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A macroscopic description of the quasi-static behavior
of granular materials based on the theory of porous media
Stefan Diebels

Abstract Granular materials fall into the class of porous
media. But in contrast to materials like foams and sponges
their structure is discontinous on a microscopic level. For
this reason the particles may undergo independent dis-
placements and rotations. This is the classical kinematics
which may be captured by a micropolar or Cosserat theory
on the macroscopic level.

The goal of this paper is to combine the theory of
porous media as a macroscopic theory dealing with multi-
phase systems and the micropolar theory describing ex-
tended kinematics and taking care of the discountinous
structure of granular media on the micro scale. The re-
sulting micropolar theory of porous media may be used
to describe the quasistatic behavior of granular materials.
In the present contribution thermodynamically consistent
constitutive relations for the elastic response of a dense
granular matrix material saturated by a viscous pore fluid
are given and applied to some boundary value problems
which demonstrate the physical relevance of the proposed
model.

1
Introduction
Mechanical systems consisting of different components
may be described on a macroscopic level using the mixture
theory which was formulated in the framework of rational
mechanics by Truesdell [1] and by Truesdell & Toupin [2].
Bowen introduced the volume fractions as internal vari-
ables into the mixture theory and extended it towards the
theory of porous media [3,4]. Further developments of the
theory of porous media (TPM) were given e.g. by de Boer
& Ehlers [5] and Ehlers [6,7]. In the formulation discussed
in the mentioned papers, the theory may be used to de-
scribe the behavior of porous materials such as foams on
a macro scale which is much larger than the represen-
tative diameter of the pores. If one wants to model the
macroscopic behavior of granular media the composition
is discontinous on a micro scale. Therefore, the particles
may undergo independent displacements and rotations. A
macroscopic theory which is capable to deal with such a
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kind of extended kinematics is the micropolar or Cosserat
theory [8,9], which was successfully applied to block struc-
tures [10]. Zastrau [11] stated that a micropolar approach
allows to deal with the usual tools of differential calculus
even for a discontinous composition on the micro scale. In
addition to the physically motivated applications of the
Cosserat theory, it was found during the last years that
extended continuum theories with internal length scales
lead to a regularization of the ill posed problem of soften-
ing [12].

It is the goal of this contribution to combine the theory
of porous media and the micropolar theory and to develop
a thermodynamically consistent model. The resulting mi-
cropolar theory of porous media (MTPM) is then able
to predict the average translation and the average rota-
tion of the granules in a representative elementary volume
(REV).

In the following section the concepts of superimposed
continua and of volume fractions are introduced. The ex-
tended kinematic relations of a Cosserat continuum are
discussed. For a binary mixture consisting of a micropolar
solid skeleton saturated by a viscous pore fluid the re-
quired balance equations are given. Starting from general
results of the principle of dissipation a constitutive model
is developed which describes the elastic behavior of the
solid part. The plastic behavior of a micropolar solid skele-
ton is discussed at small strains e.g. by Ehlers & Volk [13]
but for simplicity it is not included here. It is rather the
goal to derive the underlying structure of such a kind of
theory.

2
Kinematics
The theory of porous media is based on the idea of super-
imposed continua. Following this concept, it is assumed
that each spatial point x in the current configuration is oc-
cupied by several material points of different constituents
ϕα (here: skeleton α = S, fluid α = F ). The microscopic
structure of the porous medium under consideration is
taken into account via the volume fractions defined as the
local ratio of the volume dvα occupied by the constituent
ϕα to the volume dv occupied by the whole mixture ϕ

nα =
dvα

dv
, α = S, F . (1)

If the mixture is saturated, the whole space is filled with
matter, i.e. taking into account that the volume of the
mixture ϕ is given by the sum of the partial volumes of
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Fig. 1. Deformation gradient and micromotion

the constituents, the saturation condition is obtained in
the following form

nS + nF = 1 . (2)

In the same manner two different density functions may
be introduced, namely the partial or bulk density ρα re-
lating the element of mass dmα of the constituent ϕα to
the volume of the whole mixture ϕ and the effective den-
sity ραR relating the same element of mass to the volume
occupied by ϕα only:

ρα =
dmα

dv
, ραR =

dmα

dvα
, ρα = nα ραR . (3)

In this context incompressibility of one of the constituents
is understood in a microscopic sense, i.e. the effective
density is assumed to be constant for incompressible con-
stituents, ραR = const. Even in this case the partial
density may vary due to variations of the volume fraction.

Following the concept of superimposed continua, each
constituent follows its own function of motion χα and each
spatial point x in the current configuration is occupied by
material points of each constituent, which are identified
by their positions in the reference configuration Xα:

x = χα(Xα, t) . (4)

The deformation gradient

Fα =
∂χα(Xα, t)

∂Xα
(5)

transforms line elements dXα of the reference configura-
tion into line elements dx of the actual configuration (c.f.
Fig. 1) so that

dx = Fα dXα . (6)

The velocity field x′
α is obtained from the function of mo-

tion by the time derivative

x′
α =

∂χα(Xα, t)
∂t

. (7)

Differentiating (6) with respect to time yields

dx′
α = (Fα)′

α F−1
α dx = Lα dx (8)

where the spatial velocity gradient is introduced as

Lα = gradx′
α . (9)

The symbol (·)′
α denotes the material time derivative fol-

lowing the motion of the constituent ϕα.

If the solid phase is assumed to be micropolar, its par-
ticles may undergo independent rotations. In this case the
material points of ϕS as the carrier of the physical proper-
ties are assumed to be rigid bodies on the microscale. The
independent rotational field is governed by the micromo-
tion R̄S(XS , t), which is an orthogonal tensor. In order to
visualise the rotation, each particle has attached a triade
of rigid directors NS of fixed length, which is transformed
from the reference configuration into the actual configu-
ration according to the micromotion (c.f. Fig. 1):

nS = R̄S NS . (10)

While the deformation tensors of the standard formu-
lation of continuum mechanics are derived from squares of
line elements dx · dx, the deformation tensors of the mi-
cropolar constituent are obtained from the scalar product
nS · dx of directors and line elements in the actual config-
uration with respect to the reference configuration or vice
versa, c.f. [9,14,15]. Following this concept, the Cosserat
deformation tensor of the reference configuration is given
by

nS · dx = NS · R̄T
S FS dXS → ŪS = R̄T

S FS , (11)

while the corresponding tensor of the actual configuration
is given by

NS · dXS = nS · R̄S F−1
S dx → V̄S = FS R̄T

S . (12)

In (11) and (12) the symbol (·)T represents the transposed
of a second order tensor. In analogy to the polar decompo-
sition of the deformation gradient, FS may be re-written
as

FS = R̄S ŪS = V̄S R̄S , (13)

where, in general, ŪS and V̄S are not symmetric.
Furthermore, curvature tensors are required. They de-

scribe the gradient of the micromotion. In a natural way
they are introduced as third order tensors taking the
derivative of the micromotion either with respect to the
position Xα of the reference configuration or x of the ac-
tual configuration [9,14,15]

3
KS = (R̄S GradS R̄T

S )3,
3
jS = −(R̄S grad R̄T

S )3 . (14)

The absolute tensor notation is used according to [16].
Taking into account the identity R̄S R̄T

S = I, it can be
shown that the curvature tensors defined in (14) are skew-
symmetric with respect to the first and second index.
Therefore, they may be contracted to second order cur-
vature tensors by application of the permutation tensor
3
E

K̄S = − 1
2 (

3
E

3
KS)2, j̄S = − 1

2 (
3
E

3
jS)2 . (15)
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3
Balance equations
The balance equations of mixtures with an arbitrary num-
ber of micropolar constituents are discussed by Diebels
& Ehlers [15] and by Diebels [17,18]. The basic idea to
formulate the balance equations for mixtures is stated
in Truesdell’s metaphysical principles [19]. Here, these
general results are specialized with respect to the binary
mixture under study. From a general point of view the
balances of each constituent possess the same structure
as the balances of a single phase continuum. But in or-
der to account for the interaction between the individual
constituents additional production terms have to be intro-
duced.

3.1
Balance of mass
The balance of mass for each constituent reads

(ρα)′
α + ρα divx′

α = ρ̂α . (16)

In (16), div(·) is the divergence corresponding to grad(·) =
∂(·)/∂ x. In general, an exchange of mass is possible be-
tween the constituents, i.e. ρ̂α 6= 0, e.g. to model the
melting of ice in an ice-water mixture. But here it is as-
sumed that there is no phase transition between the solid
and the fluid constituent. Therefore, ρ̂α = 0. As usual in
solid mechanics, equation (16) with α = S may be inte-
grated from the density ρS

0S of the reference configuration
to the actual value ρS yielding

ρS = ρS
0S det F−1

S . (17)

The volumetric deformation JS = det FS gives rise
to a change of the effective density ρSR and of the volume
fraction nS .

3.2
Balance of linear momentum
Following Newton’s axiom the change of momentum of a
body is equal to the forces acting on it. With the partial
stress tensor Tα and with the body forces ρα b the balance
of linear momentum is obtained in its local form:

ρα x′′
α = divTα + ραb + p̂α . (18)

In (18) p̂α is the exchange of momentum or, in the context
of the binary model, the interaction force per unit of bulk
volume. In order to preserve the linear momentum of the
mixture, the sum of the interaction forces must vanish so
that

p̂S = − p̂F . (19)

Both, Tα and p̂α, must be given by constitutive relations.

3.3
Balance of moment of momentum
It is well known in mechanics of non-polar materials that
the balance of moment of momentum leads to symmetric

Cauchy stress tensors. Therefore for the non-polar fluid
one has

TF = (TF )T . (20)

If the solid skeleton under consideration is assumed to
be micropolar the material points are regarded as rigid
bodies on the microscale, i.e. they possess a spin and a
corresponding microinertia. For simplicity the microiner-
tia is represented by an isotropic tensor ΘS I and, there-
fore, it is constant under the motion of the rigid micro
particles. Otherwise the so-called balance of microinertia
must be taken into account [15,18,20]. The local form of
the balance of moment of momentum reads

ρS ΘS (x̄S)′
S = divMS + I × TS + ρS cS + m̂S . (21)

The angular velocity x̄S related to the micromotion may
be computed as

x̄S = 1
2

3
E

(
(R̄S)′

S R̄T
S

)
. (22)

The product I × TS represents twice the axial vector of
the Cauchy stress TS . For symmetric stress tensors it is
zero. MS are the couple stresses. The volumetrically dis-
tributed moments ρS cS (supply terms) are included dur-
ing the evaluation of the entropy principle but they are
neglected in the examples presented below due to the fact
that no electro-magnetic forces are taken into account. In
addition, the interaction m̂S is equal to zero because the
fluid is assumed to be non-polar and, therefore, it is not
able to transfer moments.

In a more general model, further balances are the bal-
ance of energy and the entropy inequality. Both balances
are discussed in detail by Diebels [17,18] and by Diebels
& Ehlers [15] in the framework of micropolar mixtures.
In the present contribution these equations are not dis-
cussed but the relations obtained form the evaluation of
the entropy inequality and the principle of dissipation are
summarized in the next section. They highlight the struc-
ture which is required in a micropolar mixture theory with
compressible constituents.

4
Constitutive equations
The balance equations discussed in the last section are in-
dependent of the material behavior. In order to close the
set of balance equations further equations, the so-called
constitutive equations, are required. They describe the be-
havior of the special material under study. In the present
investigation the porous solid phase is assumed to be mi-
cropolar, elastic, and saturated by a viscous pore fluid.
The corresponding set of variables is given by

S = {ŪS , GradS ŪS , K̄S , GradS K̄S ,

ρF, grad ρF, DF, wF, n
S, gradnS, ϑ, gradϑ} .

(23)

Therein,

DF = 1
2

(
LF + LT

F

)
(24)

is the stretching tensor, i.e. the symmetric part of the
velocity gradient,

wF = x′
F − x′

S (25)



146

is the seepage velocity, and ϑ is the absolute temperature,
which is assumed to be the same for both constituents.
The set of response functions

R = {ηα, /α
η , ψ

α, Tα, MS , p̂F , (nS)′
S} (26)

must be given by the constitutive equations. Therein, ηα

is the entropy, /α
η is the entropy flux, and ψα is the free

energy function of the constituent ϕα. As an a priori con-
stitutive equation the entropy flux /α

η is given in terms of
the heat flux qα and the temperature ϑ

/α
η =

qα

ϑ
. (27)

More general relations for /α
η are possible within the

framework of the Liu-Müller evaluation of the entropy
principle [21,22], probably the couple stresses and the mo-
mentum supply, respectively, will enter into (27). In the
present article the more restrictive evaluation of the en-
tropy principle formulated as Clausius-Duhem inequality
is applied according to Coleman & Noll [23].

4.1
Evolution of the volume fraction
Due to the fact that the volume fractions are introduced
as internal variables, there are no balance equations for
them. As usual for internal variables evolution equations
must be formulated in the framework of the constitutive
theory. In the present contribution, an evolution equation
for the solid matrix is motivated from the balance of mass.
Changes of the partial density ρS are possible due to two
different effects according to (3)3: One possibility is the
change of the effective density, the other one is given by
changes in the volume fraction. The balance of mass for
the solid phase may be re-written under this point of view
in the following form

ρSR
[
(nS)′

S + zS nS divx′
S

]
+nS

[
(ρSR)′

S + (1 − zS) ρSR divx′
S

]
= 0 .

(28)

In this equation the function 0 ≤ zS ≤ 1 determines
the percentage of the change of density which is governed
by changes of the volume fraction nS . Assuming that ρSR

and nS are independent variables in the process under
study, each bracket in equation (28) must vanish seper-
ately. From this assumption the required evolution equa-
tion is obtained constitutively in the following form

(nS)′
S + zS nS divx′

S = 0 . (29)

For zS = 1, (29) degenerates to the volume balance
known from incompressible porous materials [3,24,25]. In
order to model reversible behavior of the elastic skeleton,
(29) may be integrated yielding an equation of state. This
does not introduce dissipation into the model. For plas-
tic behavior of the skeleton dissipative mechanisms may
easily be incorporated into (29).

In addition, the evolution of the volume fraction nF

is governed by the saturation constraint. From the micro-
scopic point of view this is valid for a gas which always
fills the pore space. Taking the material time derivative of

the saturation condition (2) following the motion of the
skeleton and transforming (nF )′

S into (nF )′
F by

(nF )′
S = (nF )′

F − gradnF · wF (30)

yields the required equation in the form

(nF )′
F = zS nS divx′

S − gradnS · wF . (31)

Taking into account (29) and (31), a saturation pressure
does not explicitly arise in the theory if the fluid is com-
pressible.

4.2
Results from the entropy principle
The following results are sufficient to satisfy the princi-
ple of dissipation for a Cosserat-elastic compressible ma-
trix saturated by a viscous compressible pore-fluid under
isothermal conditions. For details, c.f. [18]. Even more
general results are obtained by Svendsen & Hutter [25]
for non-polar mixtures including constraints like incom-
pressibility. For simplicity, isothermal conditions and the
principle of phase seperation [24] are assumed:

– The stress tensor in the solid matrix is governed by
two parts, namely

TS = R̄S

[
ρS ∂ψ

S

∂ŪS

]
FT

S − zSnS

[
pFR + pK

]
I . (32)

Therein, the first term on the right hand side is the
so-called extra stress

TS
E = R̄S

[
ρS ∂ψ

S

∂ŪS

]
FT

S (33)

resulting from the macroscopic deformation of the ma-
trix material. The second term depends on the effective
fluid pressure

pFR =
(
ρFR

)2 ∂ψF

∂ρFR
(34)

and on the so-called configuration pressure

pK = ρF ∂ψ
F

∂nS
+ ρS ∂ψ

S

∂nS
(35)

resulting from changes in porosity. Furthermore, the
free energy functions ψα serve as potentials for the
extra stress and for the fluid pressure.

– The couple stresses of the solid matrix follow from the
free energy function ψS by differentiation with respect
to the curvature tensor

MS = R̄S

[
ρS ∂ψ

S

∂K̄S

]
FT

S . (36)

– The fluid stresses depend on the effective fluid pres-
sure pFR and on an extra term governed by a positive

definite material tensor
4
T and the stretching DF :

TF = −nF pFR I + TF
E = −nF pFR I +

4
TDF . (37)
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As usual in hydraulics and ground water flow the fluid
extra stresses TF

E are neglected with respect to the
interaction force:

TF
E =

4
TDF ≈ 0 . (38)

A validation of this common assumption in terms
of non-dimensional characteristic numbers is given in
[26].
Like the stresses, the exchange of momentum or the
interaction force per unit of bulk volume is split into
two parts, one of them depending on the gradient of
the volume fraction and the other one, the so-called
extra term, depending on the seepage velocity wF

p̂F = −
[
pFR + ρF ∂ψ

F

∂nS

]
gradnS − PwF . (39)

According to [27,28] the first term of the r.h.s. of (39)
is called interaction of Fick ian type and the second of
Darcy type. Therein, it is shown that ∂ψF /∂nS be-
comes important in some applications, but here it is
assumed that ψF = ψF (ρFR), which leads to reason-
able results in several applications.
The tensor P is symmetric and positive definite. In
the case of an isotropic pore structure the tensor P
becomes spherical:

P =
(nF )2 γFR

kF
I , (40)

where γFR is the effective weight of the fluid and kF is
the so-called Darcy permeability containing informa-
tion on the size and structure of the pore space and
on the viscosity of the fluid. Inserting (38) and (40)
into the quasi-static form of the balance of momentum
of the fluid (equation (18) with α = F and ρF x′′

F ≈ 0),
the well-known Darcy law is recovered if ψF does not
depend on the volume fraction nS :

nF wF =
kF

γFR

(
ρFR b − grad pFR

)
. (41)

The presented relations obtained from the principle of
dissipation may directly be extended to more general con-
ditions including thermal effects and further couple terms
due to the principle of equipresence [18]. On the other
hand, to become more specific, the free energy functions
ψα must be specialized.

4.3
Free energy functions
For the sake of simplicity the fluid is assumed to be an
ideal gas. Consequently, under isothermal conditions the
pressure is directly related to the effective density. More
general equations of state are discussed and applied in
[26]. With a constant factor κF the constitutive relation
applied in the examples reads

pFR = κF ρFR . (42)

The free energy function ψF may be obtained by integra-
tion of (42)

ψF = κF ln(ρFR/ρFR
0 ) + ψF

0 . (43)

In (43) ρFR
0 and ψF

0 are the values of the effective density
and of the free energy at a given reference pressure pFR

0 ,
respectively.

For the solid the situation is more complicated. In the
case of isotropic behavior the free energy may be given as
an isotropic function of the invariants of the deformation
tensor and of the curvature tensor [29]. The following form
is chosen:

ρS
0S ψ

S = µS(IIU − lnJS − 3/2) + µS
c (IIU − IVU )

+λS
[
βWS(JS) + (1 − β)WS(nS

0S/n
S)

]
+µS

c (lSc )2 f(JS) IIK + P0 JS .

(44)

The invariants used in (44) are:

IIU = 1
2ŪS · ŪS ,

IVU = 1
2ŪS · ŪT

S ,

JS = det ŪS = det FS = JS ,

IIK = 1
2K̄S · K̄S .

(45)

The material parameters arising in (44) are the classical
Lamé constants λS and µS . In addition, µS

c is a Cosserat
parameter and lSc is the so-called internal length. The pa-
rameter β takes care of the two different compressibilities,
one of them related to macroscopic deformations in terms
of JS , the other one in terms of changes in the volume
fraction nS

0S/n
S . The initial pressure P0 is neccessary to

ensure equilibrium in the reference configuration where
the fluid constituent is under the pressure pFR

0 while the
skeleton is undeformed. As discussed in [30] the volumetric
part of the free energy function may be given by

WS(x) =
1
4
[
(x − 1)2 + (ln x)2

]
. (46)

This guarantees that the physical limits for the free energy
function and for the stresses under infinite extension and
compression are met: Infinite deformations require the free
energy and the stresses to become infinite, too.

Finally, the function f(JS) allows for an increase of the
couple stresses with increasing compression if f is chosen
as

f(JS) = J−m
s , m ≥ 0 . (47)

From (44) the weighted Cauchy extra stresses, the con-
figuration pressure, and the weighted couple stresses may
be computed according to equations (32), (35), and (36),
respectively:

– Weighted Cauchy extra stresses:

JS TS
E = µS (BS − I) + µS

c (BS − (V̄T
S )2)

+λS β JS
dW S(JS)

dJS
I

+µS
c (lSc )2 JS

df(JS)
dJS

IIK I + JS P0 I

(48)

with the symmetric left Cauchy-Green deformation
tensor

BS = FS FT
S = V̄S V̄T

S . (49)
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– Configuration pressure:

pK = − (1 − β)λS nS
0S

2 JS (nS)2(
nS

0S

nS
− 1 +

nS

nS
0S

ln
nS

0S

nS

)
. (50)

– Weighted couple stresses:

JS MS = µS
c (lSc )2 f(JS) jS BS . (51)

If the micromotion R̄S is identical with the continuum
rotation RS following from the polar decomposition of the
deformation gradient,

FS = RS US = VS RS , (52)

the second term on the r.h.s. of equation (48) vanishes and
the stress tensor becomes symmetric. The terms in equa-
tion (48) related to the classical Lamé constants represent
a volumetrically extended Neo-Hooke law. Furthermore,
for the choicem = 0 the couple stress tensor is given in the
well-known form proposed by de Borst [31] in the linear
case and extended into the range of finite deformations by
Steinmann [14]. In equation (51) the left Cauchy-Green
deformation tensor BS appears only due to geometrical
non-linearities.

4.4
The principle of effective stress
Taking into account the principle of effective stress in the
form given by Šuklje [32], the factor zS resulting form the
evolution equation (29) may be determined. According to
that principle, the total hydrostatic stress σ is governed
on the one hand by the fluid pressure pFR and on the
other hand by the effective stress σ′. The latter one is the
part of the stress derived from the free energy function
of the solid skeleton by differentiation with respect to the
deformation. Šuklje stated the principle of effective stress
in the following form:

σ = σ′ +
(

1 − nS KS

KSR

)
pFR . (53)

Therein, KS is the compressibility of the porous skele-
ton and KSR is the compressibility of the matrix material
itself. This result must be compared with the negative
spherical part of the total stress resulting from (32) and
(37), i.e. with

σ = − 1
3 (TF + TS) · I . (54)

Identifying the effective stress with the parts of TS which
are related to the free energy ψS leads to a function zS

that is governed by the ratio of the moduli KS and KSR,
respectively:

zS = 1 − KS

KSR
. (55)

If the matrix material is incompressible KSR → ∞, and,
as a consequence, zS → 1 which transforms the evolu-
tion equation (29) into the well-known balance of volume

valid for incompressible constituents. Furthermore, it is
assumed that KS is proportional to KSR by the volume
fraction nS . This corresponds to the so-called Voigt bound
of homogenization theory. In this case, the function zS is
obtained in the simple form

zS = 1 − nS = nF (56)

and the evolution equation (29) may be integrated yielding

nS =
nS

0S

nS
0S(1 − JS) + JS

. (57)

4.5
The hybrid and the incompressible model
In many cases, the structural compressibility of the skelton
material is much larger than the compressibility of the
grains themselves. Therefore, the effective density of the
solid phase is assumed to be constant, ρSR =const., and
the balance of mass degenerates to a balance of volume.
This requires that the function zS = 1. Integration of (29)
directly yields the well-known result

nS = nS
0S J

−1
S . (58)

The volume fractions are no longer independent process
variables, but they may be expressed by JS according to
(58). Instead of (32) the stresses are given by the relation

TS = R̄S

[
ρS ∂ψ

S

∂ŪS

]
FT

S − nS pFR I . (59)

Furthermore, while (44) remains unchanged, the volumet-
ric part of the free energy function must by modified in
order to take care of the point of compaction: If all pores
are closed, further compression is not possible. Ehlers &
Eipper modelled the point of compaction by the following
volumetric part of the free energy function [33]:

WS(JS) = (1 − nS
0S)2

[
JS − 1
1 − nS

0S

− ln
(
JS − nS

0S

1 − nS
0S

)]
.

(60)

The model consisting of an incompressible solid skeleton
saturated by a compressible pore-fluid is called the hybrid
model (of second type) [7,17,18,34].

The so-called incompressible model is obtained if both,
the solid and the fluid, are assumed to be incompress-
ible. In addition to the modifications (58)–(60), the pore
pressure is no longer given by an equation of state but it
degenerates to a Lagrangean multiplier to guarantee the
saturation constraint, i.e. in this case the saturation pres-
sure enters the model explicitly.

5
Examples
The micropolar two-phase model discussed in the previ-
ous sections was implemented into the finite element code
PANDAS [35], which was developed at the Institute of
Applied Mechanics (Civil Engineering) at the University
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of Stuttgart. Details of the weak formulation of the bal-
ance equations and of the numerical implementation may
be found in [36–38].

In this section some representative elementary experi-
ments are computed in order to validate the model and to
show its physical relevance. The presented examples are
based on the quasi-static formulation of the balance equa-
tions. Furthermore, plain strain is assumed in the two-
dimensional examples. The parameters listed in Table 1
were used during the computations if nothing else is spec-
ified in the examples.

5.1
Uniaxial tension test
The uniaxial tension test is the simplest test that may
be simulated. It may be performed under drained or
undrained conditions. In the first case only the properties
of the solid phase are of interest, while in the second case
the properties of both constituents influence the resulting
curves.

The force which is required to elongate a 0.2 m long
and 0.1 m wide specimen by the given amount is shown in
Fig. 2 for drained conditions and in Fig. 3 for undrained
conditions. The strain under extension is 200% and under
compression −90%. In the case of granular materials only
the range of compression is of interest but the rage of
extension may be relevant for foams and sponges.

The different curves show the results for the compress-
ible model with β = 0 and β = 1 and for the incompress-
ible model. The rotational degrees of freedom related to
the micropolar properties of the skeleton are not activated
in this example.

The major differences between the compressible and
incompressible models are found in the range of com-
pression. Under the same axial load the incompressible
model leads to smaller displacements than the compress-
ible model. This is a result of the point of compaction
included into the incompressible model: If all pores are
closed the incompressible model does not allow for fur-
ther compression while from the theoretical point of view
the compressible model may be compressed to zero vol-
ume under infinite hydrostatic stresses. In the compress-
ible model an adjustment of the load-displacement curves
in a certain range is possible by variation of the parameter
β. For β = 0 only the configuration pressure pK is active

Fig. 2. Force-displacement-diagram (drained conditions)

Fig. 3. Force-displacement-diagram (undrained conditions)

Table 1. Used parameters

µS 1.33 MN/m2

µS
c 0.67 MN/m2

λS 1.33 MN/m2

lSc 0.01 m

m 2

β 0, 0.5 and 1

nS
0S 0.7

ρSR
0S 3000 kg/m3

ρFR
0S 1000 kg/m3 (incompressible fluid)

κF 0,1 MNm ( compressible fluid)

kF 1 · 10−4 m/s

and determines the hydrostatic stress in the solid skele-
ton while in the limit β = 1 the structural compressibility
governs this stress.

Fig. 4 shows the lateral displacement over the elonga-
tion of the specimen for drained conditions. It can be seen
that the local Poisson ratio νS defined as negative ratio of
transversal to longitudinal strain is always positive. This
physically meaningful result is not guaranteed in finite
elasticity if the free energy function is split into isochoric
and volumetric parts without any coupling [39]. Due to the
point of compaction the largest values of the Poisson ratio
are predicted by the incompressible model under compres-

Fig. 4. Lateral displacement over elongation
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sion when the pores are closed. For the undrained case the
effect is even stronger because the specimen has to deform
under constant total volume and no shrinkage of the pore
space is possible for the incompressible pore fluid.

5.2
Consolidation test
Another one-dimensional example is the consolidation
problem. A specimen of 1 m width is loaded on the top.
Only the surface is drained while all other boundaries are
rigid and undrained. When the load is applied the fluid
starts to drain. Fig. 5 shows the vertical displacement (set-
tlement) of the top under a load that is increased linearly
in time and then kept constant at t = 1 s. Thereafter, the
applied load is 0.1 MNm−2.

While the compressible (β = 0.5) and the hybrid model
show a relatively spontaneous settlement the incompress-
ible model reacts with a strong time dependence. This is
due to the fact that the incompressible model requires the
pore fluid to be flown out before a settlement is possi-
ble. On the other hand, in the models with a compress-
ible pore fluid, a volumetric deformation is possible even
when the fluid still fills the pores. In contrast to the
short time behavior, the long time behavior is governed
by the compressibility of the skeleton, which is greater
in the compressible model than in the hybrid and in the
incompressible model. Therefore, under the same load,
the compressible model shows a greater settlement than
the models with incompressible matrix material.

Fig. 5. Settlement under step load

Fig. 6. Settlement under linearly increasing load

Fig. 7. Displacement and rotation under shear

If the load is continously increased with a rate of 10
kNm−2s−1, effects due to the point of compaction become
visible in Fig. 6 for the hybrid and incompressible model,
respectively. While an increase of the load leads to an
increase of the surface displacement in the compressible
model, the models including an incompressible skeleton do
not allow a further compression if the point of compaction
is reached. An increase of the load does not lead to further
settlement in this case.

Both uni-axial tests, the tension test and the consoli-
dation test, do not activate the additional degrees of free-
dom related to the micropolar solid phase. The material
parameters related to the standard part of the model may
be determined by these experiments.

5.3
Shear test
The simplest example which allows for independent rota-
tions is the shear test. In this example a layer of 1 m thick-
ness is sheared horizontally. Zero boundary conditions are
given for the displacement and for the micropolar rota-
tion on the lower surface, the upper surface is displaced
horizontally with zero rotation. In a second experiment,
an additional compression is applied to the upper surface.
Therefore, the effective internal length lSc

√
f(JS) is in-

creased which leads to an increase of the influence of the
zero boundary conditions and a decrease of the maximum
value of φ̄.

Fig. 8. Couple stresses
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Fig. 9. Size effect under bending

As can be seen from the results in Fig. 7 the effective
internal length strongly influences the distribution of the
rotations, while the horizontal displacment is independent
of the value of this parameter. For small internal length
scales the solution shows a typical boundary layer charac-
ter, the limit lSc → 0 leads to a singular perturbed problem
with constant rotation over the thickness of the specimen.
In this case the boundary conditions φ̄ = 0 can not be
fullfilled at the lower and upper boundaries.

The corresponding graph of the couple stresses in
Fig. 8 shows the same boundary layer structure. The thick-
ness of the boundary layer decreases with decreasing in-
ternal length scales. In the regions with large gradients of
the rotational angle, i.e. with large curvature, the couple
stresses are big while in the middle of the specimen no
couple stresses occur.

The boundary layer character of the rotational degree
of freedom and of the couple stress allows to conclude for
the additional parameters of the micropolar part of the
model.

5.4
Bending test
A further example where the rotational degrees of freedom
are activated is the bending test of a narrow beam. Lakes
[40,41] found that under bending the Cosserat continuum
shows a size effect which leads to a stiffness of the beam
which depends on the ratio of the internal length lSc to
the width h of the beam. This result is verified using the
model presented above. Therefore, a single ended clamped
beam with a fixed aspect ratio of h : l = 1 : 10 (width to
length) is loaded with a tangential force on the top in the
geometrically linear rage. The internal length scale lSc is
varied. In Fig. 9 the bending stiffness defined as the ratio
of the applied force and the top displacement is shown as
a function of the ratio lSc /h in a double logarithmic scale.

In this example a strong size effect is found. While
in the range of very small and very large ratios lSc /h the
stiffness is nearly independent of lSc /h the intermediate
range is governed by a power law behavior.

Both examples presented above show the physical ev-
idence of the proposed model. Furthermore, it should be
possible to determine the material parameters of the stan-
dard part of the model from uniaxial experiments like the
tension test or the consolidation test. In both cases the ad-

ditional degrees of freedom of the micropolar theory are
not activated. In a second step, the Cosserat parameter
may be determined from experiments with inhomogeneous
distributions of stresses and strains, where the rotational
degrees of freedom become important. Typical examples
are the shear test or the bending problem as discussed
above.

6
Conclusions
In the present study a micropolar two phase model was
discussed. Based on the concept of superimposed continua
the extended kinematical relations were used to describe
the deformation behavior of a micropolar elastic porous
material. The required balance equations were formulated
for the isothermal case in the sense of Truesdell’s meta-
physical principles.

In the framework of the theory of porous media the
volume fractions were introduced as internal variables.
Therefore an evolution equation for the volume fraction of
the skeleton was motivated and taken into account when
the Clausius-Duhem inequality was evaluated. Further-
more, thermodynamically consistent constitutive equa-
tions were presented. These results are valid for a model
with compressible constituents and can be modified in
order to fit for the so-called hybrid and incompressible
model. In the latter case, the saturation pressure explic-
itly enters the model.

Some examples were discussed, which show the phys-
ical evidence of the proposed model. It is found that mi-
cropolarity plays an important role if the treated problems
are governed by shear or bending.
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In S. Flügge, editor, Handbuch der Physik III/1, pages
226–793. Springer-Verlag, Berlin 1960

3. R. M. Bowen, Incompressible porous media models by use
of the theory of mixtures. Int. J. Engng. Sci., 18:1129–1148,
1980

4. R. M. Bowen, Compressible porous media models by use
of the theory of mixtures. Int. J. Engng. Sci., 20:697–735,
1982

5. R. de Boer & W. Ehlers, Theorie der Mehrkomponen-
tenkontinua mit Anwendung auf bodenmechanische Prob-
leme, Teil I. Forschungsberichte aus dem Fachbereich
Bauwesen 40, Universität-GH-Essen, 1986
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