrects the KY calculation due to partial penetration of the
pumping well. The term G is the polynomial function of
the ratio of the screen length to the aquifer thickness,

G ¼ 2:948� 7:363 ‘s=bð Þ þ 11:447 ‘s=bð Þ2 � 4:675 ‘s=bð Þ3
ð19Þ

The technique solves Eq. (15) in an iterative fashion by
taking other parameters as an input to Eq. (15). The Upper
Chicot Aquifer thicknesses (b) were determined by
analyzing well log data (Carlson et al. 2003).

The hydraulic conductivity values of this study were
determined from specific capacity tests associated with
the development of high-capacity wells usually for
irrigation, public supply or industrial use. Because of the
intended use of these wells, the average test discharge Q
was 7,850±6,210 m3/day. The dimensions of the wells are-2
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f

Fig. 3 Cross plot between primary (y) and secondary (f) data at
short distances. Both variables have normal score transformed values

Table 1 The t-test statistic on the trend detection in X- and
Y-directions using the bilinear model

Data Bilinear model t-test
X, Pr>t Y, Pr>t

y y � X þ Y 0.06 0.82
f f � X þ Y 0.67 0.35

Pr probability
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Fig. 4 Experimental semivariograms and spherical semivariogram
models a auto-semivariogram of y, b auto-semivariogram of f, and
c pseudo cross-semivariogram of y and f
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large in response to the intended large demand for water:
average radius is 9.8±3.1 cm, and average screen length is
17.4±7.1 m. The specific capacity tests lasted on average
9.8±9 h. These wells are clearly partially penetrating wells
in that the average sand thickness surrounding a well
screen is 45.1±15.9 m. The average specific capacity test
drawdown is 7.9±5.0 m.

From previous studies, the storativity values for the
Chicot Aquifer range from 1.1×10−4 to 3×10−3 with an
average of 6.7×10−4. These values are a clear indicator
that the Chicot is a confined aquifer (Weight and
Sonderegger 2001). The confining clay layer above the
Upper Chicot in Acadia Parish has an average thickness of
28.9±10.0 m as determined from examination of 2,648
well log reports.

The well loss constant value used for this study is
2.66×10−8 day2/m5, which is significantly smaller than the
one listed in Bradbury and Rothschild (1985), which is
5.46×10−6 day2/m5 after unit conversion for Q. However,
a smaller value of well loss constant is used to avoid well
loss head exceeding drawdown for this study’s high
capacity tests were the average Q is 7,850±6,210 m3/day
compared to the smaller tests of Q=10 gallons per meter
(54.5 m3/day) noted in Bradbury and Rothschild (1985).

The capacity test data set (42 values) shows that the
measured hydraulic conductivity values vary from 5 to
700 m/day with a geometric mean KY ¼ 88m=day and a
standard deviation �KY ¼ 115m=day.

Electrical-log data
A total of 53 oil and gas geophysical resistivity logs
(Fig. 2c) were obtained from Louisiana Department of
Natural Resources, Office of Conservation (OC), Well
Log Library. To obtain the average R0 for each log, the
resistivity readings are divided into 3-m (10-ft) sections
between the top and bottom elevation of Upper Chicot
Aquifer. Again, it is reasonable to assume constant
formation water resistivity because the study area is
small and only freshwater is present in the Upper
Chicot unit. The groundwater temperature is reported as
25°C. The formation water resistivity Rw=12.7 ohm-m,
water specific weight γw=9.8 KN/m3 and dynamic
viscosity are used in this study. The variance in the sand
formation resistivity factor (R0/Rw) is therefore the result
of differences in sand/clay ratio and porosity. The
effective saturated formation resistivity over the depth of
the Upper Chicot is the average of the formation
resistivity (R0) values calculated at the 3 m (10 ft)
intervals. The 53 borehole resistivity logs in the Upper
Chicot Aquifer show that the formation resistivity value
varies from 43 to 100 ohm-m with a mean of 75 ohm-m
and a standard deviation 16 ohm-m. The average effective
particle diameter de is 0.42 mm (1.22 in phi units)
calculated from US Geological Survey unpublished
sieve test data files (US Geological Survey, unpublished
data, 2003).

As for the pore geometry coefficient and cementation
factor in the Archie’s equation, the maximization of the
correlation over a short lag distance between the
measured hydraulic conductivity (yi) and resistivity-
driven hydraulic conductivity fj (a, m) in the normal scale
was conducted to obtained the optimal values of for a and
m. This is equivalent to finding the best a and m values

Table 2 Semivariogram model parameters

Semivariogram
models

Nugget
(c0)

Relative
sill (c1)

Range
(×104m) (c2)

Total
sill
(c0+c1)b�yy Mean 0.5 0.5 1.5 1.0

Lower limit 0.2 0.7 4.2 1.0
Upper limit 1.1 4.2 4.5 5.3b�ff Mean 0.6 0.4 1.5 1.0
Lower limit 0.4 1.3 4.2 1.7
Upper limit 2.0 2.6 4.5 4.6b�yf Mean 0.5 0.4 1.5 0.9
Lower limit 0.0 1.0 4.2 1.0
Upper limit 1.4 3.3 4.5 4.7
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K=5.18 m/day (black color) to
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such that the deviation between yi and fj (a, m) is
minimized:

min
a;m

X
i;jð Þ

yi � fj a;mð Þ� �2 ð20Þ

Eight pairs of yi and fj were selected with a lag distance
less than 300 m. The bounds of a and m were
0.62≤a≤2.45 and 1.08≤m≤2.15, respectively, according
to Asquith and Gibson (1982). It has been noted that the
zero-lag distance should be used for collocated data.
However, a subjective selection of a short lag distance
(300 m) is necessary for non-collocated data. Equation
(20) is solved by a gradient-based nonlinear optimization
method and the optimal values of a and m are found to be
1.76 and 1.64. Figure 3 shows the cross plot for the eight
pairs of yi and fj with optimal a and m values, which
indicates a nugget between the measured hydraulic con-
ductivity and resistivity-driven hydraulic conductivity data.

The electrical-log data set (53 values) shows that the
resistivity-driven hydraulic conductivity values vary from
4 to 66 m/day with a geometric mean KF ¼ 14m=day and
a standard deviation �F ¼ 13:7m=day.

Trend analysis and normal score transformation
The measured hydraulic conductivity data and resistivity-
driven hydraulic conductivity data are tested for trend
analysis using t-statistic from a bilinear model. The
bilinear model is fit in the X-direction and Y-directions
(Fig. 2c) to detect if a trend exits. With a 10% level of
significance, Table 1 concludes that the conductivity data
have no significant trend in the X or Y direction.
Moreover, the measured hydraulic conductivity and
resistivity-driven hydraulic conductivity show positive
skewness, which indicates that one can assume hydraulic
conductivity to be log-normally distributed (Domenico
and Schwartz 1990). In this study, the data are standard-
ized to zero mean and unit variance and transformed to
normal scores (Deutsch and Journel 1998). The normal
transform facilitated computation of the Archie coeffi-
cients (a and m) and the pseudo cross-semivariogram,
which requires both random functions to have the same
mean and variance.

Experimental semivariograms and pseudo
cross-semivariogram
The 42 measured hydraulic conductivity values and 53
resistivity-driven hydraulic conductivity values are used in
conditional estimation of the hydraulic conductivity field
for both the regionalized model (i.e., by in Eq. (10)) and
coregionalized model—i.e., by in Eq. (8). Again, as none of
the data in this study area are collocated, a pseudo cross-
semivariogram is used instead of the cross-semivariogram.
The experimental auto-semivariograms (b+yy and b+ff ) and
pseudo cross-semivariograms (e+yf ) are computed using
Eqs. (5)–(7) and shown in Fig. 4.

This study adopts a spherical (Sph) semivariogram
model with nugget as the following:

gSph hð Þ ¼ c0 þ c1
3

2

h

c2
� 1

2

h

c2

� 	3
( )

; h � c2 ð21Þ

where h is the lag distance; c0 is the nugget; c1 is the
relative sill; (c0+c1) is the total sill; and c2 is the

a

b

c
Fig. 6 Semivariograms and their confidence limits for a auto-
semivariogram of y, b auto-semivariogram of f, and c pseudo cross-
semivariogram of y and f. The upper hinge of the box indicates the
75th percentile of the data set, and the lower hinge indicates the
25th percentile
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semivariogram range. Moreover, +Sph(0)=0 and +Sph ¼
c0 þ c1 for h>c2. With the spherical model, the integral
scale is

I ¼
Z c2

0
1� gSph hð Þ � c0

c1

� 	
dh ¼ 3

8
c2 ð22Þ

The parameters (nugget, sill, and range) embedded in
the semivariograms are estimated through a weighted
normalized least-squares estimation (Cressie 1985):

min
c0;c1;c2

Xn
k¼1

n hkð Þ b+ hkð Þ
+Sph hk; c0; c1; c2ð Þ � 1

( )2

ð23Þ

where hk is the kth lag distance; +Sph is the spherical
semivariogram model; and n(h) is number of points at
each lag representing the weight for the selected lag
distance. The minimization problem in Eq. (23) is
subjected to the Cauchy-Schwarz inequality conditions to
ensure the auto-semivariogram models and pseudo cross-
semivariogram model are positive definite (Hohn 1998).
The experimental semivariograms in Fig. 4 were fitted by
the weighted least-squares estimation method to obtain the
optimal values for c0, c1, and c2. The total sill for the auto-
semivariogram is equal to 1, which represents the uncon-

ditional variance of the normal score transformed data.
However, the total sill for the pseudo cross-semivariogram
is 0.9. Table 2 lists the optimized semivariogram parameter
values and shows moderate correlation at short range (as
expected when investigating hydraulic conductivity). The
resulted semivariogram models are shown in Fig. 4.
Especially, the pseudo cross-semivariogram in Fig. 4c
shows correlation over a length of approximately
15,000 m, approximately one-half of the length of the
study region, which indicates the appropriateness of using
cokriging for the correlated primary and secondary data.
The semivariogram models determine kriging weights and
cokriging weights (see section Conditional estimation using
hydrogeological data and resistivity data), which are used
to obtain the conditional estimates and conditional
variances. Moreover, these semivariogram models are the
means in the following semivariogram uncertainty analy-
sis. The kriged and cokriged hydraulic conductivity
distributions using the mean semivariograms are shown
in Fig. 5.

Semivariogram uncertainty
The experimental auto-semivariograms of y and f are the
mean semivariograms according to the method described
in section Significance analysis using ANOVA. A FOR-
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Fig. 7 The conditional esti-
mates of hydraulic conductivity
by cokriging (a, b) and kriging
(c, d) using the upper limit
semivariogram model and lower
limit semivariogram model. The
K varies between K=5.18 m/day
(black color) to K=701 m/day
(white color)
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TRAN program (C.V. Deutsch, University of Alberta,
Canada, personal communication, 2003) is used to
determine the semivariogram variance that allows deter-
mination of the lower and upper limits under the
assumption that the semivariograms are log-normally
distributed at each lag distance. The procedures to
determine these limits are as follows.

First, the 90% confidence interval was used to
determine the semivariogram limits for b+yy. Figure 6a
show the 5% percentile, 10% percentile, and so forth for
each lag distance. The upper limit semivariogram model is
determined using the spherical model to best fit the 95%
limits. As for the lower-limit semivariogram model, the
spherical model has 5% limit at the first lag distance and
gradually moved toward the sill according to Ortiz and
Deutsch (2002). Figure 6a shows the lower and upper
limit semivariograms, which are positive definite. The
upper limit for b+ff is also determined by the best fit of the
spherical model to the 95% limit at each lag distance as
shown in Fig. 6b. However the lower limit of and the

lower and upper limits of e+yf , as shown in Fig. 6c, are to
be adjusted such that the Cauchy-Schwarz inequality
condition e+yf � ffiffiffiffiffiffiffiffiffiffiffib+yyb+ffq

is satisfied for positive definiteness.
Again, these lower and upper limits are spherical models
with the model parameters listed in Table 2.

The cokriged hydraulic conductivity fields using the
lower and upper limits of the semivariograms in Fig. 7
show that the incorporation of the electrical log data
introduces more heterogeneity which cannot be observed
in the kriged hydraulic conductivity fields. However,
because the cokriged field has less conditional variance,
the simulated field using kriging has higher variability in
hydraulic conductivity than that using cosimulation as
shown in Fig. 8. The overall structure of the cokriging and
cosimulation are similar, but the cosimulation has a higher
variance. Moreover, the lower limit semivariogram intro-
duces longer correlation length compared with that of the
mean semivariogram. The upper limit semivariogram has
higher kriging variance that that of the lower limit
semivariogram.
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Significance analysis on groundwater responses
With the obtained semivariogram models and their
associated semivariogram variances, this section inves-
tigates the significance of hydraulic conductivity hetero-
geneity to the groundwater system responses for different
hydraulic conductivity distributions using the kriging
method, cokriging method, simulation, and cosimulation
with the mean, lower limit and upper limit semivario-
grams. In this section, a groundwater flow model in the
study area is developed to conduct ANOVA on ground-
water responses that include hydraulic head variability and
mean groundwater level.

Development of groundwater flow model
A regional-scale model of the Chicot Aquifer system in
southwest Louisiana was developed to better understand
the groundwater flow system in the region (Hanson et al.
2001). The Chicot groundwater model underlying Acadia
Parish is based on MODFLOW (Harbaugh and McDonald
1996) and has five layers and 50 rows and 50 columns,
resulting in a grid size of approximately 0.83 km2. The
grid is oriented 20° counter-clockwise from the geograph-
ic coordinate in order to closely align with the flow
direction (Fig. 2). A local model in Acadia Parish has
been developed to better understand the groundwater flow
dynamics in the study area (Rahman 2005). A telescopic
mesh refinement technique MODTMR (Leake and Claar
1999) was used to extract the modeling heads from the
regional model (Chicot model) and assign the heads to the
hydraulic head boundary conditions of the local model.
Therefore, time-varied head boundary conditions are
specified for all sides of the study domain. The top layer
has a constant head-boundary condition; and the bottom
layer is the no-flow boundary. The initial condition of the
hydraulic head is created from the 1961 water level
estimates. Pumping well types and locations were
obtained from the Water Well GIS database of Louisiana
Department of Transportation and Development (DOTD).
A total of 411 water wells (26 industrial, 27 public supply
and 358 irrigation wells) are included in the model. Only
industrial, irrigation and public supply water wells are
used in this study as these three types are responsible for
more than 90% of the groundwater withdrawn from the
Chicot Aquifer (Sargent 2002). Yearly pumping rates were
estimated by linear interpolation from the 5-year water-use
reports of US Geological Survey (Sargent 2002). The total
rate was evenly distributed to the registered wells by
dividing yearly pumping rate by total number of registered
wells within each sector. The groundwater flow was
simulated from the year of 1961 to the year of 2001 and
the results at the final year are used for analyzing the head
responses.

Groundwater responses
Three responses are derived from the groundwater flow
model and investigated for the ANOVA test. The T
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responses are (1) hydraulic head variability (R1), (2)
specific capacity of a pumping well (R2), and (3) mean
groundwater level (R3). The hydraulic head variability
(first response, R1) is taken as the mean squares error of
the difference between the initial hydraulic head distribu-
tion in 1961 and the calculated hydraulic head distribution
in the year 2000 obtained using different hydraulic
conductivity distributions over 2,500 computational nodes
at the Upper Chicot Aquifer:

R1 ¼ 1

nr

Xnr
r¼1

X2500
i¼1

�ini;i � �r;i

� �2 ð24Þ

where φini,i is the initial groundwater head; φr,i is the
simulated groundwater head for a particular realization r;
nr is the number of realizations.

The number of realizations needed depends on the
uncertainty of the K field being addressed (Deutsch and
Journel 1998). In this study, the number of realizations (nr)
is selected based on a simple test. Model responses (R1)
for different numbers of hydraulic conductivity realiza-
tions are calculated while keeping everything else as
constant. Response for 20 realizations is taken as the finest
case. The error terms, "R ¼ R1 � Rfinestj j, are plotted against
the square root of number of realizations,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nrealizations

p
.

Increasing the number of hydraulic conductivity realiza-
tions from 8 to 20 (finest case) only accounts for 6% of
response uncertainty. Therefore, an average over 20
realizations was used in stochastic cases. When the kriged
field and cokriged field are considered, the nr is equal to 1.

The specific capacity is also a key factor to assess the
groundwater response. A decrease in the specific capacity
indicates a decline in the productivity of the well due to
the lower effective hydraulic conductivity field in the
near-well area. A decrease in the specific capacity
decreases the ability of the well to produce water
economically. The specific capacity assesses influence of
the hydraulic conductivity field on the ability of a well to
produce water at a prescribed flow rate. In this study, the
second response was chosen to be the specific capacity of
an irrigation well (second response, R2) located at row 31
and column 25—561235 E (easting), 3347383 N (north-
ing) in the UTM coordinate system—with the real
pumpage Qreal=757 m3/day (0.2 million gallons per day).
The irrigation well located near the center of the study
area is chosen as the boundary conditions have least

influence on it. Simulated drawdown (s) at the end of last
stress period is used to evaluate the specific capacity:

R2 ¼ 1

nr

Xnr
r¼1

Qreal

sr
ð25Þ

where sr is the simulated drawdown for a particular
realization. An average over 20 realizations was consid-
ered for the simulation process.

This study considers the average groundwater head
from a 30×30-inner grid (from row 10 to row 40 and from
column 10 to column 40) at the last stress period as the
third response, R3:

R3 ¼ 1

900nr

Xnr
r¼1

X900
i¼1

�r;i ð26Þ

The three responses are computed from the groundwa-
ter model using the alternative hydraulic conductivity
fields (Table 3).

Statistical analysis using ANOVA
All three responses are found insensitive to semivariogram
uncertainty for the kriged and cokriged models. For the
simulation and cosimulation results, increased variance in
hydraulic conductivity fields (i.e., upper limit semivario-
gram) causes more variation in water-head variability and
specific capacity. In all levels of semivariogram uncer-
tainty, the coregionalized method has higher water levels
than those in the regionalized method.

Results from the cosimulated scenario (Table 3) show
that there is a 10% chance that specific capacity is less
than the cokriging estimate by at least 11%, and specific
capacity from the simulated scenario is less than the

Table 4 The F-test statistic to compare simulation and cosimula-
tion in variance of groundwater level

Semivariogram model �2
s �2

cs F Pr>F

Upper limit 9.1 2.2 1.33 0.0001a

Mean 2.9 1.2 1.14 0.02a

Lower limit 4.6 3.6 1.17 0.01a

a Indicates significant effects
�2
s = variance of third responses using simulation process

�2
cs = variance of third responses using cosimulation process

Table 5 The t-test statistic to test specific capacity (R2) of con-
ditional simulation to the kriging methods

Variable Mean of 20
realizations

Conditional
estimate

t-test Pr>t

Coregionalized 27.22 28.80 −5.9 0.0001a

Regionalized 26.94 28.24 −3.0 0.008a

a Significant effects

Table 6 ANOVA results on flow model responses

Class Levels Water level
variability

Specific
capacity

Average
water level

Pr>F Pr>F Pr>F

Process 2 0.03a 0.01a 0.04a

Variable 2 0.77 0.04a 0.01a

Semivariogram 3 0.27 0.13 0.19

a Indicates significant effects
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kriging estimate by at least 8%. However, this difference
may be too small to be of practical importance.

Table 3 shows that the variance of the average water-
level response using simulation is greater than the
variance using cosimulation. To verify the significant
difference in these two variances, the F-tests method was
introduced to conduct the significance analysis at all three
levels of semivariogram uncertainty. The F-test results
shown in Table 4 conclude that the variances are different
at the 10% significance level. This is because the
cosimulation reduces uncertainty in aquifer heterogeneity
and aquifer response by introducing the secondary
variable in the simulation process.

The t-tests in Table 5 show that the mean specific
capacity using simulation and cosimulation is significantly
different from conditional estimates using kriging and
cokriging methods at 10% level of significance. Table 6
shows the ANOVA significance analysis results on the
flow model responses in terms of the processes (i.e.,
kriging versus simulation; cokriging versus cosimulation),
variables (i.e., kriging versus cokriging; simulation versus
co-simulation); and semivariograms (i.e., lower limit, mean,
and upper limit). At 10% level of significance, the ANOVA
results show that semivariogram uncertainty does not have
a significant effect on any of the flow model responses.

However, the results in the ‘process’ class (Table 6)
show that the use of simulation and cosimulation methods
has a more significant impact on all of the flow model
responses than the use of kriging and cokriging methods.
The results in the ‘variable’ class (Table 6) also show that
the use of the resistivity data does have a significant effect
on the flow model responses.

Conclusions

Geophysical data such as borehole electrical resistivity
have been integrated with the measured hydraulic con-
ductivity under the cokriging framework to improve
spatially distributed hydraulic conductivity estimation. A
pseudo cross-semivariogram has been evaluated to cope
with the non-collocated resistivity data. The improve-
ments in the groundwater model have been investigated
by comparing the head levels from different hydraulic
conductivity models and the significance of either (1)
processes; (2) variables; or (3) semivariograms as deter-
mined by ANOVA. The results show that the use of the
coregionalized field is statistically significant in the flow-
model response compared to the regionalized model. The
study also shows that the simulation process can reproduce
the aquifer heterogeneity and is statistically significant in
the flow-model response; therefore, cosimulation should be
used instead of cokriging. The semivariogram uncertainty
has been studied in all models, both regionalized and
coregionalized, by using the upper and lower-limit semi-
variograms, assuming that the sills are log-normally
distributed. However, results show that the semivariogram
uncertainty on the groundwater-flow model response is not
significant.
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