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Velocity distributions in homogeneous granular fluids:
the free and the heated case
T.P.C. van Noije, M.H. Ernst

Abstract Non-Gaussian properties (cumulants, high en-
ergy tails) of the single particle velocity distribution for
homogeneous granular fluids of inelastic hard spheres or
disks are studied, based on the Enskog-Boltzmann equa-
tion for the unforced and heated case. The latter is in
a steady state. The non-Gaussian corrections have small
effects on the cooling rate, and on the stationary temper-
ature in the heated case, at all inelasticities. The velocity
distribution in the heated steady state exhibits a high en-
ergy tail ∼ exp(−Ac3/2), where c is the velocity scaled by
the thermal velocity and A ∼ 1/

√
ε with ε the inelasticity.

The results are compared with molecular dynamics simu-
lations, as well as direct Monte Carlo simulations of the
Boltzmann equation.

1
Introduction
Most theories for rapid granular flows are based on the
assumption that the particle velocities are distributed ac-
cording to a Gaussian or Maxwell distribution. Since gran-
ular particles collide inelastically, this assumption is not
obvious. In fact, granular systems are typically in far from
equilibrium states in the sense that an external driving
force is necessary to maintain a stationary or periodic
state. Only in systems of nearly elastic particles states
close to equilibrium may be expected.

Deviations from Gaussian behavior in rapid granular
flows have been studied in several contexts. Using molec-
ular dynamics simulations, Goldhirsch et al. [1] measured
the flatness or kurtosis of the velocity distribution func-
tion (VDF), defined by 〈v4〉/〈v2〉2, in a freely evolving
fluid of inelastic hard spheres or disks (IHS), and found
a broadening of the VDF when transitions to shearing or
clustered states occured. Brey et al. [2] measured higher
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cumulants for the same system in the homogeneous cool-
ing state (HCS) through direct Monte Carlo simulation of
the Boltzmann equation, assuming that the Boltzmann
equation remains meaningful for large inelasticity, ε =
1 − α2, where α is the coefficient of normal restitution.
These investigators have compared their simulation results
with the theoretical results of the present paper, available
through Ref. [3] . Several groups performed computer sim-
ulations of gas-fluidized or vibrated beds of grains, mea-
sured cumulants of the VDF [4] , and observed power law
behavior of the high energy tails [4, 5] .

Analytic results derived from the Boltzmann equation
are scarce. Wilkinson and Edwards [6] studied the VDF
in the steady state of a Lorentz gas of independent gran-
ular particles, moving in a random array of fixed inelas-
tic hard sphere scatterers, driven through gravity. They
found that for small inelasticities, the VDF behaves dom-
inantly as exp(−Av4) with A ∼ ε/g2, where g is the grav-
itational acceleration. Their VDF shows an underpopula-
tion of the high energy tail as compared to the Maxwell
distribution.

Goldshtein and Shapiro [7] solved the Boltzmann equa-
tion for the freely evolving IHS gas in the HCS by an ex-
pansion in Sonine polynomials. We return to their method
below. For the same case, Esipov and Pöschel [8] deter-
mined the asymptotic form of the VDF at large veloci-
ties by obtaining a self-consistent solution of the nonlinear
Boltzmann equation of the form A exp[−Av/v0(t)], show-
ing an overpopulated tail distribution. Here v0(t) is the
time dependent thermal velocity and A ∼ 1/ε. The co-
efficient A is left undetermined. The explicit form of the
high energy tail for this case has been obtained in Ref.
[9] . In fact, this asymptotic form of the VDF seems to
have a more universal significance, as it is also found in
systems of independent particles colliding with a dissipa-
tive (moving) container wall [10] . We shall return to this
point in the conclusions. An enhanced population for large
energies was also found by Brey et al. [11] from a BGK
model kinetic equation for an undriven granular gas. This
model shows algebraically decaying tails, as was found in
fluidized beds of grains, with diverging velocity moments
of degree ≥ 2/ε. The algebraic tail is obtained in both
studies [5, 11] from an average

∫ ∞
0 dxP (x) exp(−xv2) of a

Gaussian distribution. Sela and Goldhirsch [12] have nu-
merically obtained a perturbative solution of the Boltz-
mann equation for inelastic hard spheres to orders of O(ε),
O(εk), O(k2). The order O(ε) estimates the deviation from
Gaussian behavior of the homogeneous solution and con-
tributes to the rate of homogeneous cooling.
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The VDF has been studied for another type of gran-
ular flows, namely the uniformly heated IHS fluid, also
referred to as random acceleration model, where each par-
ticle is subject to a random white force. This system pos-
sesses a spatially homogeneous steady state. The heated
IHS fluid models properties of rapidly vibrated granular
layers [13–16] and gas-fluidized beds of grains [4]. The one-
dimensional version of this model has been studied in Refs.
[13–15].

Peng and Ohta [16] , and Trizac et al. [17] have carried
out molecular dynamics simulations of two-dimensional
heated IHS systems, and measured the high energy tails
and fourth cumulants of the VDF. Recently, Santos et al.
[18] have measured the same properties by direct Monte
Carlo simulation of the new Boltzmann equation, where
the Boltzmann collision term is supplemented with a
Fokker-Planck diffusion term to account for the random
accelerations, as proposed in section 3.

The goal of the present paper is to determine on the
basis of the Enskog-Boltzmann equation the VDF of the
homogeneous IHS fluid in the freely evolving (section 2)
and uniformly heated case (section 3), as well as the cor-
responding high energy tails in section 4. The results are
compared with existing simulation results (section 5), ob-
tained either from molecular dynamics or direct Monte
Carlo simulations of the Boltzmann equation.

The nonlinear Enskog-Boltzmann equation for the IHS
system is solved for the freely evolving and the heated
system of hard spheres and disks. To determine the cu-
mulants we expand the VDF in Sonine polynomials, and
derive equations for its moments. Before Goldshtein and
Shapiro [7] calculated the fourth cumulant for the special
case of (i) three dimensions, and (ii) a freely evolving gas.
Unfortunately their result is incorrect (approximately a
factor 5 too small at high inelasticity) except to O(ε), due
to an error in their calculations.

Comparing our calculation with the one presented in
Ref. [12] , we note that the results for the O(ε) correc-
tion to the cooling rate are close. Whereas the calcula-
tion in Ref. [12] provides quantitative information on the
VDF itself, ours provides quantitative information on its
moments, and shows only qualitatively similar behavior
of the VDF. The advantage of our method, however, is
that it is nonperturbative in the inelasticity, i.e. the mo-
ments can be obtained for all values of the coefficient of
restitution.

To discuss the high energy tail of the VDF we use an
asymptotic method for solving the nonlinear Boltzmann
equation, employed by Krook and Wu [19] to study the for-
mation of Maxwellian tails in elastic systems with rapidly
decreasing differential scattering cross sections at large im-
pact energies. In doing so we obtain the tail distributions
for the free and the heated case. The former one coincides
with the result of Esipov and Pöschel [8] .

Our starting point is the nonlinear Enskog-Boltzmann
equation [20] for the single particle distribution function
f(r,v, t) in a dense system of inelastic hard spheres in d
dimensions. In the absence of external forces, the homo-
geneous solution f(v, t) of this equation obeys

∂tf(v1, t) = χσd−1
∫

dv2

∫ ′
dσ̂(v12 · σ̂)

×
{

1
α2 f(v∗∗

1 , t)f(v∗∗
2 , t) − f(v1, t)f(v2, t)

}
≡ χI(f, f). (1)

The prime on the σ̂ integration denotes the condition
v12 · σ̂ > 0, where σ̂ is a unit vector along the line of
centers of the colliding spheres at contact. In direct colli-
sions of inelastic hard spheres with a coefficient of normal
restitution α, the initial relative velocity v12 follows the
inelastic reflection law v∗

12 · σ̂ = −αv12 · σ̂. The gain term
in (1) describes the restituting collisions, i.e. the precol-
lision velocities (v∗∗

1 ,v∗∗
2 ) yield (v1,v2) as postcollision

ones with v∗∗
12 · σ̂ = −(1/α)v12 · σ̂. Total momentum is

conserved in a binary collision, and consequently in direct
collisions

v∗
1 = v1 − 1

2 (1 + α)(v12 · σ̂)σ̂

v∗
2 = v2 + 1

2 (1 + α)(v12 · σ̂)σ̂, (2)

whereas v∗∗
i (α) = v∗

i (1/α) in restituting collisions. The
factor 1/α2 in the gain term originates from the Jacobian
dv∗∗

1 dv∗∗
2 = (1/α)dv1 dv2 and from the length of the col-

lision cylinder |v∗∗
12 · σ̂|dt = (1/α)|v12 · σ̂|dt.

Note that for the spatially homogeneous case, the only
difference between the Enskog-Boltzmann equation for
dense systems and the Boltzmann equation for dilute sys-
tems, is the presence of the factor χ(n), which is the pair
correlation function of hard spheres or disks at contact.
It accounts for the increased collision frequency in dense
systems, caused by excluded volume effects.

For later reference we will also quote the equation for
the rate of change of the average 〈ψ〉 = (1/n)

∫
dvψ(v)f

(v, t), where the density n =
∫

dvf(v, t). From (1) it fol-
lows as

d〈ψ〉
dt

=
χσd−1

2n

∫
dv1 dv2

∫ ′
dσ̂ (v12 · σ̂)f(v1, t)f(v2, t)

× ∆[ψ(v1) + ψ(v2)], (3)

where ∆ψ(vi) = ψ(v∗
i )−ψ(vi) is the ψ change in a direct

collision.
In the next section we study the solution of (1) for a

freely evolving fluid. In the subsequent section a uniformly
heated system of inelastic particles will be considered.

2
Homogeneous cooling state
For the freely evolving granular fluid, Goldshtein and
Shapiro [7] have shown that Eq. (1) admits an isotropic
scaling solution, describing the homogeneous cooling state,
with a single particle distribution function depending on
time only through the temperature T (t) as

f(v, t) =
n

vd
0(t)

f̃

(
v

v0(t)

)
, (4)

where the thermal velocity v0(t) is defined in terms of the
temperature by T (t) = 1

2mv
2
0(t), with

1
2dnT (t) =

∫
dv 1

2mv
2f(v, t), (5)
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and m the particle mass. Choosing ψ = 1
2mv

2
1 in Eq. (3)

we obtain for the rate of change of the temperature

dT
dt

= −µ2

d
mχnσd−1v3

0 ≡ −2γω0T. (6)

Here ω0 is the Enskog collision frequency for elastic hard
spheres, defined as the average loss term in Eq. (1),

ω0 = χnσd−1
〈∫ ′

dσ̂(v12 · σ̂)
〉

0
=

Ωd√
2π
χnσd−1v0, (7)

where 〈. . .〉0 denotes an average over Maxwellian velocity
distributions for v1 and v2 at temperature T = 1

2mv
2
0 and

Ωd = 2πd/2/Γ(d/2) is the surface area of a d-dimensional
unit sphere. The second equality in (6) defines the time in-
dependent dimensionless cooling rate as γ ≡ (

√
2π/dΩd)µ2,

where

µp ≡ −
∫

dc1c
p
1Ĩ(f̃ , f̃) (8)

are the moments of the dimensionless collision integral

Ĩ(f̃ , f̃) ≡
∫

dc2

∫ ′
dσ̂(c12 · σ̂)

×
{

1
α2 f̃(c∗∗

1 )f̃(c∗∗
2 ) − f̃(c1)f̃(c2)

}
, (9)

with c = v/v0(t). Using Eqs. (4) and (6), the scaling form
f̃(c) satisfies the integral equation

µ2

d

(
d+ c1

d
dc1

)
f̃(c1) = Ĩ(f̃ , f̃). (10)

In the limit of small dissipation, the solution of (10) ap-
proaches a Maxwellian, i.e. f̃(c) ≈ φ(c) ≡ π−d/2 exp(−c2).
Therefore, a systematic approximation of the isotropic
function f̃(c) can be found by expanding it in a set of
Sonine polynomials, i.e.

f̃(c) = φ(c)

{
1 +

∞∑
p=1

apSp(c2)

}
, (11)

which satisfy the orthogonality relations∫
dcφ(c)Sp(c2)Sp′(c2) = δpp′Np, (12)

where δpp′ is the Kronecker delta and Np a normalization
constant. For general dimensionality d, the first few Sonine
polynomials are

S0(x) = 1

S1(x) = −x+
1
2
d

S2(x) =
1
2
x2 − 1

2
(d+ 2)x+

1
8
d(d+ 2). (13)

The coefficients ap are polynomial moments of the scaling
function:

ap =
1

Np

∫
dcSp(c2)f̃(c) ≡ 1

Np
〈Sp(c2)〉. (14)

In particular a1 = (2/d)〈S1(c2)〉 = 0, because the tem-
perature definition (5) implies 〈c2〉 = 1

2d. Moreover, a2 is

proportional to the fourth cumulant of the scaling form
f̃(c), i.e.

a2 =
4

d(d+ 2)
[〈c4〉 − 1

4d(d+ 2)
]

= 4
3 [〈c4x〉 − 3〈c2x〉2], (15)

where we have used the relation, 〈c4x〉 = 3〈c4〉/[d(d + 2)],
valid for any isotropic distribution f̃(c).

To determine the coefficients ap we construct a set of
equations for the moments

〈cp〉 ≡
∫

dccpf̃(c), (16)

by multiplying (10) with cp1 (p = 1, 2, . . .) and integrating
over c1. For the moments µp, defined in Eq. (8), we obtain

µp = −µ2

d

∫
dccp

(
d+ c

d
dc

)
f̃(c)

=
µ2

d
p〈cp〉, (17)

where the second line has been obtained by partial inte-
gration. For p = 2 the above equation reduces to a trivial
identity because of the definition of temperature.

The quantities µ2, µp and 〈cp〉 all depend on the un-
known scaling function f̃(c). To calculate a2 from (17)
we set p = 4, approximate the scaling form by f̃(c) =
φ(c)

{
1 + a2S2(c2)

}
, and evaluate µ2, µ4 and 〈c4〉. The

procedure is explained in more detail in the appendix and
yields for general dimensionality d:

a2 =
16(1 − α)(1 − 2α2)

9 + 24d+ 8αd− 41α+ 30(1 − α)α2 . (18)

This result for a2 is plotted in Fig. 1 as a function of α.
In principle one can continue this approximation scheme

by setting f̃(c) = φ(c)
{
1 + a2S2(c2) + a3S3(c2)

}
, and then

using (17) for p = 4 and p = 6 to obtain two coupled equa-
tions for a2 and a3, and solve the resulting equations to
obtain better approximations for a2 and a3 than the pre-
vious ones, i.e. a2 in (18) and a3 = 0. As a2 is already
quite small, we do not calculate any higher coefficients
ap (p ≥ 3) in (11).
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Fig. 1. Fourth cumulant a2 versus α for homogeneous cooling
solution in a freely evolving fluid
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For the three-dimensional case Goldshtein and Shapiro
[7] have calculated the coefficient a2 and find the result

aGS
2 =

16(1 − α)(1 − 2α2)
401 − 337α+ 190(1 − α)α2 . (19)

This result is only correct to linear order in 1−α as the au-
thors made an error in their algebraic calculations1. Their
coefficient |aGS

2 |<∼ 0.04 for all α ∈ (0, 1), whereas the cor-
rect coefficient obeys |a2|<∼ 0.2 for all α. However, the con-
clusion of Ref. [7] that the homogeneous scaling form is
well approximated by a Maxwellian remains valid for a
large range of coefficients of restitution (say 0.6<∼α < 1).
For these values we have |a2|<∼ 0.04 in three dimensions
and |a2|<∼ 0.024 in two dimensions. Our result for a2 has
been quantitatively confirmed by the Direct Simulation
Monte Carlo results of Brey et al. [2] . This will be dis-
cussed in section 5.

To obtain the time dependence of the temperature, it is
convenient to introduce the new time variable τ represent-
ing the average number of collisions suffered per particle
in a time t, and defined as dτ = ω0(T (t))dt. This yields

τ = 1
γ ln (1 + γt/t0). (20)

Here t0 = 1/ω0(T0) is the mean free time at the initial
temperature T (0) = T0. Next we find from Eq. (6)

T (t) = T0 exp(−2γτ) =
T0

(1 + γt/t0)2
. (21)

In Eq. (A.6) of the appendix, we derive for the cooling
rate γ ≡ (

√
2π/dΩd)µ2:

γ = γ0
{
1 + 3

16a2
}
, (22)

where γ0 = (1−α2)/2d. Sela and Goldhirsch [12] have per-
formed a numerical perturbation expansion of the Boltz-
mann equation to first order in ε = 1 − α2 and found the
result γ = γ0(1−0.0258ε+O(ε2)), which is close to the re-
sult γ = γ0(1−3ε/128+O(ε2)) = γ0(1−0.0234ε+O(ε2)),
obtained here. The method of appendix A also enables us
to calculate the average collision frequency ω = ω[f̃ in the
homogeneous scaling state with the result

ω = ω0
{
1 − 1

16a2
}
, (23)

where the Enskog frequency ω0 is defined in (7). Since
the contribution from a2 to γ and ω are small for all α,
(22) and (23) are very well approximated by γ0 and ω0,
respectively.

3
Uniformly heated system
To study this system we start from the stochastic equa-
tions of motion
dvi

dt
=

Fi

m
+ ξ̂i, (24)

where Fi is the force due to collisions and ξ̂i is the ran-
dom acceleration due to external forcing, which is assumed

1 In the unpublished appendices to their article, Eq. (E.10)
should read A2 = 96 + 90a2.

to be Gaussian white noise and uncorrelated for different
particles, i.e.

〈ξ̂iα(t)ξ̂jβ(t′)〉 = ξ20δijδαβδ(t− t′), (25)

where ξ20 is the strength of the correlation. The validity
of the above equations is based on the following assump-
tions: (i) the system is thermodynamically large, so that
the condition

∑
i ξ̂i(t) = 0, imposed in computer simula-

tions to guarantee momentum conservation in finite sys-
tems, can be ignored; (ii) the time between random kicks
is small compared to the mean free time t0, and therefore
much smaller than the characteristic cooling time t0/γ [see
Eq. (21)].

The Enskog-Boltzmann equation for the single particle
distribution function f(r,v, t) of a system heated in this
way is corrected with a Fokker-Planck diffusion term (see
e.g. Ref. [22]), representing the change of the distribution
function caused by the small random kicks, and reads in
the spatially homogeneous case:

∂tf(v1, t) = χI(f, f) +
ξ20
2

(
∂

∂v1

)2

f(v1, t). (26)

The diffusion coefficient ξ20 is proportional to the rate of
energy input d

2ξ
2
0 per unit mass. The equation for the tem-

perature balance can be derived from Eq. (26) in a similar
fashion as in Eq. (6) for the cooling granular fluid, and
reads

dT
dt

= mξ20 − 2γω0T. (27)

We are looking for a stationary solution of (26), where
the heating exactly balances the loss of energy due to col-
lisions, and the temperature becomes time independent.
Again it is convenient to introduce a scaled distribution
function by

f(v) =
n

vd
0
f̃

(
v

v0

)
, (28)

where now the thermal velocity v0 is time independent.
Stationarity of f̃ then requires

Ĩ(f̃ , f̃) +
ξ20

2v3
0χnσ

d−1

(
∂

∂c1

)2

f̃(c1) = 0. (29)

By multiplying this equation by cp1 and integrating over
c1, we obtain the following set of equations which couple
the moments 〈cp−2〉 of the distribution to the moments µp

of the collision term, defined in Eq. (8):

ξ20
2v3

0χnσ
d−1 p(p+ d− 2)〈cp−2〉 = µp. (30)

For p = 2 we recover the energy balance of Eq. (27),
yielding for the stationary value of the thermal velocity
in terms of µ2:

v0 =
(

dξ20
µ2χnσd−1

)1/3

. (31)

Note that in order to obtain a finite temperature in the
limit α → 1, the α limit should be taken together with
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the limit ξ20 → 0. The above expression is used to write
Eq. (30) in the form
µ2

2d
p(p+ d− 2)〈cp−2〉 = µp. (32)

Since a1 = 0 by definition of the temperature, i.e. 〈c2〉 =
1
2d, the first correction to Gaussian behavior is coming
from a2. To calculate it, we take p = 4 in Eq. (32), use
expression (A.8) for µ4, and solve for a2 to finally obtain
the result

a2 =
16(1 − α)(1 − 2α2)

73 + 56d− 24αd− 105α+ 30(1 − α)α2 . (33)

This function is shown in Fig. 2 for the two- and three-
dimensional case. Again we find only small corrections to
a Maxwellian distribution (a2 < 0.086 in two dimensions
and 0.067 in three). Therefore to a good approximation,
µ2 is given by its zeroth order approximation and the sta-
tionary temperature is found from Eqs. (31) and (A.6) as

T0 = m

(
dξ20

√
π

(1 − α2)Ωdχnσd−1

)2/3

. (34)

4
High energy tails
In this section we will derive the asymptotic solution of the
Enskog-Boltzmann equation (29) for high velocities in case
the granular fluid is uniformly heated. Esipov and Pöschel
[8] have given a similar derivation for a freely evolving
gas and found a high energy tail f̃(c) ∼ exp(−Ac). The
derivation in both cases proceeds along similar lines [19].
If particle 1 is a fast particle (c1 � 1), the dominant
contributions to the collision integral are collisions where
particle 2 is typically in the thermal range, so that c12

in the collision integral Ĩ(f̃ , f̃) in (9) can be replaced by
c1. The gain term Ĩg of the collision integral Ĩ can then
be neglected with respect to the loss term Ĩl, as will be
verified a posteriori at the end of this section. The collision
integral Ĩ(f̃ , f̃) then reduces to Ĩl ≈ −β1c1f̃(c1), with

0 0.2 0.4 0.6 0.8 1.0
-0.05

0

0.05

0.10

d=2

d=3

Fig. 2. Fourth cumulant a2 versus α for the stationary state
of a uniformly heated system

β1 = π(d−1)/2/Γ( 1
2 (d + 1)) as given in Eq. (A.3) of the

appendix, and Eq. (10) simplifies to

µ2

d

(
d+ c

d
dc

)
f̃(c) = −β1cf̃(c). (35)

The first term on the left hand side can be neglected with
respect to the right hand side, and the large c solution has
the form

f̃(c) ∼ A exp
(

−β1d

µ2
c

)
, (36)

where A is an undetermined integration constant. For c �
1 this solution corresponds to a tail which is overpopulated
when compared to exp(−c2) if c>∼ 1/ε.

To determine the high energy tail of f̃(c) for the uni-
formly heated system, we proceed in a similar fashion and
use (31) to write Eq. (29) as

Ĩ(f̃ , f̃) +
µ2

2d

(
∂

∂c1

)2

f̃(c1) = 0. (37)

For large velocities c1, the collision integral can again be
replaced by −β1c1f̃(c1), and Eq. (37) reduces to

−β1cf̃(c) +
µ2

2d

(
d2

dc2
+
d− 1
c

d
dc

)
f̃(c) = 0, (38)

where we have used isotropy of the distribution function.
Inserting solutions of the form f̃(c) ∝ exp(−AcB), we ob-

tain the large c solution with B = 3
2 and A = 2

3

√
2dβ1
µ2

,
which is the only solution that vanishes for c → ∞. Again
we find an enhanced population for high energies.

To show that for c1 � 1 the gain term can be neglected
with respect to the loss term, we use the asymptotic col-
lision dynamics

c∗∗
1 = c1 − 1

2 (1 + α−1)(c1 · σ̂)σ̂

c∗∗
2 = c2 + 1

2 (1 + α−1)(c1 · σ̂)σ̂, (39)

where we have replaced c12 by c1. If |c1 · σ̂| � 1, as is
typically the case, c2 in (39) can be neglected and we
have

c∗∗
1 = c1

√
1 − 1

4 (1 + α−1)(3 − α−1)(ĉ1 · σ̂)2

c∗∗
2 = 1

2 (1 + α−1)c1|ĉ1 · σ̂| � 1, (40)

where ĉ1 is a unit vector. To demonstrate that f̃(c) ∼
exp(−AcB) is a consistent large c solution, both in the
freely evolving case with B = 1 and in the heated case
with B = 3

2 , we compare the factor f̃(c∗∗
1 )f̃(c∗∗

2 ) in Ĩg

with the factor f̃(c1)f̃(c2) in Ĩl for large c, i.e.

f̃(c∗∗
1 )f̃(c∗∗

2 )
f̃(c1)f̃(c2)

∼ exp
{−A[(c∗∗

1 )B + (c∗∗
2 )B − cB1 ]

}
. (41)

The exponent is proportional to cB1 and strictly negative
for α < 1 and B < 2, except for grazing collisions, where it
vanishes. This happens inside a small θ interval J of length
O(1/c1) near θ = π/2, where |c1 · σ̂| = c1 cos θ ∼ O(1).
Outside this interval the factor in (41) vanishes expo-
nentially fast. Inside the interval J the factor in (41) is
O(1). The contribution of this interval to the gain term
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can be estimated as
∫

J
dθc1 cos θf̃(c1) ' f̃(c1)/c1, where

c1 cos θ ∼ O(1). Consequently, Ĩg/Ĩl ∼ 1/c21 for large c1.
In summary we have shown that f̃(c) ∼ exp(−AcB) is

a consistent large c solution of the Boltzmann Eqs. (10)
and (29) with B = 1 and A given in (36) for the freely
evolving fluid, and B = 3

2 and A given below (38) for the
heated fluid.

5
Comparison with simulations

In Refs. [1, 21] , the undriven fluid of inelastic hard disks
has been studied by molecular dynamics simulations. As
long as the system is spatially homogeneous, measure-
ments of the temperature decay confirm the validity of the
homogeneous cooling law (21) where the cooling rate γ is
given by its zeroth order approximation γ0 = ε/2d. Also
in the initial homogeneous state, the measured number of
collisions C among N particles in a time t is consistent
with τ = 2C/N where τ is given by Eq. (20), implying
that the collision frequency ω is very well approximated
by its Enskog value ω0.

So far, molecular dynamics simulations have not been
able to obtain sufficient statistical accuracy to determine
the fourth moment or the high energy tail of the veloc-
ity distribution. Such measurements are possible, however,
by means of the Direct Simulation Monte Carlo method
for the Enskog-Boltzmann equation. Using this method,
Brey et al. [2] have solved the nonlinear Boltzmann equa-
tion (1) for homogeneously cooling inelastic hard spheres
(d = 3) and measured the fourth and sixth moment of the
distribution f̃(c). Again the measured temperature decay
shows no deviations of the cooling rate γ from its Gaus-
sian value γ0. Fig. 5 of Ref. [2] compares their simulation
data for the fourth cumulant a2 with (18), first derived
in [3] , and shows quantitative agreement. In particular,
the fourth cumulant is predicted to vanish for α = 1/

√
2,

which is very close to the value observed in the simula-
tions. Also note that the simulation results disagree with
the prediction of Ref. [7] . Moreover, the approximation
f̃(c) = φ(c){1+a2S2(c2)} shows good agreement with the
simulation data for the functional form of f̃ (see Figs. 7
and 8 of Ref. [2] ). This second Sonine approximation is
qualitatively similar to the form presented in Fig. 3 of Ref.
[12] , calculated numerically to order O(ε).

It is also interesting to compare our theoretical pre-
dictions with recent molecular dynamics results of Peng
and Ohta [16] on the heated granular fluid. These au-
thors have measured the temperature relaxation T (t) in
a fluid of N inelastic hard disks of mass m = 2 at an
area fraction φ = 1

4πσ
2N/L2 ' 0.16 and heating rate

ξ20 = (δV )2/3τH ' 1.67 × 10−4, where the randomly
added velocity components are sampled from a uniform
distribution on the interval (−δV, δV ) where δV = 10−3,
measured in system length L per unit time, and τH =
2× 10−3 is the period between random kicks. For the pair
distribution of hard disks at contact, χ, we use the ap-
proximate form [23] χ = (1 − 7

16φ)/(1 − φ)2 ' 1.32. The
steady state temperature predicted by Eq. (34) then be-
comes T0 = 1.15 × 10−3 for α = 0.8. The simulations

yield T sim
0 ' 1.21 × 10−3 (see Fig. 1 of Ref. [16] ), in fair

agreement with the Enskog theory.
Moreover, Eq. (34) predicts that T0 depends on the

heating rate ξ20 = (δV )2/3τH and inelasticity ε = 1−α2, as

T0 = c0

(
(δV )2

τH(1 − α2)

)2/3

≡ c0ζ
λ. (42)

The measurements show an exponent λ = 0.65 ± 0.01.
The theoretical prediction (34) gives c0 ' 0.092, which is
again in fair agreement with the simulation result of Ref.
[16] csim0 ' 0.099.

Eq. (27) also gives a prediction for the approach of
T (t) to T0. By observing that ω0 ∝ √

T and linearizing
Eq. (27) around T0, one obtains the solution T (t) = T0 +
T1 exp(−t/τ0) with τ0 = 2T0/3mξ20 . For the parameters
φ = 0.16 and α = 0.8 of Fig. 1 in Ref. [16] this yields
τ0 = 2.3, and their simulations yield τ sim

0 = 1/b′ = 2.6.
Next, we compare the collision frequency ω0 in (7) from

the Enskog theory for elastic hard disks with the colli-
sion frequency ωsim, measured in Ref. [16] . If there are
C binary collisions among N particles in a time t, then
the collision frequency is 2C/Nt. The simulation results
at α = 0.2, 0.4, 0.6, 0.7 are respectively ωsim ' 2.93,
1.67, 1.49, 1.49, and the Enskog predictions for the same
α values are ω0 ' 1.17, 1.22, 1.33, 1.44. The Enskog fre-
quency ω0 ∼ √

T0 decreases according to (42) with in-
creasing ε = 1 − α2, whereas ωsim increases strongly with
ε. The simulation results for ωsim suggest that the Enskog
theory gives reasonable predictions for α > 0.6. Similar
conclusions have been obtained by Orza et al. [21] for the
homogeneous cooling state of a freely evolving fluid of in-
elastic hard disks. The deviations at larger inelasticities
are probably caused by clustering and the onset of kinetic
collapse, which strongly increases the collision frequency.

Finally, the overpopulation in the high energy tail
∼ exp(−Ac3/2), with A given below (38), of the steady
state distribution function has also been observed in the
simulations by Peng and Ohta [16] , but their statistical
accuracy is too low to make any quantitative comparison.
Preliminary results by Santos et al. [18] obtained by direct
Monte Carlo simulation of the Boltzmann equation show
quantitative agreement with our predictions for the fourth
cumulant (33) and for the high energy tail.

6
Conclusions and outlook
We have investigated non-Gaussian behavior in granular
fluids of smooth inelastic hard spheres or disks, both in the
absence of an external forcing and in a system uniformly
heated by random accelerations. In a freely evolving gran-
ular fluid, we find for all inelasticities very small correc-
tions to the cooling rate and the collision frequency due
to non-Gaussian characteristics of the homogeneous cool-
ing state. As a consequence, such deviations have never
been observed in computer simulations on homogeneous
systems. Our result for the fourth cumulant has been con-
firmed by the computer simulations of Brey et al. [2] for
the free case and by preliminary results of Santos et al.
[18] for the heated case. These authors used the Direct
Simulation Monte Carlo method to obtain an accurate
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homogeneous solution of the nonlinear Enskog-Boltzmann
equation.

Quantitative information on the high energy tail
∼ exp[−Av/v0(t)] in the freely evolving granular fluid is
not yet available. However, it is interesting to observe that
this asymptotic form has a more universal significance in
the presence of dissipative interactions. It describes the
high energy tail in an unforced Lorentz gas of independent
particles, moving in a random array of fixed inelastic scat-
terers. It also occurs in a system of independent particles
colliding with the moving wall of a container, as shown by
Jarzynski and Swiatecki [10] . What are the common fea-
tures in these problems? There exists a VDF that changes
through collisions: of identical particles (freely evolving
granular gas), of particles with an inelastic static environ-
ment (unforced inelastic Lorentz gas), or of particles with
a moving wall, or more generally, of particles with a slowly
changing random environment (random potential). Let
the average energy per particle, E, change according to

dE
dt

= ω0(t)∆E, (43)

where ω0 ∼ nv0 is the typical collision frequency with
v0 ∼ √

E, and let the change in energy, ∆E, (gain or loss)
in a single collision be small compared to E (ε ∼ ∆E/E �
1). These conditions are satisfied for the cases of Ref.
[10] , the freely evolving granular gas (see Eq. (6) where
∆E ∼ −2γT ), and the unforced inelastic Lorentz gas.
We conjecture that systems satisfying the above condi-
tions have a universal tail distribution ∼ exp[−Av/v0(t)],
that changes adiabatically on a time scale t0/ε, much larger
than the mean free time t0 between collisions.

Long range spatial correlations in the velocity-velocity
and density-density correlation functions, G(r), measured
in one- [13–15] and two-dimensional [16] simulations of
heated granular fluids, are currently being analyzed for
the two- and three-dimensional case by fluctuating hydro-
dynamics with external noise [17] . The analysis indicates
that static structure factors diverge as S(k) ∼ 1/k2 at
small wavenumbers k, corresponding to long range spa-
tial correlations G(r) ∼ ln r in two and G(r) ∼ 1/r in
three dimensions. The approach of adding external noise
has some similarity with the Edwards-Wilkinson model
[24] for the growth of a granular surface on which parti-
cles are impinging at random. Here also structure factors
S(k) ∼ 1/k2 have been found.

7
Appendix
In this appendix we calculate the quantities µ2, µ4 and
〈c4〉, which are required in (17) to calculate the coeffi-
cient a2 in (11) by setting f̃(c) = φ(c)

{
1 + a2S2(c2)

}
,

where φ(c) is the Maxwellian. In fact, the moment 〈c4〉 in
(16) requires only moments of the Gaussian distribution.
A straightforward calculation gives

〈c4〉 =
∫

dcc4φ(c){1 + a2S2(c2)}

= 1
4d(d+ 2) {1 + a2} . (A.1)

Next we consider the moments µp (p = 2, 4) in (8). With

the help of Eq. (3) it can be transformed into

µp = − 1
2

∫
dc1

∫
dc2

∫ ′ dσ̂(c12 · σ̂)φ(c1)φ(c2)

× {
1 + a2

[
S2(c21) + S2(c22)

]
+ O(a2

2)
}

∆(cp1 + cp2),
(A.2)

where the operator ∆ is defined below Eq. (3). In the
following, terms of O(a2

2) will be neglected. For α>∼0.6
this is a safe approximation as can be checked from the
results Eqs. (18) and (33) for a2.

To evaluate (A.2) we introduce center of mass and rel-
ative velocites by c1 = C + 1

2c12 and c2 = C − 1
2c12.

Moreover, we need the angular integral

βn ≡
∫ ′

dσ̂(ĉ12 · σ̂)n = 1
2Ωd

∫ ′
dσ̂(cos θ)n∫ ′

dσ̂

= 1
2Ωd

∫ π/2

0
dθ(sin θ)d−2(cos θ)n∫ π/2

0
dθ(sin θ)d−2

= π
d−1
2

Γ( n+1
2 )

Γ( n+d
2 )

, (A.3)

where ĉ12 = c12/|c12| is a unit vector. Using the relations
between Gaussian moments, it is straightforward to derive
the relations:

〈c12 · σ̂C2∆Cncm12〉0 = 1
4 (d+ n)〈c12 · σ̂∆Cncm12〉0

〈c12 · σ̂C4∆Cncm12〉0 = 1
16 (d+ n)(d+ n+ 2)

×〈c12 · σ̂∆Cncm12〉0, (A.4)

where

〈ψ(c12,C)〉0 ≡
∫

dc12
1

(2π)d/2 exp(− 1
2c

2
12)

×
∫

dC
(

2
π

)d/2

exp(−2C2)ψ(c12,C)

(A.5)

denotes a Gaussian average over c12 and C. The above
formulas are very helpful in evaluating the moments µp in
(A.2). With the help of (A.3) and (A.4) one finds

µ2 = 1
4 (1 − α2)β3〈c312〉0

{
1 + 3

16a2
}

= 1
2 (1 − α2) Ωd√

2π

{
1 + 3

16a2
}
. (A.6)

To calculate µ4 we need the quantity

∆(c41 + c42) = 2 (1 + α)2(c12 · σ̂)2(C · σ̂)2

+ 1
8 (α2 − 1)2(c12 · σ̂)4

+ (α2 − 1)(c12 · σ̂)2C2

+ 1
4 (α2 − 1)(c12 · σ̂)2c212

− 4(1 + α)(c12 · σ̂)(C · σ̂)(C · c12). (A.7)

One finds after long and tedious calculations

µ4 = β3〈c312〉0 {T1 + a2T2} , (A.8)

with

T1 = 1
4 (1 − α2)(d+ 3

2 + α2)

T2 = 3
128 (1 − α2)(10d+ 39 + 10α2)

+ 1
4 (1 + α)(d− 1). (A.9)

For the homogeneous cooling solution, inserting the re-
sults (A.1), (A.6) and (A.8) into (17) for p = 4 yields
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a closed equation for a2. Neglecting again small contri-
butions O(a2

2), we solve for a2, and the result in (18) is
recovered. Eq. (33) corresponding to uniform heating is
found by inserting (A.6) and (A.8) into (32) for p = 4.

References

1. I. Goldhirsch, M-L. Tan and G. Zanetti, J. Scient. Comp.
8, 1 (1993)

2. J.J. Brey, M.J. Ruiz-Montero and D. Cubero, Phys. Rev.
E 54, 3664 (1996)

3. T.P.C. van Noije and M.H. Ernst, internal report, Insti-
tute for Theoretical Physics, Universiteit Utrecht, 1996

4. K. Ichiki and H. Hayakawa, Phys. Rev. E 52, 658 (1995);
57, 1990 (1998)

5. Y-h. Taguchi and H. Takayasu, Europhys. Lett. 30, 499
(1995)

6. D.R. Wilkinson and S.F. Edwards, Proc. R. Soc. Lond.
A 381, 33 (1982), Eq. (3.2.20)

7. A. Goldshtein and M. Shapiro, J. Fluid Mech. 282, 75
(1995)
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