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Abstract
The work aims to numerically investigate the quasi-static response of partially fluid-saturated concrete under two-dimensional 
uniaxial compression at the mesoscale. We investigated how the impact of free pore fluid content (water and gas) affected 
the quasi-static strength of concrete. The totally and partially fluid-saturated concrete behavior was simulated using an 
improved pore-scale hydro-mechanical model based on DEM/CFD. The fluid flow concept was based on a fluid flow network 
made up of channels in a continuous region between discrete elements. A two-phase laminar fluid flow was postulated in 
partially saturated porous concrete with very low porosity. Position and volumes of pores/cracks were considered to correctly 
track the liquid/gas content. In both dry and wet conditions, a series of numerical simulations were performed on bonded 
granular specimens of a simplified spherical mesostructure that mimicked concrete. The effects of fluid saturation and fluid 
viscosity on concrete strength and fracture, and fluid pore pressures were investigated. It was found that each of those effects 
significantly impacted the hydro-mechanical behavior of concrete. Due to the rising fluid pressure in pores during initial 
specimen compaction under compressive loading that promoted a cracking process, the compressive strength increased as 
fluid saturation and fluid viscosity decreased.
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1  Introduction

Water frequently comes into touch with concrete structures. 
Water may permeate through concrete because it is porous 
with many macropores, capillary pores, flaws, and cracks. 
This can have a significant impact on the static/dynamic 
mechanical properties of concrete because it affects the 
capillary tension, pore water pressure, inter-particle cohe-
sion, and friction [1–4]. This results in the viscosity effect 
and meniscus stress of free water. Studying the impact of 
free water on the mechanical reaction of concrete is, there-
fore, crucial for the construction of concrete structures, 

e.g. hydraulics, marine engineering, bridges, and tunnels. 
Chemically bonded, physically bonded, and free water are 
the three forms of water that are generally present in con-
crete. It is a well-known fact that wet concrete materials 
perform substantially differently in laboratory trials under 
quasi-static loading conditions compared to dynamic load-
ing ones [5–10]. Additionally, the greater the initial poros-
ity of concrete, the higher the effect of water saturation on 
the strength [11, 12]. The mechanical properties of concrete 
with a high water–cement ratio are also more sensitive to 
water saturation than concrete with a low water–cement 
ratio. In general, the response of saturated concrete under 
loading is similar to that of mortars and rocks. The impact of 
the moisture variation in concrete during loading is typically 
ignored in practice.

Numerous quasi-static laboratory studies demonstrate 
that increasing water saturation causes a drop in compres-
sive and tensile strength. In compression, the effect of water 
saturation is more pronounced than in tension. Concrete's 
fracture toughness, splitting tensile strength, and compres-
sive strength all show an approximately linearly decreasing 
trend as water saturation rises [11, 13, 14]. The negative 
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effect of water saturation on compressive strength is simi-
lar during both uniaxial and triaxial compression [15–17]. 
However, certain laboratory studies reveal that the strength 
and fracture toughness exhibit the characteristics of first 
decreasing and then increasing, and reflect a non-linear or 
bilinear relationship with the growth of the water saturation 
[18, 19]. In the case of elastic modulus of concrete, it usually 
increases [11, 20], does not much change [13], or decreases 
with a growing saturation ratio [21]. Water content is also 
one of the key elements influencing the material strain rate 
effect. Free water may even boost the dynamic compres-
sive and tensile strength of cement-based materials when 
the strain rate rises to a specific point [11, 22–24]. There 
are many interpretations for the physical mechanism caus-
ing the reduced strength of wet concrete in quasi-static tests 
including e.g. the increase of an internal humidity gradient 
[11, 25] and the loosening of a molecular system in ITZs 
[13]. Some authors regarded the growth of pore pressure due 
to pore closure [26], and the water wedging in cracks [11] 
as the main reasons. The weakened cohesion and van der 
Waals forces between microscopic particles [13, 27] were 
also found to be the reasons for the strength drop. Finally, 
the effects of capillary suction [2, 19], viscosity [2, 28], vis-
cous friction [28] and temperature-induced expansion [28, 
29] were highlighted as the main reasons for the strength 
reduction. However, no explaining agreement has yet been 
achieved on this issue. It should be noted that there may be 
some inconsistency between the experimental results that 
are now available due to the various ways that dry and wet 
concrete are prepared [30].

Our research aims are to explain the behavior of wet 
concrete in compression and tension under quasi-static and 
dynamic conditions. The current study deals with quasi-
static uniaxial compression of wet concrete only. It aims 
to (a) check the capability of a fully coupled DEM-CFD 
approach to realistically simulate the quasi-static mechani-
cal behavior of partially saturated concrete specimens at the 
mesoscale, (b) explain the physical reason for the strength 
reduction in wet concrete specimens, and (c) demonstrate a 
quantitative impact of free fluid (water and gas) migration 
on both the concrete strength and a fracture process. The 
research examines how the mechanical effects of fluid on dry 
and wet concrete specimens modify the quasi-static mechan-
ical properties of the material in compression. A fully cou-
pled hydro-mechanical technique based on 2D DEM/CFD 
was adopted to investigate the solid–fluid interaction [31, 
32]. The 3D DEM/CFD model is still in the testing phase, 
hence the 2D model was used. The model proposed takes 
into account the two-phase laminar flow of immiscible and 
compressible fluids. No external pressure is needed to move 
the fluid; it can be driven by local pressure changes result-
ing only from changes in pore volumes. Owing to this, the 

proposed model can realistically reproduce the interaction 
between flowing fluid and solids during compression tests.

The proposed improved DEM/CFD model employs a 
direct numerical simulation method. DEM was used to rep-
resent the mechanical behavior of concrete specimens by 
using discrete spherical elements interacting locally through 
normal and tangential contacts that generate cracks during 
their failure. There are several different discrete models for 
concrete mechanical behavior developed in the literature, 
such as classical lattice models, rigid-body-spring models, 
lattice discrete particle models and discrete element meth-
ods [33]. We chose DEM since it realistically captures the 
fracture processes in concrete [34–38]. Additionally, it cor-
rectly depicts mesostructure and contact forces, using simple 
dynamic equations. Using CFD, a flow network made up of 
predefined channels was used to represent the laminar vis-
cous two-phase fluid flow (water and gas) through pores and 
cracks in a continuous domain between the discrete elements. 
Calculations in isothermal conditions were performed in this 
research stage on 2D small-size bonded granular specimens 
of a simplistic mesostructure resembling concrete under 
uniaxial compression. Concrete was treated as a one-phase 
material only, composed of bonded spheres with different 
diameters without distinguishing aggregate, mortar, ITZs, 
and macro-pores [35, 37]. Additionally, there was a rela-
tively low number of spheres and a narrow range of particle 
diameter sizes. Therefore, the mechanical concrete behav-
ior (stress–strain curve and fracture process) in laboratory 
tests was approximately reproduced. The main attention was 
focused in the paper on the effect of pore fluid migration and 
pressure on the specimen’s compressive strength. In a series 
of DEM/CFD simulations, the different fluid saturation and 
fluid viscosity were the variables that were explored.

The capillary pressure, defined as the difference between 
the partial pressures of two phases: the wetting phase 
(water) and non-wetting phase (water vapor or moist air), 
was neglected in the current DEM analyses for the sake of 
simplicity. According to this definition, when the concrete 
is fully saturated, there is no capillary flow. In partially satu-
rated concrete, capillary flow can occur even when there is 
no external fluid source (due to the flow of viscous fluid 
during compression). The flow of the liquid phase can fill in 
some capillaries with water to the point where the snap-off 
mechanism [39, 40] is activated. Even if capillaries are not 
filled in with water, this mechanism immediately fills them 
with water. When the capillary is filled in with water, the 
typical capillary flow may begin (a piston-like mechanism). 
The capillary pressure can reach even 1.5 MPa (and more) 
and strongly depends upon the initial saturation and size and 
number of capillaries. However, its impact is solely local. 
Capillary pressure and capillary flow mechanisms were 
implemented in the proposed DEM-CFD model [41]. The 
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influence of capillary pressure on the compressive strength 
of wet concrete will be investigated in the next phase of the 
research.

Several coupled hydro-mechanical DEM-CFD models 
have been suggested in the literature (e.g. [42–57]). The 
review of those DEM-based coupled models was given in 
[31]. As compared to those models, the DEM/CFD-based 
mesoscopic method for fluid flow in partially fluid-saturated 
porous cohesive-frictional materials with very low porosity 
that is presented in the current study has several advantages 
such as.

(1)	 The direct numerical simulation approach is used to 
solve fluid flow equations in a two-dimensional con-
tinuous fluid domain between discrete elements.

(2)	 The fluid and discrete domains of solids reside in one 
physical system. Both domains are discretized into one 
triangular mesh.

(3)	 Due to the triangular mesh in the fluid domain, the 
variable geometry, size, position, and volume of pores/
cracks are considered to correctly track the liquid/gas 
content. Hence, the effect of material skeleton deforma-
tion on the fluid pressure distribution can be studied.

(4)	 An effective method is developed to automatically mesh 
and re-mesh these domains to account for changes 
in the geometry and topology of particle and fluid 
domains.

(5)	 Coarse meshes of solid and liquid domains are utilized 
to build a virtual fluid flow network (VPN).

(6)	 The two-phase immiscible fluid contains both a liquid 
(water) and a gas (water vapor or moist air).

There also exist hydro-mechanical models, based on lat-
tice and lattice discrete particle models [58–63]. The models 
are simplified since the pore fluid pressure does not depend 
on volume changes which are ignored. The fluid flow is 
solely caused by external fluid pressure or relative humid-
ity difference. However, during compression, the fluid flow 
is mainly driven by changes in pore pressures, which are 
affected by changes in pore volumes.

The impact of free water content on the response of con-
crete under various stress levels and static/dynamic loading 
situations was investigated using several numerical coupled 
models. Most of these simulations were done within con-
tinuum mechanics (e.g. [64, 65]). DEM solutions also exist 
for this problem (e.g. [66]); they are approximations since 
they do not take into consideration the true coupling between 
solid (DEM) and fluid mechanics (CFD).

This article is a follow-up to the authors' prior meso-
scopic numerical investigations, which employed a fully 
coupled DEM-CFD model to numerically analyze hydrau-
lic fracturing in rocks [31, 32] and hydraulic/capillary 

flow in unsaturated mortars and concretes [41]. With thor-
ough 3D CFD simulations using the Reynolds-averaged 
Navier–Stokes equations in the continuous domain between 
particles, the coupled DEM/CFD technique was validated 
[67, 68]. It was demonstrated that the turbulent kinetic 
energy and turbulent dissipation energy are relatively low 
and may be disregarded in the simplified fluid flow model. 
Heat transfer has recently been added to the authors’ coupled 
DEM/CFD model [69, 70].

The structure of the current paper is as follows. After 
the introduction in Sect. 1, Sect. 2 provides a mathematical 
model of the DEM/CFD-based coupled hydro-mechanical 
technique. Section 3 describes the input data for DEM-CFD 
simulations. Pure DEM simulation results are gathered in 
Sect. 4. Section 5 displays several numerical simulation 
results with DEM-CFD on the behavior of fully and partially 
saturated concrete under uniaxial compression. Section 6 
contains some concluding remarks. The YADE open-source 
software program [71, 72] was enhanced by the authors to 
include the fully coupled DEM-CFD approach for partially 
saturated bonded granular materials.

2 � Two‑dimensional DEM/CFD‑based model

In [31] and [32], the coupled DEM-CFD model was thor-
oughly explained. For the sake of clarity, Sect. 2 only con-
tains the model's most crucial details. The direct numerical 
simulation (DNS) approach is used to solve fluid flow equa-
tions in a two-dimensional continuous fluid domain between 
discrete elements (unlike existing fluid flow models).

2.1 � DEM for cohesive‑frictional materials

DEM simulations are carried out using the 3D explicit 
solver of discrete element open-source software YADE [71, 
72]. With the use of Newton's second law of motion and an 
explicit time-stepping method, particles in a DEM interact 
with one another during translational and rotational motions 
[73]. At the grain contact, the model suggests a cohesive 
bond with a brittle failure below the critical normal ten-
sile force. Under usual compression, shear cohesion failure 
causes contact slip and sliding, which are controlled by the 
Coulomb friction law. The basic governing equations of 
DEM are presented in Appendix A (Eqs. A1–A7) [34–38]. 
Non-viscous damping is chosen [74] (Eq. A7) in simula-
tions to speed up convergence. In DEM, an arbitrary micro-
porosity may be attained due to the possibility of particle 
overlap. The following material constants are required for 
DEM simulations: Ec, υc, μc, C, and T (Appendix A). Addi-
tionally necessary are the parameters R (sphere’s radius), ρ 
(mass density), and αd (damping factor). The damping factor 
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is consistently set to αd = 0.08 [35]. The particle contact ratio 
C/T must be carefully taken into account to properly simu-
late the distribution of shear and tensile cracks, the relation-
ship between the uniaxial compressive and tensile strength, 
and the failure mode of specimens (brittle or quasi-brittle) 
[75].

The process of running several DEM simulations and 
comparing the results to experimental data from simple 
tests, such as uniaxial compression, triaxial compression, 
and simple shear, is typically used to determine the mate-
rial constants. The DEM model does not account for mate-
rial softening. The model has been successfully employed 
by the authors in the modeling of engineering particulate 
materials, primarily granular materials [76–79], concretes 
[34–38, 80, 81], and rocks [32, 75]. The grain damage was 
not considered in current DEM simulations. This process 
may be easily taken into account in DEM simulations (by 
using collections of particles to represent the grains allow-
ing for intra-granular fracture), although their time will be 
much increased. A shortcoming of DEM is the huge time of 
computation in industrial-scale problems.

2.2 � Fluid flow model

A fundamental idea for streamlining the fluid flow model 
was put forth in [31] and [32]. The 2D DEM-CFD model 
developed by the authors is based on the idea that two 
domains coexist in a physical system: a discrete 3D domain 
(solid) and a continuous 2D domain (fluid) (Fig. 1). This is 
in contrast to the basic concept of usual fluid flow networks. 
It was assumed that the discrete domain was originally 3D 
due to the need to use a 3D DEM solver in YADE software. 
Consequently, the initially fluid domain is two-dimensional, 
while the solid domain consists of a single layer of discrete 
3D elements (spheres). The centers of gravity of discrete 
elements are positioned on a plane (2D surface). To trans-
form discrete 3D elements into a 2D problem, the discrete 
elements are then projected onto a plane to create circles, 
which are then discretized into a 2D triangular mesh along 
with voids [31] (Fig. 1). Finally, after projection and discre-
tization, there are two 2D domains: the fluid domain and the 
solid domain. Note that the displacement of the spheres in 
the OZ direction (perpendicular to the plane) is fixed. There-
fore, although the 3D DEM solver in YADE is used, the 
mechanical problem is quasi 2D as in the fluid flow model. 
In the CFD model, all definitions regarding the geometry 
of both domains (solid and fluid) are treated as two-dimen-
sional, and the third dimension has a unit size.

In the 2D fluid domain, the centroids of the triangles are 
connected by channels and form a fluid flow network. To get 
a more precise distribution of pressures, fluid-phase frac-
tions, and densities, a remeshing technique discretizes the 
overlapping circles, sets the contact lines, and eliminates 

the overlapping areas [31, 32]. The contact forces are esti-
mated based on the pressure and shear stress for the speci-
men thickness equal to the mean particle diameter. The basic 
equations of the fluid flow model are given in Appendix B 
(Eqs. B1–B28). The mass change in triangular cells is corre-
lated with the density change in a fluid phase, which results 
in changes in pressure. Because of this, triangles do not obey 
the equation for the conservation of momentum, but their 
mass is nevertheless conserved throughout their whole vol-
ume. This procedure is carried out using an explicit formula-
tion for every VP in the fluid flow network, called a Virtual 
Pore Network (VPN). Initially, the liquid and gas might be 
present in the material and pre-existing discontinuities. Two 
distinct channels are introduced by VPN [31]:

(A)	 Artificial ‘S2S’ channels are those that connect discrete 
concrete elements that are in contact with one another 
and

(B)	 Actual ‘T2T’ channels are those that link grid triangles 
in pores that are in contact with one another along a 
common edge.

The channel length is thought to be the distance between 
the gravity centers of adjacent grid triangles. The mass flow 
rate in channels is calculated by solving continuity and 
momentum equations for laminar flows of an incompressible 
fluid. The fluid flow in the network only serves to estimate 
the fluid's mass flow rate as it passes through the triangle 
cell's face (edge).

Three flow regimes are identified in the channels [31]: (a) 
single gas phase flow with a gas phase fraction, (b) single 
liquid phase flow with a liquid phase fraction, and (c) two-
phase flow (liquid and gas). In the flow regime (a) and (b) 
(single phase fluid flow) the Poiseuille equation [82, 83] is 
used to compute the mass flow rate. The two-phase fluid 
flow driven by a pressure gradient in adjacent VPs exhibits 
similar behavior to a two-phase fluid flow of two immiscible 
and incompressible fluids in channels (Fig. 2).

The gas phase fraction and the liquid phase fraction are 
denoted by the symbols �p and  αq, respectively, and they 
sum to 1. They are local parameters of the single cell in the 
mesh. When defining the initial conditions, the parameters 
can be the same for each grid cell. The liquid–gas interface 
is parallel to the channel plates and is calculated as the aver-
age of the liquid phase fraction in adjacent cells. However, 
the fraction of liquid and gas phases changes over time, as 
well as the position of the phase interface in the channel. 
Gravity's effects are disregarded. While the volumetric flow 
rates of the fluid phases are unknown, the interface position 
is connected to fractions of the fluid phases in adjacent VPs. 
Equations of continuity and momentum describe the flow in 
each phase.
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VPs, unlike the channel flow model, assume that the fluid 
is compressible, which means that the density of the fluid 
phases can change in space and time. The fluid pressure 
can reach 70 MPa in specific situations, such as during the 
hydraulic fracturing process. The gas phase exceeds the criti-
cal point and becomes a supercritical fluid under these con-
ditions. Therefore, for both fluid phases in VPs, the Peng-
Robinson equation of state [69] is used to describe fluid 
behavior. Assuming that both fluid phases have the same 

pressure (as in the Euler model), the pressure equation is 
solved to determine the density of the fluid phase. The mass 
conservation equation for both phases is applied to compute 
the density of the liquid/gas phase. Finally, the cell pressure 
(VP) is calculated from the Peng-Robinson equation of state. 
The basic equations of the fluid flow model in pores (VP) are 
given in Appendix B (Eqs. B10–B28).

Four major phases make up the numerical algorithm:

(a)	 by resolving momentum and continuity equations, one can 
calculate the mass flow rate for each phase of fluid flowing 
through the cell faces (in channels encircling VP),

(b)	 using equations of state and continuity to calculate the 
phase fractions and their densities in VPs,

(c)	 utilizing the equation of state to determine the pressure 
in VPs,

(d)	 updating material properties (e.g. liquid and gas densi-
ties in each cell grid).

3 � Input data for 2D DEM/CFD simulations

Typically, mechanical (DEM) and permeability and sorp-
tivity tests (CFD) are used to calibrate DEM and CFD 
separately [31, 32, 41]. For the numerical calculations in 

Fig. 1   Two domains co-existing in one physical system: a domains before projection and discretization and b solid and fluid domains after dis-
crete elements projection and discretization (fluid domain is in red and solid domain is in grey) [31] (colour figure online)

Fig. 2   Two-layer fluid flow in channels ‘S2S’ and ‘T2T’ (h—channel 
aperture, L—channel length, ‘q’—liquid and ‘p’—gas) [32]
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the first calculation stage, a simple one-phase model for 
concrete made out of spheres with varying diameters was 
employed to roughly depict quasi-static concrete's perfor-
mance in uniaxial compression as compared to laboratory 
tests. The diameters of spheres d were arbitrarily set to range 
from 1.0 to 1.8 mm, with a mean diameter of d50 = 1.4 mm. 
For uniaxial compression tests with dry and wet specimens 
(containing about 1600 spheres), a quadratic specimen of 
50 × 50 mm2 was assumed (see Fig. 4, Sect. 4). The speci-
men thickness was always equal to the mean grain diameter. 
Horizontal boundaries at the top and bottom were friction-
less and smooth. Vertical boundaries were free to move. 
One grain at the bottom midpoint was fixed. A continuous 
lowering of the top specimen boundary caused deforma-
tion in the specimen. There were no pre-existing macro-
pores or cracks in the specimen. The initial micro-porosity 
was p = 5% (being equivalent to typical concrete [37, 81]). 
The stress–strain curve and the deformed specimen are pre-
sented in Figs. 3 and 4 of Sect. 4. The estimated compressive 
strength (36 MPa), the corresponding vertical normal strain 
(0.23%), the elastic modulus (20 GPa), and the crack pat-
tern are in agreement with the experimental ones for usual 
concrete [84]. The more realistic response of concrete due 
to uniaxial compression, described as a four-phase material 
at the mesoscale, was shown in [37].

For permeability simulations with pure CFD, a quad-
ratic non-deformable specimen of 10 × 10 mm2 was chosen 
as in [41]. The macroscopic permeability coefficient κ of 
the concrete specimen, calculated with Darcy's law, was 
4.0 × 10−16 m2 for the values of ℎinf, ℎ0, γ, and β (Eqs. B1 and 
B2 in Appendix B) given in Table 1 [41]. This value is in 
agreement with experimental results for concretes and mor-
tars [41]. The larger values of ℎinf, ℎ0, γ, and β caused the 
permeability coefficient κ higher. An arbitrary permeability 
coefficient may be, thus, assumed in numerical calculations.

The basic material constants assumed for concrete speci-
mens in the coupled DEM-CFD calculations are given 
in Table 1. The adaptive time step in DEM and CFD was 
always defined [31]. The maximum time step was limited to 
1·10−8 s. The computation time of one simulation was about 
14 h on a computer with two Intel Xeon Platinum processors 
8280 (2.70 GHz). The computational cost of the simulation 
was relatively high because the existing DEM-CFD model 
was parallelized on threads only but not in a distributed 
mode (on cluster computer nodes).

4 � Pure DEM simulation results

The specimen 50 × 50 mm2 was assumed for mechanical 
computations (Sect. 3). In Figs. 3, 4, 5, 6 and 7, DEM's 
numerical findings for concrete defined as a one-phase mate-
rial, composed of spheres with diameters of 1.0–1.8 mm 

(without distinguishing aggregate, mortar, ITZs, and macro-
pores [36–38]), are displayed in uniaxial compression. Fig-
ure 3 illustrates the stress–strain diagram. On the diagram, 
some of the characteristic points ‘1’– ‘6’ were marked. Fig-
ures 4 and 5 show the progression of the fracture patterns 
and broken particle contacts (marked by lines tangential to 
the contact surfaces) for the various vertical normal strains 
(points 1–6). The development of the relative broken contact 
number is depicted in Fig. 6. Figure 7 shows the distribution 
of the compressive and tensile contact forces at the maxi-
mum vertical normal stress (point ‘5’ in Fig. 3).

For a vertical normal strain of εy = 0.235%, the estimated 
compressive strength was fc = 36 MPa and the elastic mod-
ulus was E = 20 GPa (Fig. 3). The elastic range was up to 
εy = 0.11%. Due to several simplifications assumed in the cal-
culations to accelerate the simulations (e.g. one-phase material 
composed of spheres, narrow particle diameter size range, a 
small number of spheres, and 2D conditions), the stress–strain 
curve was solely approximately reproduced. The calculated 
specimen's pre-peak response was too linear and its post-peak 
response was too brittle (Fig. 3). Without those 3 first simpli-
fications, the concrete behavior (stiffness, strength, brittleness, 
and fracture) can be realistically reproduced in simulations 
of uniaxial compression [37, 38]. Jumps on the stress–strain 
curve in Fig. 3 were caused by crack formation. A few almost 
vertical cracks that appeared during uniaxial compression were 
the failure mode (Figs. 4 and 5). Long before the peak stress, 
at around εy = 0.0582%, the first micro-cracks occurred in the 
specimen (Fig. 6). More than 25% of contacts were already 
damaged at the maximum vertical stress (εy = 0.235%). The 
rate of contact damage progressively rose during compres-
sion. After the peak stress for εy > 0.235%, it reached its maxi-
mum rate (Fig. 6). A network of vertical normal contact forces 

Fig. 3   Pure DEM simulation results for one-phase concrete speci-
men during uniaxial compression-relationship between vertical nor-
mal stress σy and vertical normal strain εy with marked characteristic 
points 1–6
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Fig. 4   Pure DEM simulation 
results for one-phase concrete 
specimen during uniaxial 
compression: evolution of 
fracture pattern a εy = 0.12%, 
b εy = 0.15%, c εy = 0.18%, d 
εy = 0.19%, e at peak stress 
(εy = 0.235%), and f slightly 
after peak stress (blue particles 
have constant vertical velocity 
and green particles are blocked 
in vertical direction, displace-
ments are magnified by factor 
30) (colour figure online)

Table 1   Basic material 
constants assumed for concrete, 
fluid and gas in DEM/CFD 
calculations

Material constants for concrete Symbol Value Unit

Modulus of elasticity of contact (Eq. A3) EC 27 (GPa)
Poisson’s ratio of contact (Eq. A3) υc 0.2 (–)
Cohesion at contact (Eq. A6) C 120 (MPa)
Tensile strength of contact (Eq. A6) T 24 (MPa)
Inter-particle friction angle (Eq. A4 and A5) μc 18 (°)
Mass density (Sec. 2.1) ρ 2600 (kg/m3)
Damping factor (Sec. 2.1) α 0.08 (–)
Initial porosity (Sec. 2.1) p 5.0 (%)
Material constants for fluid (water)
Dynamic viscosity (Eq. B4) μq 10.02·10−4 or 5.01 10−4 (Pa s)
Initial fluid volume fraction (Eq. B8) αq 1.0 or 0.7 or 0.3 (–)
Molecular weight (Eq. B22) wq 18.01528 (kg/kmol)
Material constants for gas
Dynamic viscosity (Eq. B4) μp 2.0507·10–5 (Pa s)
Molecular weight (Eq. B21) wp 28.9647 (kg/kmol)
Universal gas constant (Eq. B10) R 8.31 (J/(mol K))
Initial gas volume fraction (Eq. B8) αp 0 or 0.3 or 0.7 (–)
Fluid flow network parameters
Channel width (Eq. B1) hinf 4.5·10−7 (m)
Channel width (Eq. B1) h

0
3.25·10−6 (m)

Aperture coefficient (Eq. B1) β 1.0 (–)
Reduction factor (Eq. B2) � 0.012 (–)
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conveyed the external vertical load (Fig. 7a). Too weak tensile 
contact forces led to specimen damage (Fig. 7b).

5 � DEM/CFD simulation results

The same concrete specimen 50 × 50 mm2 was assumed for 
hydro-mechanical computations. The initial fluid (water and 
gas) pressure in the specimen was Po = 0.1 MPa. The impact 
of various initial fluid volume fractions αq (αq = 0.3, 0.7, and 
1.0) on the stress–strain curve during uniaxial compression 
is shown in Fig. 8.

The numerical results demonstrate that when the initial 
fluid volume fraction αq increased, the compressive strength 
fc and the related vertical normal strain εy decreased. The 
reduction of fc with increasing fluid volume fraction αq 
was approximately linear, agreeing with experiments [11, 
13, 14]. The initial material stiffness remained the same up 
to εy = 0.1% due to low pore fluid pressures (see Fig. 18a) 
caused by low specimen porosity [30] and the lack of cracks. 
This numerical outcome is in agreement with the experiment 
in [13] but contrasts with some laboratory tests wherein the 
elastic modulus rose [11, 20] or declined [21] with a higher 
saturation degree. In comparison to the results for a dry spec-
imen (αq = 0) (curve 'a' in Fig. 8), the vertical normal strain 
was 20% lower for a fully saturated specimen (αq = 1.0) and 
the compressive strength was 15% lower. Due to the initial 
porosity's low value of 5%, those reductions were relatively 
small for the wet specimen [11, 30]. For a partially saturated 

specimen, the brittleness was slightly higher. The curves 
σy = f(εy) had a similar shape regardless of αq.

5.1 � Mechanical results for wet specimens

For the fully fluid-saturated specimen (αq = 1.0), the DEM-
CFD findings are given in Figs. 9, 10, 11 like the pure DEM 
results (Figs. 4, 5, 6). The developments of the fracture pat-
terns and broken contacts are illustrated in Figs. 9 and 10. 

Fig. 5   Pure DEM simulation 
results for one-phase concrete 
specimen during uniaxial com-
pression: distribution of broken 
contacts (marked by lines 
tangential to contact surfaces) 
in non-deformed specimen for 
different vertical normal strain 
εy a εy = 0.12%, b εy = 0.15%, 
c εy = 0.18%, d εy = 0.19%, e 
εy = 0.235% (at peak stress), 
and f slightly after peak stress 
(broken contacts are marked in 
red) (colour figure online)

Fig. 6   Pure DEM simulation results for one-phase concrete specimen 
during uniaxial compression: evolution of relative number N of bro-
ken contacts in (%)
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Figure 11 shows how the damaged contact number changed 
over specimen deformation.

The wet specimen's behavior mirrored that of the dry 
specimen (Figs. 4 and 5). However, the wet specimen was 
slightly more damaged for εy = 0.19% and more and more 
damaged after the peak stress (Figs. 9, 10, 11) than the dry 
specimen. The first microcracks appeared a little bit ear-
lier in the wet specimen as compared to the dry specimen 
(εy = 0.0578% versus εy = 0.0582%) (Fig. 11).

Figures 12 and 13 present some results for the partially 
fluid-saturated specimen (αq = 0.7): the development of the 
fracture patterns (Fig. 12) and the evolution of broken con-
tacts (Fig. 13). The wet specimen's behavior with αq = 0.7 

and αq = 1.0 was similar, however, the specimen with 
αq = 0.7 was less damaged than this with αq = 1.0.

5.2 � Fluid flow results for fully saturated specimen

The distributions of the high (> 0.1 MPa—initial pore fluid 
pressure) and low pore fluid pressure (≤ 0.1 MPa—initial 
pore fluid pressure) in the fully saturated specimen (αq = 1.0) 
are shown in Figs. 14, 15, 16 for a vertical normal strain 
εy = 0.05% (Fig. 14), εy = 0.10% (Fig. 15) and εy = 0.19% 
(peak stress) (Fig. 16). Figure 17 shows the distribution 
of pore fluid velocities in the specimen for a vertical nor-
mal strain εy = 0.5% (Fig. 17a), εy = 0.10% (Fig. 17b) and 
εy = 0.19% (peak stress) (Fig. 17c). The evolutions of the 
average and maximum pore fluid pressures during uniaxial 
compression are depicted in Fig. 18. Figure 19 depicts the 
evolution of fluid pressure in one arbitrary pore.

The specimen's pore fluid pressure distribution in the 
pores was noticeably non-uniform (Figs. 14, 15, 16). There 
were large areas with high fluid pore pressure (> 0.1 MPa—
initial pore fluid pressure) and a few with low fluid pore 
pressure (≤ 0.1 MPa—initial pore fluid pressure). Differ-
ent velocities of fluid flow were observed in the specimen 
(Fig. 17). The maximum pore fluid velocity was found to be 
0.012 m/s (Fig. 17) and its location matched the location of 
the maximum fluid pressure.

The average fluid pore pressure initially increased due 
to the specimen compaction induced by a compression pro-
cess and then reached an asymptote (Fig. 18a). Its maximum 
value was about 0.12 MPa. However, the maximum fluid 
pore pressure initially increased, then decreased and reached 
an asymptote (Fig. 18b). There were two small fluid pres-
sure peaks around the vertical strain of 0.13% (Fig. 18b). 
They were caused by a momentary increase in sphere over-
lap, which resulted in a transient decrease in pore volume 

Fig. 7   Pure DEM simulation 
results for one-phase concrete 
specimen during uniaxial 
compression: distribution of 
contact forces at peak stress 
(εy = 0.235%) a compressive 
forces and b tensile forces 
(force thickness denotes force 
magnitude)

Fig. 8   Pure DEM and coupled DEM-CFD simulation results for one-
phase concrete specimen during uniaxial compression with different 
initial fluid volume fraction αq: relationship between vertical normal 
stress σy and vertical normal strain εy: a pure DEM (Fig. 3), b DEM-
CFD with αq = 0.3, c DEM-CFD with αq = 0.7 and d DEM-CFD with 
αq = 1.0
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and an increase in fluid pressure. The maximum pore fluid 
pressure was locally about 0.8 MPa for εy = 0.05%. Later, 
as microcracks started to appear in the specimen, the maxi-
mum pore fluid pressure lowered (down to 0.2 MPa). The 
biggest decline in pore fluid maximum pressure was seen in 
the region of εy = 0.05–0.085% (Fig. 18b). The fluid pres-
sures were greater than the initial one equal to 0.1 MPa in 
the entire εy-range. Some suction pressures were notice-
able in the specimen at some places (Figs. 14 and 19). The 
expansion of the crack intensity by the pore fluid pressure’s 
increase over the initial one reduced compressive strength 
for wet specimens.

The increase of fluid pressure to the maximum value 
(during the entire simulation) was observed only in one 
pore (point ‘P1’ in Fig. 19a). Moving away from this point 
(e.g. point ‘P2’ in Fig. 19a), the maximum fluid pressure 
decreased and the changes in pressure over time smoothed 
out. This phenomenon was caused by a random arrange-
ment of discrete elements. The movement in the uniaxial 
compression test caused discrete elements located along the 
upper edge of the specimen to move in different directions. 

By chance, the two spheres began to overlap. Consequently, 
the volume of pores located between these spheres began to 
decrease relatively quickly increasing fluid pressure. This 
effect was local, and the pressure of the fluid surrounding 
the pore decreased very quickly (Fig. 19b) at the same time 
step. The maximum fluid pressure at point ‘P1’ occurred 
slightly earlier (for vertical normal stress εy = 0.0564%) than 
at point ‘P2’ (for vertical normal stress εy = 0.066%). While 
the increase in fluid pressure at point ‘P1’ was caused by the 
deformation of the material skeleton, the increase in fluid 
pressure at point ‘P2’ was mainly caused by the flow of fluid 
from point ‘P1’ (higher pressure) to point ‘P2’ (lower pres-
sure). The fluid flow took some time to increase the fluid 
pressure at P2 to its maximum value.

The material response was similar in other DEM-CFD 
results with a partially saturated specimen for the two vari-
ous initial fluid volume fractions αq (αq = 0.3 and 0.7). The 
average fluid pressure was around 0.102 MPa (αq = 0.7) 
(Fig. 20) and 0.1001 MPa (αq = 0.3). The maximum local 
fluid pressure was around 0.4 MPa (αq = 0.7) and 0.15 MPa 
(αq = 0.15). The compressive strength increased as αq 

Fig. 9   DEM-CFD simulation results for one-phase concrete specimen (αq = 1.0) during uniaxial compression: evolution of fracture pattern a 
εy = 0.12%, b εy = 0.15%, c εy = 0.18%, d at peak stress (εy = 0.19%) and e slightly after peak stress (displacements are magnified by factor 30)
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declined. The flow velocity also diminished with decreas-
ing αq.

5.3 � Effect of viscosity

In the scenario with fully fluid-saturated concrete (αq = 1), 
the impact of viscosity μq on the stress–strain curve is illus-
trated in Fig. 21. The DEM-CFD analyses were conducted 
using a viscosity that was two-fold lower (μq = 5.01 10−4 
(Pa s)) as compared to the basic one (Table 1).

With falling viscosity, the specimen's compressive 
strength rose as in the experiment [28]. The strength rise was 
about 10% (Fig. 21). The lower maximum pore fluid pres-
sure of 0.4 MPa happened for the lower viscosity μq = 5.01 
10−4 (Pa s).

6 � Summary and conclusions

This work simulates the behavior of partially fluid-saturation 
concrete in uniaxial compression under 2D isothermal con-
ditions using an improved fully coupled DEM/CFD-based 
hydro-mechanical technique. The method takes into account 
the two-phase laminar flow of fluid in the flow network of 
predefined channels and discretizes the geometry of pores/
cracks with accuracy. The method demonstrated its capacity 
to evaluate concrete's compressive strength and fracture, and 
pore fluid pressures of wet concrete specimens. The impacts 

Fig. 10   DEM-CFD simulation 
results for one-phase concrete 
specimen (αq = 1.0) during 
uniaxial compression: distribu-
tion of broken contacts (marked 
by lines tangential to contact 
surfaces) in non-deformed 
specimen for different vertical 
normal strain εy a εy = 0.12%, 
b εy = 0.15%, c εy = 0.18%, d at 
peak stress (εy = 0.19%) and e 
slightly after peak stress (broken 
contacts are marked in red) (col-
our figure online)

Fig. 11   Pure DEM (curve ‘a’) and coupled  DEM-CFD simulation 
result (curve ‘b’) for one-phase concrete specimen (with αq = 1.0) 
during uniaxial compression: A evolution of relative number N of 
broken contacts with vertical normal strain εy and B zoom on onset of 
contact breakage
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of both fluid saturation and fluid viscosity on the concrete 
strength and fracture process, and pore fluid pressures were 
studied, which proved to be significant. The numerical 
results showed qualitative agreement with laboratory tests 
in the literature regarding strength reduction with increasing 
fluid saturation and decreasing viscosity. The 2D simulations 
for concrete specimens with initial porosity of 5% lead to the 
following conclusions:

–	 The compressive strength of concrete for fully fluid-
saturated specimens was lower by 15% as compared to 
dry ones. It decreased with higher fluid saturation. The 
reduction was almost linear with increasing fluid satura-
tion. The compressive strength of concrete for fully fluid-
saturated specimens also dropped by 10% when dynamic 
fluid viscosity was two-fold higher.

–	 The material behavior depended on the pore fluid pres-
sure’s increase in pores over the initial one caused by 
initial specimen compaction induced by the compres-
sive load. The pore fluid pressures promoted a fracture 
process during fluid migration through pores and cracks 
(higher contact forces occurred) that decreased the com-
pressive strength. The higher the pore fluid pressure, 
the higher the compressive strength reduction and fluid 
migration rate.

–	 Viscous fluid flow in pores and cracks had a higher influ-
ence on the quasi-static compressive strength than the 
pore volume changes themselves.

–	 In the specimen, the effect of pore fluid pressure in uniax-
ial compression was the greatest during the initial speci-
men compaction phase when no micro-cracks were form-
ing. Later, when cracks occurred, the average pore fluid 
pressures approached a constant value, and the maximum 
ones decreased and approached next a constant value.

Appendix A

The DEM equations are listed below:

(A1)F⃗n = KnUN⃗,

(A2)F⃗s = F⃗s,prev + KsΔX⃗s,

(A3)Kn = Ec

2RARB

RA + RB

and Ks = vcEc

2RARB

RA + RB

,

(A4)
F⃗s − Fs

max
− F⃗n × tan𝜇c ≤ 0 (before contact breakage),

Fig. 12   DEM-CFD simulation results for one-phase partially fluid-
saturated concrete specimen (αq = 0.7) during uniaxial compres-
sion: evolution of fracture pattern a εy = 0.12%, b εy = 0.15%, c 

εy = 0.18%, d εy = 0.19%, e at peak stress (εy = 0.215%) and f slightly 
after peak stress (displacements are magnified by factor 30)
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where �⃗Fn—the normal contact force, U—the overlap 
between discrete elements, ��⃗N—the unit normal vector at 
the contact point, �⃗Fs—the tangential contact force, �⃗Fs,prev

—the tangential contact force in the previous iteration, �⃗Xs

—the relative tangential displacement increment, Kn—the 
normal contact stiffness, Ks—the tangential contact stiffness, 
Ec—the elastic modulus of the particle contact, υc—the Pois-
son’s ratio of particle contact, R—the particle radius, RA and 
RB contacting particle radii, μc—the Coulomb inter-particle 
friction angle, Fs

max
—the critical cohesive contact force, Fn

min

—the minimum tensile force, C—the cohesion at the contact 
(maximum shear stress at zero pressure), and T—the tensile 

(A5)F⃗s − F⃗n × tan𝜇c ≤ 0 (after contact breakage),

(A6)Fs
max

= CR2 and Fn
min

= TR2,

(A7)F⃗k
damp

= F⃗k − 𝛼d ⋅ sgn
(
v⃗k
p

)
F⃗k.

strength of the contact, �⃗F
k

damp
—the dampened contact force, 

�⃗F
k and �⃗vk

p
-kth—the components of the residual force and 

translational particle velocity vp and αd—the positive damp-
ing coefficient smaller than 1 (sgn(⋅ ) that returns the sign of 
the kth component of velocity).

Appendix B

The hydraulic aperture h of the artificial channels 'S2S' is 
computed by a modified empirical formula developed by 
Hökmark et al. [85]:

where hinf—the hydraulic aperture for the infinite normal 
stress, h0—the hydraulic aperture for the zero normal stress, 

(B1)h = �
(
hinf +

(
h0 − hinf

)
e−1.5⋅10

−7�n

)
,

Fig. 13   Pure DEM (curve’a’) and DEM-CFD simulation result for 
one-phase partially fluid-saturated concrete specimen with αq = 0.7 
(curve ‘b’) during uniaxial compression: A evolution of relative num-
ber N of broken contacts with vertical normal strain εy and B zoom on 
onset of contact breakage

Fig. 14   DEM-CFD results for fully fluid-saturated specimen 
(αq = 1.0): distribution of high a and low b pore fluid pressures in 
concrete specimen for vertical strain εy = 0.05%
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�n—the effective normal stress at the particle contact and 
β—the aperture coefficient. The geometry of the nearby tri-
angles has a direct bearing on the hydraulic aperture of the 
actual channels ‘T2T’ (Fig. 22) as 

where e is the edge length between two adjacent triangles, ω 
denotes the angle between the edge with the length e and the 
center line of the channel that connects two adjacent trian-
gles, and γ is the reduction factor established to maintain the 
maximum Reynolds number Re along the main flow route at 
a value below the critical value for laminar flow (Re = 2100). 
The parameter γ was determined in parametric tests at fluid 
pressure up to 140 MPa.

Following Barmak et  al. [86], the continuity and 
momentum equations are developed that are rendered 
dimensionless

(B2)h = �e cos (90◦ − �), where uj =
(
uj, vj

)
 and pj are the velocity and pressure of 

the fluid phase j, �j and �j are the corresponding density and 
dynamic viscosity. The Reynolds number is Rep = �puihp∕�p 
and the density and viscosity ratios are r = �q∕�p and 
m = �q∕�p . The lower and upper phases in the dimension-
less formulation, are located in the regions −nd ≤ y ≤ 0 and 
0 ≤ y ≤ 1 , where nd = hq∕hp . The velocities satisfy the no-
slip boundary condition at the channel walls.

The continuity of velocities and tangential stresses is 
required by the boundary conditions at the interface at y = 0 [86]

(B3)divuj = 0,

(B4)
�uj

�t
+
(
uj ⋅ ∇

)
uj = −

�q

r�j
∇pj +

1

Rep

�q

r�j

m�j

�q

⋅ uj,

(B5)uq
(
y = −nd

)
= 0 and up(y = 1) = 0.

Fig. 15   DEM-CFD results for fully fluid-saturated specimen 
(αq = 1.0): distribution of high a and low b pore fluid pressures in 
concrete specimen for vertical strain εy = 0.10%

Fig. 16   DEM-CFD results for fully fluid-saturated specimen 
(αq = 1.0): distribution of high a and low b pore fluid pressures in 
concrete specimen for vertical strain εy = 0.19% (peak stress)



Effect of free water on the quasi‑static compression behavior of partially‑saturated concrete… Page 15 of 22  38

and

(B6)uq(y = 0) = up(y = 0)

The mass flow rates Mq,x and Mp,x for both fluid phases 
are derived by solving Eqs. B3 and B4 with the boundary 
conditions (Eqs. B5–B7), as well as the shear stress �f0 at 
the channel surfaces.

The fluid in VPs (triangular cells), in contrast to the model 
of fluid flow in the channels, is presumed to be compressible. 
The discretized form of the mass conservation equation for 
the liquid phase is

with

where Vn+1
i

 and Vn
i
 are the volume of VPi at a time increment 

n + 1 and n (the third dimension is the unit dimension), 
respectively, f is the face (edge) number, Un

f
 denotes the vol-

ume flux through the face (m3/s), based on the average veloc-
ity in the channel, �n

q,f
 is the face value of the liquid phase 

volume fraction (–), t is the time step (s), n denotes the time 
increment and i is the VP number (–). The same equations 
are defined for the gas phase.

VPs in contrast to the channel flow model assume that 
the fluid is compressible. The mass flow rates of fluid 
phases in channels are only calculated to estimate the mass 
flow rate of fluid flowing through the cell faces. The fluid 
pressure can exceed 70 MPa in specific situations, such 
as during the hydraulic fracturing process. The gas phase 
exceeds the critical point and becomes a supercritical fluid 
under these conditions. Therefore, for both fluid phases in 
VPs, the Peng-Robinson equation of state [69] is used to 
describe fluid behavior above the critical point

where P is the pressure (Pa), R denotes the gas constant 
(R = 8314,4598 J/(kmol K)), Vq∕p is the molar volume of 
liquid (q) and gas (p) fraction (m3/kmol) and T denotes the 
temperature (K). The parameters in Eq. B10 are:

(B7)�q

�uq

�y

|
|
|
|
|y=0

= �p

�up

�y

|
|
|
|
|y=0

.

(B8)
�n+1
q,i

�n+1
q,i

Vn+1
i

− �n
q,i
�n
q,i
Vn
i

Δt
+
∑

f

(
�n
q,f
Un

f
�n
q,f

)
= 0

(B9)Vn+1
i

= Vn
i
+

dV

dt
Δt,

(B10)P =
RT

(
Vq∕p − bq∕p

) −
aq∕p

(
V2
q∕p

+ 2bq∕pVq − b2
q∕p

) ,

(B11)aq∕p(T) = aq∕p,0

[

1 + nq∕p

(

1 −

(
Tn
i

Tq∕p,c

)0.5
)]2

,

(B12)nq∕p = 0.37464 + 1.54226�q∕p − 0.26992�2
q∕p

,

Fig. 17   DEM-CFD results for fully fluid-saturated specimen 
(αq = 1.0): distribution of fluid velocity vectors specimen for vertical 
normal strain εy: a εy = 0.05%, b εy = 0.10% and c εy = 0.19% (peak 
stress)
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(B13)aq∕p,0 = ac,q∕p�(T),

(B14)ac,q∕p =
0.457247R2T2

q∕p,c

Pq∕p,c

,

(B15)bq∕p =
0.07780RTq∕p,c

Pq∕p,c

,

(B16)

� =

[

1 + c1

(

1 − T
1

2

r

)

+ c2

(

1 − T
1

2

r

)2

+ c3

(

1 − T
1

2

r

)3
]2

,

where Tq∕p,c is the critical temperature of phase (K), Pq∕p,c 
denotes the critical pressure of phase (Pa), �q∕p is the acen-
tric factor of phase (–), and Tr denotes the reduced tempera-
ture T

Tc
 . When c1 = c2 = c3 = 0, the original model is obtained. 

The extra factors help connect vapor pressure data from 
highly polar liquids like water and methanol. For most sub-
stances, Equations B11–B16 provide a good fit for the vapor 
pressure, however predicting molar volumes for liquid phase 
can be very inaccurate. The forecast of saturated liquid 
molar quantities might deviate by l0–40% [87]. Peneloux 
and Rauzy [88] proposed an effective correction term

(B17)Vcorr
q

= Vq + s,

Fig. 18   DEM-CFD results for 
fully fluid-saturated specimen 
(with αq = 1.0): evolution of 
average a and maximum pore 
fluid pressure b against vertical 
normal strain εy during uniaxial 
compression
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where s is the small molar volume correction term that is 
component dependent; Vq is the molar volume predicted 
by Eq. B16 and Vcorr

q
 refers to the corrected molar volume. 

The value of s is negative for higher molecular weight non-
polar and essentially for all polar substances. The molar 
volume correction term is considered to be 0.0 m3/kmol 
and − 0.0034 m3/kmol for the gas phase and liquid phase 
(water), respectively. The Peng-Robinson equation of state 
has the advantage of being able to describe the behavior 
of supercritical fluids at extremely high fluid pressures and 
temperatures. For each phase, the mass conservation equa-
tion is used. The mass transfer between phases and the grid 
velocity is ignored when there is no internal mass source. 
The discretized form of the mass conservation equation for 
the liquid phase is

with

where f is the face (edge) number, Un
f
 denotes the volume 

flux through the face (m3/s), based on the average velocity 
in the channel, �n

q,f
 is the face value of the fluid phase volume 

fraction (–), t is the time step (s), n denotes the time incre-
ment and i is the VP number (–). The explicit formulation is 
used instead of an iterative solution of the transport equation 
during each time step since the volume fraction at the 

(B18)
�n+1
q,i

�n+1
q,i

Vn+1
i

− �n
q,i
�n
q,i
Vn
i

Δt
+
∑

f

(
�n
q,f
Un

f
�n
q,f

)
= 0

(B19)Vn+1
i

= Vn
i
+

dV

dt
Δt,

Fig. 19   DEM-CFD results for 
fully fluid-saturated specimen 
(αq = 1.0): evolution of pore 
fluid pressure in vicinity of 
maximum fluid pressure (point 
‘P1’) against vertical normal 
strain εy: a location of measure-
ment points ‘1’ and ‘2’, and b 
evolution of fluid pressure in 
point ‘P2’ in vicinity of point 
‘P1’
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current time step is directly computed from known quantities 
at the previous time step. Similarly, the mass conservation 
equation for a gas phase is introduced. The product �qUn

f
�n
q,f

 
in Eq. B18 is the mass flow rate Mq,f  of the liquid phase 
flowing through the face f (edge of a triangle) of VPi. The 
density of the liquid phase can be calculated by solving the 
mass conservation equation for both phases

(B20)�n+1
i,q

=
�n
q,i
�n
q,i
Vn
i
+ Δt

∑
f Mq,f

�
Vn
i
+ ΔViΔt

�
�n+1
q,i

.

The density of the gas phase can also be computed in the 
same way. It should be noted that the molar volume V (q/p) 
is related to the gas density.

and to the liquid density

(B21)Vn+1
i,p

=
wp

�n+1
i,p

,

Fig. 20   DEM-CFD results for 
partially fluid-saturated concrete 
specimen (with αq = 0.7): 
evolution of average pore fluid 
pressure against vertical normal 
strain εy during uniaxial com-
pression

Fig. 21   DEM-CFD simulation results for one-phase fully saturated 
concrete specimen (αq = 1.0) during uniaxial compression with fluid 
dynamic viscosity μq: relationship between vertical normal stress 
σy and vertical normal strain εy for two  different fluid viscosities: a 
μq = 10.02 10−4 Pa s and b μq = 5.01 10−4 Pa s Fig. 22   ‘T2T’ channel (red colour denotes channel width h) (colour 

figure online)
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where wp and wq are molar weights of gas and liquid phases, 
respectively. Due to the fact that the fluid phases share the 
same pressure

the fluid phase fractions are computed. Inserting Eq. B21 for 
the gas phase and Eq. B22 for the liquid phase into Eq. B23, 
a polynomial equation is obtained with respect to the liquid 
fraction �n+1

q,i
 . The gas-phase fraction is computed as 

�n+1
p,i

= 1 − �n+1
q,i

 . Equation B10 is used to calculate the new 
pressure Pn+1

i
 in VPi. The explicit formulation is utilized 

instead of an iterative solution of the transport equation dur-
ing each time step.

Because of the passage of a viscous fluid, there is shear 
stress along the channel's edge. The shear stress profile in 
the fluid is triangular for immovable parallel plates with 
no-slip boundary conditions (zero velocity). The shear 
stress �f0 at the interface between liquid and gas is

The fluid pressures in VPs and ‘S2S’ channels are con-
verted into the forces �⃗FP,j and �⃗FS,j acting on spheres. For 
simplicity, the fluid pressure forces acting on the sphere 
are calculated by assuming that the fluid–solid contact area 
is multiplied by the pressure in the cell ( �⃗FP,j ) or channel 
( �⃗FS,j ). The contact area is calculated as a section of the 
cylinder's surface with a height equal to the diameter of the 
sphere, and not as a section of the sphere's surface. This 
simplifies the computational algorithm and only slightly 
overestimates the forces

where �⃗n—the unit vector normal to the discretized sphere’s 
edge, Pi—the pressure in VP, i—the VP number, j—the 
sphere number, and Ak—the contact area between the fluid 
in VPi and sphere

with rj—the sphere radius and ek—the sphere edge length. 
The shear stresses are finally converted into the forces acting 
on spheres as

(B22)Vn+1
i,q

=
wq

�n+1
i,q

− s.

(B23)

RTn
i

(

Vn+1
i,p − bp

) −
ap

(

Vn+12
i,p + 2bpVn+1

i,p − b2p
)

=
RTn

i
(

Vn+1
i,q − bq

) −
aq

(

Vn+12
i,q + 2bqVn+1

i,q − b2q
) ,

(B25)�f0 =
h

2

Pn
i
− Pn

j

L
.

(B26)F⃗P,j = −Pin⃗Ak,

(B27)Ak = 2rjek,

where I⃗—the unit vector parallel to the channel wall and 
oriented in the fluid flow direction, �f0,i—the shear stress in 
the channel, i—the channel number, j—the sphere number 
and Ak—the contact area between the channel and sphere, 
and Lk—the channel length.

Acknowledgements  The present study was supported by the research 
project “Fracture propagation in rocks during hydro-fracking-exper-
iments and discrete element method coupled with fluid flow and heat 
transport” (years 2019–2023), and financed by the National Science 
Centre (NCN) (UMO-2018/29/B/ST8/00255).

Author contributions  MK: Conceptualization, Methodology, Investiga-
tion, Writing— original draft, Writing—review & editing, JT: Concep-
tualization, Methodology, Writing—original draft, Writing—review & 
editing, MN: Investigation.

Data availability  Data will be made available on request.

Declarations 

Conflict of interest  The authors declare that they have no known com-
peting financial interests or personal relationships that could have ap-
peared to influence the work reported in this paper.

References

	 1.	 Rossi, P., Boulay, C.: Influence of free water in concrete on the 
cracking process. Mag. Concr. Res. 1990(42), 143–146 (1990)

	 2.	 Rossi, P.: Influence of cracking in presence of free water on the 
mechanical behavior of concrete. Mag. Concr. Res. 43, 53–57 
(1991)

	 3.	 Li, G.: The effect of moisture content on the tensile strength 
properties of concrete. University of Florida, Gainesville, FL, 
USA (2004)

	 4.	 Wittmann, F.H., Sun, Z., Zhao, T.: Strength and fracture energy 
of concrete in seawater. In Proceedings of the 6th International 
Conference on Fracture Mechanics of Concrete and Concrete 
Structures, Catania, Italy, 17–22 June (2007)

	 5.	 Wang, H.L., Li, Q.B.: Experiments on saturated concrete under 
dfferent splitting tensile rate and mechanism on strength change. 
Eng. Mech. 24, 105–109 (2007)

	 6.	 Yan, D.M., Lin, G., Wang, Z.: Research on dynamic direct 
tensile properties of concrete under different environments. J. 
Dalian Univ. Technol. 45, 416–421 (2005)

	 7.	 Deng, H.F., Yuan, X.F., Li, J.L.: Fracture mechanics character-
istics and deterioration mechanism of sandstone under reservoir 
immersion interaction. J. Earth Sci. China Univ. Geosci. 39, 
108–114 (2014)

	 8.	 Zhang, P., Sun, Z.W., Zhao, T.J.: Fracture energy and strain 
softening of concrete under seawater environment. J. Civ. Arch. 
Environ. Eng. 32, 72–77 (2010)

	 9.	 Reinhardt, H.W., Rossi, P., van Mier, J.G.M.: Joint investigation 
of concrete at high rates of loading. Mater. Struct. 23, 213–216 
(1990)

	10.	 Ross, C., Jerome, D.M., Tedesco, J.E.: Moisture and strain rate 
effects on concrete strength. ACI Mater. J. 93, 293–300 (1996)

(B28)F⃗S,j = 𝜏f0,iI⃗Ak with Ak = 2rjLk,



	 M. Krzaczek et al.38  Page 20 of 22

	11.	 Wang, J., Sun, K., Hu, Y., Guan, Q., Li, Q.: The mechanical 
properties of concrete in water environment: a review. Front. 
Mater. 9, 996650 (2022)

	12.	 Shen, J., Xu, Q.: Effect of moisture content and porosity on 
compressive strength of concrete during drying at 105 °C. Con-
str. Build. Mater. 195, 19–27 (2019)

	13.	 Zhang, G., Li, X., Li, Z.: Experimental study on static mechani-
cal properties and moisture contents of concrete under water 
environment. Sustainability 11, 2962 (2019)

	14.	 Yousheng, D., Weiling, Y.: Research progress on the effect of 
environmental water on the static strength of concrete. Adv. Sci. 
Technol. Water Resour. 35(4), 99–103 (2015)

	15.	 Malecot, Y., Zingg, L., Briffaut, M., Baroth, J.: Influence of free 
water on concrete triaxial behavior: the effect of porosity. Cem. 
Concr. Res. 120, 207–216 (2019)

	16.	 Piotrowska, E., Forquin, P.: Experimental investigation of the 
confined behavior of dry and wet high-strength concrete: quasi 
static versus dynamic loading. J. Dyn. Behav. Mater. 1(2), 191–
200 (2015)

	17.	 Vu, X.H., Malecot, Y., Daudeville, L., Buzaud, E.: Experimental 
analysis of concrete behavior under high confinement: effect 
of the saturation ratio. Int. J. Solids Struct. 46(5), 1105–1120 
(2009)

	18.	 Boxu, M., Jinyu, X., Chuanxin, L., Chao, G., Guang, P.: Effect 
of water content on tensile properties of cement mortar. IOP 
Conf. Ser.: Earth Environ. Sci. 189, 032023 (2018)

	19.	 Chen, X., Huang, W., Zhou, J.: Effect of moisture content on 
compressive and split tensile strength of concrete. Indian J. Eng. 
Mater. Sci. 19, 427–435 (2012)

	20.	 Zhu, F.Z., Liu, J., Li, Z.L.: Discussion on the influence of water 
content in concrete dynamic elastic modulus test. J. Concr. 11, 
40–41 (2012)

	21.	 Shoukry, S.N., William, G.W., Riad, M.Y., Downie, B. Effect 
of moisture and temperature on the mechanical properties of 
concrete. Proceedings of the SEM Annual Conference June 1–4, 
2009 Albuquerque New Mexico USA, (2009)

	22.	 Cadoni, E., Labibes, K., Albertini, C.: Strain-rate effect on the 
tensile behavior of concrete at different relative humidity levels. 
Mater. Struct. 34, 21–26 (2001)

	23.	 Wang, H.L., Li, Q.B.: Experiments of the compressive proper-
ties of dry and saturated concrete under different loading rates. 
J. Hydroelectr. Eng. 26, 84–89 (2007)

	24.	 Fu, Q., Zhang, Z., Zhao, X., Hong, M., Guo, B., Yuan, Q., 
Niu, D.: Water saturation effect on the dynamic mechanical 
behaviour and scaling law effect on the dynamic strength of 
coral aggregate concrete. Cement Concr. Compos. 120, 104034 
(2021)

	25.	 Xu, W.B., Li, Q.B., Hu, Y.: Water content variations in the process 
of concrete setting. J. Hydroelectr. Eng. 36(07), 92–103 (2017)

	26.	 Oshita, H., Tanabe, T.: Water migration phenomenon model in 
cracked concrete I: formulation. J. Eng. Mech. 126, 539–543 
(2000)

	27.	 Wang, H.L., Li, Q.B., Sun, X.Y., Jin, W.L.: Mesomechanism of 
tensile strength reduction and tension constitutive model of satu-
rated concrete. J. Basic Sci. Eng. 16, 65–72 (2008)

	28.	 Zhang, X., Chiu, Y., Hong Hao, H., Cui, J.: Free water effect on 
the dynamic compressive properties of mortar. Cement Concr. 
Compos. 118, 103933 (2021)

	29.	 Weiss, T., Siegesmund, S., Kirchner, D., Sippel, J.: Insolation 
weathering and hygric dilatation: two competitive factors in stone 
degradation. Environ. Geol. 46, 402–413 (2004)

	30.	 Sun, X., Wang, H., Cheng, X., Sheng, Y.: Effect of pore liquid vis-
cosity on the dynamic compressive properties of concrete. Constr. 
Build. Mater. 231, 117143 (2020)

	31.	 Krzaczek, M., Kozicki, J., Nitka, M., Tejchman, J.: Simulations 
of hydro-fracking in rock mass at meso-scale using fully coupled 
DEM/CFD approach. Acta Geotech. 15, 297–324 (2020)

	32.	 Krzaczek, M., Nitka, M., Tejchman, J.: Effect of gas content in 
macropores on hydraulic fracturing in rocks using a fully coupled 
DEM/CFD approach. Int. J. Numer. Anal. Meth. Geomech. 45(2), 
234–264 (2021)

	33.	 Bolander, J.E., Eliáš, J., Cusatis, G., Nagai, K.: Discrete mechani-
cal models of concrete fracture. Eng. Fract. Mech. 257, 108030 
(2021)

	34.	 Skarżyński, L., Nitka, M., Tejchman, J.: Modelling of concrete 
fracture at aggregate level using FEM and DEM based on x-ray 
µCT images of internal structure. Eng. Fract. Mech. 10(147), 
13–35 (2015)

	35.	 Nitka, M., Tejchman, J.: Modelling of concrete behaviour in 
uniaxial compression and tension with DEM. Granular Matter 
217(1), 145–164 (2015)

	36.	 Nitka, M., Tejchman, J.: A three-dimensional meso scale 
approach to concrete fracture based on combined DEM with 
X-ray μCT images. Cem. Concr. Res. 107, 11–29 (2018)

	37.	 Suchorzewski, J., Tejchman, J., Nitka, M.: Discrete element 
method simulations of fracture in concrete under uniaxial com-
pression based on its real internal structure. Int. J. Damage 
Mech 27(4), 578–607 (2014)

	38.	 Suchorzewski, J., Tejchman, J., Nitka, M.: Experimental and 
numerical investigations of concrete behaviour at meso-level 
during quasi-static splitting tension. Theoret. Appl. Fract. 
Mech. 96, 720–739 (2018)

	39.	 Singh, K., Menke, H., Andrew, M., et al.: Dynamics of snap-off 
and pore-filling events during two-phase fluid flow in permeable 
media. Sci. Rep. 7, 5192 (2017)

	40.	 Shams, M., Singh, K., Bijeljic, B., Blunt, M.J.: Direct numeri-
cal simulation of pore-scale trapping events during capillary-
dominated two-phase flow in porous media. Transp Porous Med 
138, 443–458 (2021)

	41.	 Krzaczek, M., Nitka, M., Tejchman, J.: Modelling hydraulic and 
capillary-driven two-phase fluid flow in unsaturated concretes 
at the meso-scale with a unique coupled DEM-CFD technique. 
Int J Numer Anal Methods Geomech. 47(1), 23–53 (2023)

	42.	 Cundall, P.: Fluid formulation for PFC2D. Itasca Consulting 
Group, Minneapolis, Minnesota (2000)

	43.	 Hazzard, J.F., Young, R.P., Oates, J.S.: Numerical modeling 
of seismicity induced by fluid injection in a fractured reser-
voir. Proceedings of the 5th North American Rock Mechanics 
Symposium, Miningand Tunnel Innovation and Opportunity, 
Toronto, Canada, 7–10 July 2002, pp. 1023–1030 (2002)

	44.	 Al-Busaidi, A., Hazzard, J.F., Young, R.P.: Distinct element 
modeling of hydraulically fractured distinct element modeling 
of hydraulically fractured lac du bonnet granite. J. Geophys. 
Res. 110, 06302 (2005)

	45.	 Yoon, J.S., Zang, A., Stephansson, O.: Numerical investigation 
on optimized stimulation of intact and naturally fractured deep 
geothermal reservoirs using hydro-mechanical coupled discrete 
particles joints model. Geothermic 52, 165–184 (2014)

	46.	 Shimizu, H., Murata, S., Ishida, T.: The distinct element analy-
sis for hydraulic fracturing in hard rock considering fluid vis-
cosity and particle size distribution. Int J Rock Mech Mining 
Sci. 48, 712–727 (2011)

	47.	 Ma, X., Zhou, T., Zou, Y.: Experimental and numerical study of 
hydraulic fracture geometry in shale formations with complex 
geologic conditions. J. Struct. Geol. 98, 53–66 (2017)

	48.	 Liu, G., Sun, W., Lowinger, S.M., Zhang, Z., Huang, M., Peng, 
J.: Coupled flow network and discrete element modeling of 



Effect of free water on the quasi‑static compression behavior of partially‑saturated concrete… Page 21 of 22  38

injected-induced crack propagation and coalescence in brittle 
rock. Acta Geotech. 14(3), 843–869 (2019)

	49.	 Zhang, G., Li, M., Gutierrez, M.: Numerical simulation of prop-
pant distribution in hydraulic fractures in horizontal wells. J Nat 
Gas Sci Eng. 48, 157–168 (2017)

	50.	 Xiao-Dong, N., Zhu, C., Wang, Y.: Hydro-mechanical analysis 
of hydraulic fracturing based on an improved DEM-CFD cou-
pling model at micro-level. J. Comput. Theor. Nanosci. 12(9), 
2691–2700 (2015)

	51.	 Zeng, J., Li, H., Zhang, D.: Numerical simulation of proppant 
transport in hydraulic fracture with the upscaling CFD-DEM 
method. J Nat Gas Sci Eng. 33, 264–277 (2016)

	52.	 Zhang, G., Sun, S., Chao, K., et al.: Investigation of the nuclea-
tion, propagation and coalescence of hydraulic fractures in 
glutenite reservoirs using a coupled fluid flow-DEM approach. 
Powder Technol. 354, 301–313 (2019)

	53.	 Lathama, J.P., Munjiz, A., Mindel, J., et al.: Modelling of massive 
particulates for breakwater engineering using coupled FEM/DEM 
and CFD. Particuology 6, 572–583 (2008)

	54.	 Chareyre, B., Cortis, A., Catalano, E., Barthélemy, F.: Pore-scale 
modeling of viscous flow and induced forces in dense sphere 
packings. Transp. Porous Media 94(2), 595–615 (2012)

	55.	 Catalano, E., Chareyre, B., Barthélémy, F.: Pore-scale modeling 
of fluid-particles interaction and emerging poromechanical effects. 
Int. J. Numer. Anal. Meth. Geomech. 238, 51–71 (2014)

	56.	 Papachristos, E., Scholtès, L., Donzé, F.V., Chareyre, B.: Intensity 
and volumetric characterizations of hydraulically driven fractures 
by hydro-mechanical simulations. Int. J. Rock Mech. Min. Sci. 93, 
163–178 (2017)

	57.	 Caulk, R., Sholtès, L., Krzaczek, M., Chareyre, B.: A pore-scale 
thermo–hydro-mechanical model for particulate systems. Comput. 
Methods Appl. Mech. Eng. 372, 113292 (2020)

	58.	 Bolander, J.E., Berton, S.: Simulation of shrinkage induced crack-
ing in cement composite overlays. Cement Concr. Compos. 26, 
861–871 (2004)

	59.	 Grassl, P., Bolander, J.: Three-dimensional network model for 
coupling of fracture and mass transport in quasi-brittle geomateri-
als. Materials 9, 782 (2016)

	60.	 Luković, M., Šavija, B., Schlangen, E., Ye, G., van Breugel, K.: 
A 3D lattice modelling study of drying shrinkage damage in con-
crete repair systems. Materials 9(2016), 575 (2016)

	61.	 Athanasiadis, I., Wheeler, S.J., Grassl, P.: Hydro-mechanical net-
work modelling of particulate composites. Int. J. Solids Struct. 
130–131(2018), 49–60 (2018)

	62.	 Eliáš, J., Cusatis, G.: Homogenization of discrete mesoscale 
model of concrete for coupled mass transport and mechanics by 
asymptotic expansion. J. Mech. Phys. Solids 167, 105010 (2022)

	63.	 Mašek, J., Květoň, J., Eliáš, J.: Adaptive discretization refinement 
for discrete models of coupled mechanics and mass transport in 
concreto. Constr. Build. Mater. 395, 132243 (2023)

	64.	 Forquin, P., Sallier, L., Pontiroli, C.: A numerical study on the 
influence of free water content on the ballistic performances of 
plain concrete targets. Mech. Mater. 89, 176–189 (2015)

	65.	 Bian, H.B., Jia, Y., Pontiroli, C., Shao, J.F.: Numerical modeling 
of the elastoplastic damage behavior of dry and saturated concrete 
targets subjected to rigid projectile penetration. Int. J. Numer. 
Anal. Meth. Geomech. 42(2), 312–338 (2018)

	66.	 Benniou, H., Accary, A., Malecot, Y., Briffaut, M., Daudeville, 
L.: Discrete element modeling of concrete under high stress level: 
influence of saturation ratio. Comput. Part. Mech. 8(1), 157–167 
(2021)

	67.	 Abdi, R., Krzaczek, M., Tejchman, J.: Comparative study of high-
pressure fluid flow in densely packed granules using a 3D CFD 
model in a continuous medium and a simplified 2D DEM-CFD 
approach. Granular Matter 24(1), 1–25 (2022)

	68.	 Abdi, R., Krzaczek, M., Tejchman, J.: Simulations of high-
pressure fluid flow in a pre-cracked rock specimen composed of 
densely packed bonded spheres using a 3D CFD model and sim-
plified 2D coupled CFD-DEM approach. Powder Technol. 417, 
118238 (2023)

	69.	 Krzaczek, M., Nitka, M., Tejchman, J.: A novel DEM-based pore-
scale thermal-hydro-mechanical model for fractured non-saturated 
porous materials. Acta Geotech. 18, 2487–2512 (2023)

	70.	 Krzaczek, M., Tejchman, J.: Hydraulic fracturing process in rocks 
– small-scale simulations with a novel fully coupled DEM/CFD-
based thermo-hydro-mechanical approach. Eng. Fract. Mech. 289, 
109424 (2023)

	71.	 Kozicki, J., Donze, F.V.: A new open-source software developer 
for numerical simulations using discrete modeling methods. Com-
put. Methods Appl. Mech. Eng. 197, 4429–4443 (2008)

	72.	 Šmilauer, V. et al.: Yade Documentation 3rd ed. The Yade Project, 
(2021). 10.5281/zenodo.5705394

	73.	 Cundall, P., Strack, O.: A discrete numerical model for granular 
assemblies. Géotechnique 29(1), 47–65 (1997)

	74.	 Cundall, P., Hart, R.: Numerical modelling of discontinua. Eng. 
Comput. 9, 101–113 (1992)

	75.	 Tomporowski, D., Nitka, M., Tejchman, J.: Application of the 3D 
DEM in the modelling of fractures in pre-flawed marble speci-
mens during uniaxial compression. Eng. Fract. Mech. 277, 108978 
(2023)

	76.	 Widulinski, L., Tejchman, J., Kozicki, J., Leśniewska, D.: Dis-
crete simulations of shear zone patterning in sand in earth pres-
sure problems of a retaining wall. Int. J. Solids Struct. 48(7–8), 
1191–1209 (2011)

	77.	 Kozicki, J., Niedostatkiewicz, M., Tejchman, J., Mühlhaus, H.-B.: 
Discrete modelling results of a direct shear test for granular mate-
rials versus FE results. Granular Matter 15(5), 607–627 (2013)

	78.	 Kozicki, J., Tejchman, J., Műhlhaus, H.-B.: Discrete simulations 
of a triaxial compression test for sand by DEM. Int. J. Num. Anal. 
Meth. Geomech. 38, 1923–1952 (2014)

	79.	 Kozicki, J., Tejchman, J.: Relationship between vortex structures 
and shear localization in 3D granular specimens based on com-
bined DEM and Helmholtz-Hodge decomposition. Granular Mat-
ter 20, 48 (2018)

	80.	 Suchorzewski, J., Tejchman, J., Nitka, M., Bobinski, J.: Meso-
scale analyses of size effect in brittle materials using DEM. Gran-
ular Matter 21(9), 1–19 (2019)

	81.	 Nitka, M., Tejchman, J.: Meso-mechanical modelling of damage 
in concrete using discrete element method with porous ITZs of 
defined width around aggregates. Eng. Fract. Mech. 231, 107029 
(2020)

	82.	 Reynolds, O.: An experimental investigation of the circumstances 
which determine whether the motion of water shall be direct or 
sinuous, and of the law of resistances in parallel channels. Phil. 
Trans. Roy. Soc London 174, 935–982 (1883)

	83.	 Batchelor, G.: An Introduction to Fluid Dynamics. Cambridge 
University Press, Cambridge (2000)

	84.	 Tejchman, J., Bobinski, J.: Continous and discountinous model-
ling of fracture in concrete using FEM. Springer-Verlag, Berlin 
Heidelberg (2013)

	85.	 Hökmark, H., Lönnqvist, M., Fälth, B.: Technical Report TR-10–
23: THM-issues in repository rock–thermal, mechanical, thermo-
mechanical and hydro-mechanical evolution of the rock at the 
Forsmark and Laxemar sites. SKB–Swedish Nuclear Fuel and 
Waste Management Co., 210; pp.26–27 (2010)

	86.	 Barmak, I., Gelfgat, A., Vitoshkin, H., Ullmann, A., Brauner, N.: 
Stability of stratified two-phase flows in horizontal channels. AIP 
Phys. Fluids 28, 044101 (2016)



	 M. Krzaczek et al.38  Page 22 of 22

	87.	 Mathias, P.M., Naheiri, M., Oh, E.M.: A Density Correction for 
the Peng-Robinson Equation of State. In: Fluid Phase Equilibria, 
pp. 77–87. Elsevier Science Publishers B.V., Amsterdam (1989)

	88.	 Peneloux, A., Rauzy, E., Freze, R.: A Consistent Correction for 
Redlich-Kwong-Soave Volumes. Fluid Phase Equilib. 8, 7–23 
(1982)

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.


	Effect of free water on the quasi-static compression behavior of partially-saturated concrete with a fully coupled DEMCFD approach
	Abstract
	1 Introduction
	2 Two-dimensional DEMCFD-based model
	2.1 DEM for cohesive-frictional materials
	2.2 Fluid flow model

	3 Input data for 2D DEMCFD simulations
	4 Pure DEM simulation results
	5 DEMCFD simulation results
	5.1 Mechanical results for wet specimens
	5.2 Fluid flow results for fully saturated specimen
	5.3 Effect of viscosity

	6 Summary and conclusions
	Appendix A
	Appendix B
	Acknowledgements 
	References




