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Abstract
A theoretical study on the hydraulic conductivity of fully saturated anisotropic granular materials for a 2D fluid flow has been 
made by making use of the microstructure tensor as the anisotropy descriptor. The assemblage of particles was assumed to 
be the representative elementary volume of materials with void spaces as a multiply-connected continuum through which 
a Stokesian flow can pass. The Navier–Stokes equations have been then solved to find the mean velocity vector under dif-
ferent pressure boundary conditions. A tensorial form of the hydraulic conductivity with constants being functions of the 
invariants of the microstructure tensor, as the geometric measure of the anisotropy, has been presented based on a number 
of realizations for different GSD curves. Verifications with available experimental data exhibit a reasonable accuracy of the 
suggested equation.

Keywords Anisotropy · Fluid flow · Granular materials · Hydraulic conductivity · Microstructure tensor · Navier–Stokes 
equations · Porosity

1 Introduction

The hydraulic conductivity of porous media, as a very chal-
lenging problem, finds its roots in historical work of Darcy 
[10] with applications in many disciplines [6, 12, 29]. After-
wards, a variety of methods were developed to study the 
hydraulic conductivity in granular porous media, mainly 
for isotropic materials; among which are the empirical 
works of Hazen [19] and Slichter [52]. Later, Kozeny [27] 
and Carman [3] followed by Saffman [51] further devel-
oped the issue and suggested more elaborative equations 
for the hydraulic conductivity involving some factors such 
as the dynamic viscosity, void ratio, specific surface area, 
unit weight of the permeant or the tortuosity. Unfortunately, 
measurements on some of factors like the specific surface 
area, the Kozeny-Carman empirical coefficients or the 

tortuosity are often very difficult or inaccurate. Afterwards, 
simpler equations were suggested with less complications 
[5, 15, 26, 31]. The study on the hydraulic conductivity is 
still an open topic in recent years [13, 21, 47, 50, 54]. A 
bibliography on this topic is presented in Supplement A. 
Among many, the volumetric porosity (or the void ratio) 
and the effective grain size have been employed in almost 
all equations whereas the fluid viscosity, the density and the 
tortuosity have been found to be less widely used.

Despite the importance, very little attempt has been made 
to develop an equation for the hydraulic conductivity of 
anisotropic soils. Of course, some few experimental studies 
have been conducted to measure the hydraulic conductivity 
along different directions (e.g. [46]. It is worth noting that 
the hydraulic conductivity is a tensorial measure [33, 56] 
and hence, it must be expressed as a tensor quantity. Con-
sidering the anisotropic nature of many geomaterials, esti-
mation of this tensor is highly important while challenging.

As the relative position of grains controls the charac-
teristics of a granular medium, different assemblages of 
particles, corresponding to a fixed Grain Size Distribution 
(GSD) curve, lead to different hydraulic conductivities. For 
a class of clean, granular soils with fairly round particles and 
very little amount of fine grains, the geometry of the pore 
space, i.e. its spatial and directional distributions, adequately 
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defines its hydraulic conductivity. A geometric measure can 
characterize the role of scattering of pore spaces. Here, a 
practical measure of anisotropy is employed for the medium, 
called the microstructure tensor, based on the directional 
porosity of materials, with wide applications in the mechan-
ics of porous materials [22, 30, 34, 35, 43–45]. It was first 
introduced by Pietruszczak and Krucinski [41, 42] follow-
ing Kanatani [24], with a technique to measure the density 
of pores.

In this research, a rational study on the hydraulic conduc-
tivity of inherently anisotropic granular materials has been 
made with assumption that the flow does not further affect 
the structure of the medium. To do so, a synthetic database 
of the hydraulic conductivity of a series of anisotropic soils 
have been developed by solving the Navier–Stokes equa-
tions in different assemblages of particles. The flow has been 
assumed to be two-dimensional which is very common in 
geotechnical engineering (e.g. in earth dams, groundwater 
flow, etc., where the flow is more or less the same in paral-
lel planes.) Therefore, the anisotropy can be envisioned as 
the transversal isotropy. To study the hydraulic conductivity 
of an anisotropic medium, a number of different particle 
arrangements have been developed for certain GSD curves. 
Every arrangement is used to constitute a Representative 
Elementary Volume (REV) of the soil matrix with a number 
of randomly distributed grains for a fixed GSD curve and 
porosity but different measures of anisotropy. The volume 
averaging technique is applied to study the mean velocity 
in the fully saturated REV [16, 18, 56] in order to make 
a database for the velocity vector. Finally, these velocity 
vectors were related to the hydraulic gradients through a 
rational tensorial relationship for the hydraulic conductiv-
ity. The procedure was compared with analytical solutions 
and also with some experimental test results available in the 
literature. The final form of the suggested equation for the 
hydraulic conductivity was found to be simple and physi-
cally consistent with expectations.

In summary, available equations for the hydraulic con-
ductivity are often based on complex quantities like the 
shape factor, tortuosity, etc. and their estimates for a spe-
cific soil show a very wide range. In addition, while most 
soils are anisotropic by nature, very limited experimental 
data is available for such soils with no equation, known to 
the authors, for their hydraulic conductivity. More to the 
point, the common approach for the hydraulic conductivity 
of anisotropic materials is inadmissible when it is exam-
ined against principles of continuum mechanics and ten-
sor analysis. The novelty of this paper can be in several 
aspects: (1) addressing some shortcomings in the com-
mon approach for the hydraulic conductivity of anisotropic 
materials and development of a proof on the inadmissibility 
of the common equation for the hydraulic conductivity of 
anisotropic materials, (2) development of a synthetic and 

verified database of the hydraulic conductivity of anisotropic 
materials for a series of GSD curves, (3) development and 
suggestion of a simple rational equation for the hydraulic 
conductivity of anisotropic materials in tensorial form, based 
on only a geometric measure of anisotropy. The hydraulic 
conductivity, presented in terms of a second order tensor, is 
reduced to its formal scalar measure upon assuming isotropy.

2  Theory of two‑dimensional fluid flow 
and governing equations

The potential flow and the Stokesian flow are two common 
types of flow in soil mechanics. The potential flow governs 
an irrotational (or curl free) incompressible flow and the 
Stokes’ flow governs the fluid flow with relatively low Reyn-
olds Number, Re ≪ 1 [17].

The potential flow leads to the well-known Laplace 
equation:

If the fluid is incompressible (like the water flow in soil), 
the equations of the steady-state Stokesian flow will be 
obtained as follows:

In these equations, � = �∕� is the kinematic viscosity, � is 
the dynamic viscosity constant, � is the mass density of the 
fluid, v is the velocity, � is some fluid potential function, i is 
the hydraulic gradient, k is the coefficient of hydraulic con-
ductivity (here, in the particular case of an isotropic body, is 
a scalar), Re = �vL∕� is the Reynolds Number (with L being 
some characteristic length), b is the body force and ∇ is the 
gradient (or del) operator.

The finite element technique is often employed to numeri-
cally solve these equations [48, 57] with a summary of equa-
tions in the supplements of this paper.

3  Outline of the problem and basic 
assumptions

Characteristics of a porous medium are mainly governed by 
the relative position of the grains. For instance, a variety of 
assemblages of particles can be imagined using a particular 
GSD. Therefore, many characteristics of the medium such 
as the hydraulic conductivity, can be attributed to the GSD 
as well as the particles arrangement. In this research, we 
formally assume that the soil matrix is composed of clean 
granular materials with very small fine contents and with 
fairly round particles. For such materials, the effect of fine 

(1)divv = ∇ ⋅ v = ∇ ⋅ (∇�) = ∇2� = 0, v = ∇� = −ki

(2)−
1

�
∇p + b + �∇2

v = 0
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fraction and particles shape on the formation of the flow 
are insignificant. A rational tensorial relationship between 
the microstructure tensor and the hydraulic conductivity is 
sought. In absence of sufficient experimental data, numeri-
cal simulations were performed on soils with different GSD 
curves to replace the tedious laboratory sample preparations 
and several experiments for various flow directions.

Different soil matrices for a particular GSD curve were 
generated for this purpose, ranging from a nearly isotropic 
to highly anisotropic which are called realizations. These 
matrices, possess the same number of soil grains and volu-
metric (or bulk) porosity but different geometric measures 
of anisotropy. This geometric measure is the microstructure 
tensor, based on the directional porosity.

To measure the local phenomenon of the hydraulic con-
ductivity by the global phenomenon of the fluid flow, an 
REV was used to define what is known as a so called mate-
rial point when working in two scales. Noting that the meas-
urement and scale are closely related [9], for a worthwhile 
achievement, there is a tradeoff between the size of the REV 
and the required computational effort with adequate accu-
racy. By an analogy to the concept of the Knudsen Num-
ber, which should be reasonably below 0.1 for a continuum 
theory or, more precisely, for a slip flow and validity of the 
Navier–Stokes equations [14], the relative size of the mean 
grain size, D50 , to the size of the REV was limited to 0.05.

Realizations of soil matrices were made in a two-dimen-
sional domain (2D REV), partly for the sake of simplicity 
and partly due to the importance of two dimensional fluid 
flow in geotechnical engineering. To justify the two-dimen-
sional studies, the concept of the 2D (area or areal) porosity 
was employed, i.e. the 3D volumetric porosity was trans-
formed into two dimensions. In general, the two-dimensional 
(area) porosity is higher than the three-dimensional (volu-
metric) porosity for a certain soil matrix of some fixed bulk 
porosity.

For a clear insight, in Fig. 1a, b a three-dimensional 
assemblage of particles is presented for which, a two-dimen-
sional section is shown with obviously higher void spaces in 
the plane. Figure 1c illustrates a schematic view of the prob-
lem domain with typical prescribed boundary conditions. 
Figure 1d presents the cross-sections of two closely-spaced 
parallel planes passing through a relatively dense pack of 
grains in which, a 2D flow can form. The boundary condi-
tions consist of prescribed pressure (or potential) in order 
to maintain a steady flow under a unit hydraulic gradient. 
The finite element mesh is generated to cover the entire void 
spaces and to find a numerical solution for the velocity field. 
The velocity vector of the REV, is taken as the mean veloc-
ity along the left and right (for the Cartesian component vx ) 
as well as the top and bottom (for the Cartesian component, 
vy ) boundaries.

Particles assemblages were generated primarily based 
on a random process. To do so, one may note that a synthe-
sized assemblage of particles comprises grains of limited 
sizes as the number of grains and their diameters in a real 
sample are practically infinitely many. A nearly uniformly 
graded sand with round particles, can be reasonably rep-
resented by a number of 4 to 6 different grain diameters, 
sampled in equivalent distances along the diameter axis 
on a GSD curve, with the proportion of the mass in the 
sample. Thus, the number of each grain size to reproduce 
an REV of a fixed porosity with limited grain sizes, can 
be precisely determined by the mass percentage and the 
porosity of the sample. For example, if the area porosity 
is 0.64 (equivalent to bulk porosity of 0.5), a sample of 
three grains of 1 mm, 2 mm and 4 mm would be made up 
of 6, 3 and 2 grains (or any multiple of them), respectively.

In this research, a series of practical constraints as well 
as numerical ones were considered to develop the REVs 
and the finite element mesh, i.e. (1) grains are nearly 
rounded, which means they are either circular or ellipti-
cal with the ratio of longer to shorter diameter not greater 
than 1.5, (2) particles shall not be in contact in the plane 
of analysis, to enable a free flow formed throughout the 
REV, (3) distributions are nearly uniform, i.e. small grains 
are located between large grains, (4) required directional 
porosity ranges from isotropic to anisotropic materials by 
inspection of the rose diagram of the directional porosity 
(nearly circular for isotropic materials while elliptical for 
anisotropic ones), and (5) the space between two particles 
must be covered by not less than 2 finite elements (practi-
cally, at least by 4 to 6 elements).

While the fourth constraint itself is necessary but the 
relative orientation of the obtained ellipse (rose diagram) 
is immaterial as it will be expressed in a tensorial form. 
The last constraint is a problem in mesh generation and 
does not directly involve the relative location of particles; 
however, slight change in the location of particles or jig-
gling of the mesh often provide a very good space for an 
efficient mesh generation. This is required to avoid lock-
ing of flow in triangular elements. This happens when all 
nodal points of an elements are located on solid grains and 
hence, possess no velocity meaning that the flow cannot 
pass through that element (or that region). A variety of 
different realizations (or different REVs for a fixed mate-
rial) were generated by randomly changing the location 
and/or slightly changing the orientation of particles, also 
by rotating a previously generated REV by ±90 or 180 
degrees. This is important to remind that each realization 
may also define the character of the material in one of 
parallel planes for a 2D analysis.



 M. Veiskarami et al.

1 3

66 Page 4 of 19

4  A note on the tensorial form 
of the hydraulic conductivity

A rational proof for the Darcy’s law, stating that it must be 
expressed as a tensorial form, was made by Neuman [33] 
and here, we try to extend the concept and relate it to the 
microstructure tensor. A rational relationship between the 
geometric measure of anisotropy and the hydraulic conduc-
tivity may be visualized as the following tensorial form, with 
h being the hydraulic head:

(3)v = −k ⋅ ∇h where k = k(�)

In this equation, � , is a geometric measure of anisotropy. 
Here, this tensorial measure is the fabric tensor (or the micro-
structure tensor), which will be discussed later. This can be 
regarded as a generalization of Darcy’s law with k being the 
hydraulic conductivity tensor with components kij.

Unfortunately, a misleading equation for the hydraulic con-
ductivity in anisotropic porous media has been often used with 
the following form, taking the hydraulic conductivity as a sca-
lar quantity along an arbitrary direction, r [8, 11]:

(4)
1

kr
=

cos2 �

kx
+

sin2 �

ky
, vr = −kr�h∕�r

Fig. 1  a A 3D assemblage of particles, b A 2D assemblage of par-
ticles, c A 2D cross section within which, the fluid flow analysis is 
made and d a pack of relatively dense particles with two hypothetical 

closely-spaced parallel planes showing a schematic view of the 2D 
cross-sections of these planes
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where, � defines the direction along which, the hydraulic 
conductivity is calculated. In this equation, no consideration 
has been made to the partial derivative of h with respect to 
the other orthogonal coordinate or direction, r . In Appen-
dix 1, it is shown that it violates principles of continuum 
mechanics for vector quantities, as the velocity vector is no 
longer transformed like a vector. In other words, vr depends 
on krr as well as krs . One should also note that kr with just 
one index, is meaningless for the 2nd order tensor kij . Thus, 
in general, this equation is wrong and cannot be used for the 
hydraulic conductivity in anisotropic media.

5  The microstructure tensor 
and the geometric measure of anisotropy

As mentioned before, the microstructure tensor and the way 
of its measurement date back to studies of Pietruszczak and 
Krucinski [41, 42] and formerly Oda [36–38]. They consid-
ered a unit sphere in the vicinity of a particle and passing 
hypothetical lines along the diameter of the sphere in different 
directions passing through void spaces and solids along. The 
total length of line segments passing the voids, l , is a measure 
of the directional porosity. In other words, when a trace line 
passes through a series of pores and solid particles, the total 
length of line segments in the voids will be l which is obvi-
ously less than 2R . Their ratio, i.e. L = l∕2R is a measure of 
the directional porosity. Figure 2 represents a schematic layout 
of the unit sphere in the proximity of a material point. The 
directional porosity can be calculated as [40]:

In these equations, f (�, �) serves as a function which 
defines the directions of hypothetical lines to measure the 
porosity in different directions, L(�, �) is the total length of 

(5a)Lav =

2�

∫
0

�

∫
0

L(�, �)f (�, �)d�d�,L(�, �) = l(�, �)∕2R

the pore spaces normalized by the diameter of the sphere, 
2R.

If the lines are uniformly distributed, Eq. (5a) will take 
the following form:

The fabric descriptor n(�, �) or n(m) (which is equivalent 
to the directional porosity along an arbitrary direction, m ,) 
can be calculated as follows [41, 42]:

In these equations n(m) is the directional porosity along 
the unit vector, m , n  is the 2nd order directional porosity 
tensor, n0 is the mean porosity (which differs from the 
volumetric or bulk porosity, n , i.ne. the ratio of the volume 
of voids to the total volume), � is a traceless 2nd order 
tensor (showing the deviation in the directional porosities) 
which vanishes for isotropic materials and � serves as the 
symmetric microstructure tensor. This equation takes the 
following form in two dimensions, i.e. where the porosity 
is in fact the areal (not the volumetric) porosity, n = n2D:

More details can be found in Pietruszczak and Krucin-
ski [41, 42] or Pietruszczak [40]. We use the term volu-
metric (or bulk) porosity, ( n ) to distinguish it from the 
mean porosity ( n0 ) appeared in the microstructure tensor, 
as the mean directional porosity. The latter corresponds to 
the first invariant of the porosity tensor while the former 
corresponds (or equals) to the third invariant of this ten-
sor, i.e. n = det n  . The plane porosity is also approximated 
by n2D = n2∕3 . In addition, the directional porosity (geo-
metric measure) is not the only measure of anisotropy; 
for instance, the distribution of contact points can also be 
another form of the microstructure tensor. Here, we used 
the concept of the directional porosity since it is more 
convenient for the fluid flow problem.

In the present study, directional porosities are measured 
along a number of trace lines emerged from the center of 
the REV and the total length of the line segments passing 
through the void spaces has been calculated for each trace 
line. Once the tensors n  and � , are determined, the fabric 
tensor (or the microstructure tensor) can be found. In a 2D 
analysis, some information on the out of plane form of the 

(5b)Lav =

2�

∫
0

�

∫
0

L(�, �)sin�d�d�

(6a)
n(�, �) = n(m) ≅ n0

(
1 +m

T
�m

)
, n0 = Lav, n

(m) ≅ m.n.m

(6b)

n
def

= 3n0�, n(m) ≅ 3n0m.�.m, � =
1

3
(I +�), n0 =

1

3
trn

(6c)n

def
= 2n0�, n

(m) ≅ 2n0m.�.m, � =
1

2
(I +�), n0 =

1

2
trn

Fig. 2  A 2D section of a soil matrix in a spherical coordinate ( r,�, � ) 
where the angle � is out of x1 − x2 plane and held constant (for a 2D 
problem)
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pores is embodied in the bulk porosity which indirectly 
enters the equation for n  through n = n3D = det n .

Since � is a traceless symmetric tensor, in a 2D 
analysis, it possesses only two independent com-
ponents, for instance, Ω11 and Ω12 . We may define 
� = n�∕n0 − 1 = Ω11cos2� + Ω12sin2� as a normalized 
parameter for the directional porosity. Therefore, by mak-
ing use of a multilinear regression, the best plane passing 
through these points can be determined to calculate Ω11 and 
Ω12 . Thus, the geometric measure of anisotropy in an REV 
can be found by the concept of the microstructure tensor. In 
the next step, the numerical solution of the fluid flow in the 
REV is presented.

6  Numerical analysis and verification 
with analytical solutions

The flow through void spaces of soil matrices is analyzed by 
the numerical finite element solution of the Navier–Stokes’ 
equations. In general, triangular CST elements (cf. Reddy 
1993; Zienkiewicz and Taylor 1996) were used which seem 
to satisfactorily cover the complex problem domain through-
out the soil matrix. The matrix form of equations is provided 
in the supplement. The FE procedure was verified for basic 
requirements such as the partition of unity and modeling of 
a uniform flow. A fine to very fine mesh (wherever required) 
has been applied to achieve a very high accuracy in the 
numerical solution.

Unfortunately, there is no analytical solution for the 
Navier–Stokes’ equations to verify the numerical solution 
technique. Thus, an attempt was made to verify the numeri-
cal procedure for the problem of flow around a circle (or 
cylinder) for which, at least the potential flow theory can 
be applied with an analytical solution available. One should 
note that the flow around a cylinder (even at low veloci-
ties) cannot be exactly modelled and all governing equations 
and solution are only approximates of the actual flow, due 
to boundary layer effects, formation of vortices, etc. The 
analytical solution for this flow is only available for an infi-
nite domain. In spite of it, although the Navier–Stokes’ and 
potential flow equations are fundamentally different, their 
numerical solutions (with similar an almost procedure) are 
expected to be able to properly model the flow around a 
circle. In addition, both numerical solutions should reason-
ably comply with the analytical solution. The analytical 
solution has been provided by the conformal mapping and 
complex analysis in an infinite [complex] plane noting that 
the analytic conformal mapping w = z + 1∕z , transforms a 
unit circle to the entire z plane. This helps find an analytical 

solution for the potential flow and its velocity field around a 
circular region, by the following equations [7]:

In these equations, z and w are complex variables defining 
the coordinates of an arbitrary point in the main problem 
domain and the transformed domain, respectively, v is the 
complex velocity vector and A is a coefficient defining the 
intensity of the flow.

Based on the presented analytical solution, verification 
has been made for a single grain of a circular shape, illus-
trated in Fig. 3. Figure 3a shows the outline of the problem 
and the conformal mapping for the analytical solution. Fig-
ure 3b shows the finite element mesh. In order to accurately 
capture the flow pattern, the domain was taken relatively 
large with a size ratio of 20 times of the grain diameter. 
Figure 3c, d show the numerical solutions for potential flow 
equation and the Navier–Stokes equations, respectively, 
against the analytical solution in terms of the velocity field. 
While the potential theory can very accurately model the 
flow (as expected), the Stokes’ flow shows slight deviations 
due to the fundamental difference between the two govern-
ing equations. In spite of it, the global error is still below 2% 
showing numerical procedure high accuracy. Other exam-
ples and verifications are presented in the supplement, still 
showing high accuracy of the numerical procedure.

Once the solution for a single circular grain was found to 
be reasonably accurate, further verifications were made to find 
an optimum relative number of grains and mesh fineness in 
an REV corresponding to a fixed GSD at a fixed porosity. 
As stated before, the domain size should be large enough to 
reasonably reduce the effects of non-homogeneities at grains 
scale. To do so, an artificial assemblage of particles with three 
different grain sizes and a fixed area porosity of 0.64 was ana-
lyzed. Four to six realizations were made for any of REVs 
depicted in Fig. 4a. Figure 4b shows the hydraulic conductiv-
ity, kx , calculated for any of these realizations with their aver-
age, all normalized by kx corresponding to the largest REV 
with the largest relative number of grains. The plot shows that 
as the domain size grows, the solution becomes more and more 
stable and the results of realizations tend to a converged value. 
Here, we mean by the relative number of grains, the ratio of 
the total number of grains in a pack to those in the smallest 
unit. The smallest unit (with this relative number equal to 1) 
contains 2 grains of the largest size, 3 of the medium size and 
6 of the smallest size. For a constant porosity and only 3 par-
ticle sizes this ratio may involve some slight approximations 

(7)
w = z +

1

z

, v = v
x
+ iv

y
=

(
1 −

1

z
2

)
,

z = conjz, v = A

(
1 −

1

z
2

)
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Fig. 3  a Flow around a circular grain, b relatively fine finite element 
mesh, c numerical and analytical solutions for the potential flow, 
d numerical and analytical solutions for the Stokesian flow of an 
incompressible fluid (analytical and numerical velocity fields are in 

blue and black colors, respectively), e pore water pressure and some 
velocity profiles (analytical solution), f pore water pressure and some 
velocity profiles (potential flow) and g pore water pressure and some 
velocity profiles (Stokes’ flow)
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from an integer number. A relative number of grains of 4 and 
higher, looks reasonable. Figure 4c shows the variation of the 
hydraulic conductivity for three different mesh sizes. It is evi-
dent that a fine mesh has an adequate accuracy, i.e. the solution 
becomes relatively stable and the difference is well below 10% 

with the results for a very fine mesh, which, for the problem 
under study, sounds to be reasonable. Hereafter, we use a fine 
mesh with the maximum element size, nearly 1/5 to 1/3 of the 
smallest grain size.

Fig. 4  a Variety of REVs with different number of grains, b variations of the hydraulic conductivity with the size of the REV and c effect of the 
finite element mesh coarseness on the hydraulic conductivity
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7  Verification with available experimental 
data

The numerical solution of the Stokesian flow to calcu-
late the hydraulic conductivity has been verified against 
some available experimental test results. Attempt has been 
made to recompile only those experiments on sand (prefer-
ably clean sand) with their GSD curves corresponding to 
medium or coarse sands. For fine grained sands, silts and 
clays, the assumption of a Stokes’ fluid flow will fail to 
properly model the flow pattern due to the significance of 
the surface tensions and other factors in fine grained soils. 
Figure 5, shows the GSD curves of collected samples with 
their characteristics presented in Table 1. Except one, all 
samples are clean, almost uniformly graded sands (more 
precisely, with Cu ranging between 1.5 and 3.5), which are 
classified as SP according to the Unified Soil Classification 

System. The legend of these soils (e.g., S2, S10, S11, 
SMPM, etc.) are based on their original names found in the 
corresponding references. Sample SMPM contains a few 
grains of slightly larger than the maximum size, required 
for an REV. Despite, as it was the only anisotropic one we 
found in the literature with required measurements avail-
able and as its calibration complies very reasonably with 
measured data, we included this sample.

A series of assemblages of particles, a minimum of five 
realizations for each case, with a particular GSD curve and a 
constant volumetric porosity, have been reproduced. Attempt 
was made to maintain the isotropy of the assemblage, i.e. it is 
tried to keep the 2D microstructure tensor close to I∕2 where 
I is the isotropic tensor of the second order. This can be visu-
alized by looking at the corresponding rose diagram of each 
realization which should be close to a circle.

Fig. 5  GSD curves for selected 
experimental test results (Data 
from [2, 23, 25, 46]

Table 1  Characteristics of the 
soils used for verifications

*Data recompiled by Jaafar and Likos [23] based onNemes et al. [32]

Soil type Volumetric 
porosity, n

Grain size distribution 
index Properties (mm)

Uniformity 
coefficient 
( C

u
)

Unified clas-
sification system 
(USCS)

References

D10 D30 D50 D60

S2a 0.3809 0.34 0.62 0.98 1.18 3.47 SP Kedir [25]
S8 0.4222 0.17 0.23 0.29 0.34 2.00 SP Kedir [25]
S11 0.4157 0.24 0.34 0.47 0.53 2.21 SP Kedir [25]
S12 0.3884 0.29 0.49 0.76 0.92 3.17 SP Kedir [25]
SMPM 0.2930 0.15 1.00 2.50 4.20 28.0 SW Qiu and Wang [46]
S6 0.3500 0.14 0.20 0.29 0.34 2.42 SP Jaafar and Likos [23]
S10 0.4100 0.17 0.18 0.20 0.21 1.24 SP Jaafar and Likos 

[23]*
S2b 0.3660 0.30 0.51 0.99 1.04 3.47 SP Bouteldja et al. [2]
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Once the Stokesian flow equation had been solved for the 
one-dimensional fluid flow in an isotropic domain, the hydrau-
lic conductivity was calculated as follows:

where vave is the average of the boundary velocities. For 
each case, the minimum, the maximum and the median 
hydraulic conductivities are calculated. Table 2 typically 

(8)k =
vave

i

shows some results for simulation of the experiments by 
Kedir [25] on  S2a sample. The finite element simulation, 
rose diagram for the variation of the normalized directional 
porosity parameter, � = n�∕n0 − 1 , velocity field and pres-
sure field for some realizations are illustrated in Fig. 6. As 
stated earlier, all cases were analyzed under a constant, unit 
hydraulic gradient.

Table 3 shows a summary of the results for all simu-
lations. In this table, a comparison with other empirical 

Table 2  Comparison between the predicted and measured hydraulic conductivities of the samples of sand (experiment and report by [25]

*NA not available

Sand type Porosity, n Density index,I
D

Grain size distribution index 
Properties (mm)

Measured hydraulic con-
ductivity, k(m∕s)

Predicted hydraulic conductivity, 
k(m∕s)

D10 D30 D50 D60 k
min

k
max

k
ave

k
min

k
max

k
ave

S2a 0.3809 NA 0.34 0.62 0.98 1.18 NA NA 3.5 × 10
−4

3.4 × 10
−4

4.2 × 10
−4

3.9 × 10
−4

Fig. 6  Stokesian flow for various arrangements of particles and FE 
mesh for a constant porosity and GSD curve for Sample S2a: a FE 
mesh for various arrangements of particles, b rose diagram c varia-

tions of the parameter � = n
�∕n0 − 1 with direction d velocity field e 

pressure field (data from [25]
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equations for the hydraulic conductivity has been made 
including the equations of Hazen [19], Slichter [52], 
Kozeny-Carman [4], USBR [55], Alyamani [1], Breyer [28] 
and Terzaghi [39]. According to this table, in most cases 
the hydraulic conductivity, calculated in this study, is close 
to the one proposed by Slichter [52] and in some cases it 
is close to that of Terzaghi [39] and USBR. Other equa-
tions exhibit less accuracy in prediction of the hydraulic 
conductivity. 

Comparisons against measured data demonstrated a rea-
sonable accuracy for the numerical simulations. The overall 
precision for all cases is fairly within ±30% which looks 
fine for the complicated problem of the fluid flow in porous 
media. In the following, anisotropic particle assemblies are 
produced to study their hydraulic conductivity. The degree 
of anisotropy in synthetic samples were controlled by look-
ing at the rose diagram of the directional porosity at the end 
of each realization and a try-and-error procedure to achieve 
required degree of anisotropy.

It is important to note that the 1D flow does not mean a 
1D analysis. In grain scale, a locally very complex 2D flow 
occurs in the REV which is macroscopically visualized as 
one-dimensional. Although no direct measurements on 2D 
flow has been made (at least not known to the authors) which 
may require elaborative experimental equipment, indirect veri-
fications were made to show the capability of the proposed 
method, in particular, for 2D flow in anisotropic soils. Some, 
laboratory measurements along the maximum and minimum 
conductivities are available. This means that samples are tested 
along principal axes, i.e. the directional porosity, the micro-
structure and the hydraulic conductivity tensors are all diago-
nal, expressed in terms of their principal values.

The model was first calibrated along one direction only 
by changing the directional porosities in order to achieve 
an assemblage of particles with a consistent directional 
porosity (and the hydraulic conductivity) along the flow. 
The other value can be found by requiring the bulk poros-
ity to be a fixed value and knowing that the 2D bulk poros-
ity, n2D

(
≅ n2∕3

)
 , is the determinant of the directional 

Table 3  Comparison of the predicted, measured and empirical values of the one-dimensional hydraulic conductivity, k(m∕s), for different sands

* NA not available
(1) Hazen [19] (2) Slichter [52] (3) Kozeny-Carman [4] (4) USBR [55] (5) Alyamani [1] (6) Breyer [28] (7) Terzaghi [39]

Sand type Porosity,n Measured Predicted (1) (2) (3) (4) (5) (6) (7)

S2a 0.3809 3.5 × 10
−4

3.9 × 10
−4

1.3 × 10
−3

4.1 × 10
−4

1.4 × 10
−3

7.6 × 10
−4

1.1 × 10
−4

1.2 × 10
−3

5.1 × 10
−4

S8 0.4222 2.2 × 10
−4

2.8 × 10
−4

4.1 × 10
−4

1.5 × 10
−4

4.9 × 10
−4

2.0 × 10
−4

3.0 × 10
−5

3.7 × 10
−4

1.8 × 10
−4

S11 0.4157 2.7 × 10
−4

2.9 × 10
−4

7.5 × 10
−4

2.7 × 10
−4

8.6 × 10
−4

3.4 × 10
−4

4.0 × 10
−4

6.9 × 10
−4

3.3 × 10
−4

S12 0.3884 3.1 × 10
−4

3.0 × 10
−4

9.8 × 10
−4

3.2 × 10
−4

1.1 × 10
−3

4.2 × 10
−4

7.0 × 10
−5

9.1 × 10
−4

4.0 × 10
−4

SMPM 0.2930 4.1 × 10
−4

4.1 × 10
−4

5.0 × 10
−4

4.6 × 10
−4

4.3 × 10
−4 NA NA NA 4.2 × 10

−4

S6 0.3500 1.9 × 10
−4

2.7 × 10
−4

2.1 × 10
−4

6.0 × 10
−5

1.5 × 10
−4

3.4 × 10
−4

1.8 × 10
−4

2.2 × 10
−4

1.0 × 10
−4

S10 0.4100 1.5 × 10
−4

1.2 × 10
−4

4.1 × 10
−4

1.5 × 10
−4

4.5 × 10
−4

8.0 × 10
−4

3.9 × 10
−4

4.3 × 10
−4

2.6 × 10
−4

S2b 0.3660 9.1 × 10
−4

1.3 × 10
−3 NA NA NA NA NA NA NA

Table 4  Two-dimensional analysis and verification for an anisotropic soil, SMPM (data from [46]

*NA not available

Flow 
direction
(◦)

Bulk porosity,n Dry unit 
weight, �

d

(kN∕m3)

Measured values
k
h
andk

v
(m∕s)

Calibrated values
k
h
(m∕s) and 2D principal directional 

porosities, n
h
 and n

v

Predicted values
k
v
(m∕s)

k
h

k
v

k
h

n
h

n
v

k
h

k
v

0 0.2930 19.0 4.07 × 10
−4

2.26 × 10
−4

4.10 × 10
−4 0.7719 0.5730 – 2.1 × 10

−4

10 0.2930 – – – 4.00 × 10
−4

1.90 × 10
−4

20 0.2930 – – – 3.80 × 10
−4

2.00 × 10
−4

30 0.2930 – – – 3.60 × 10
−4

2.50 × 10
−4

0 0.3300 18.0 6.68 × 10
−4

3.55 × 10
−4

6.10 × 10
−4 0.8067 0.5902 – 3.70 × 10

−4

10 0.3300 – – – 6.90 × 10
−4

3.20 × 10
−4

20 0.3300 – – – 6.60 × 10
−4

3.50 × 10
−4

30 0.3300 – – – 6.10 × 10
−4

3.80 × 10
−4
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porosity tensor ( n2D = det n = nhnv , where nh and nv are 
principal horizontal and vertical directional porosities). 
Therefore, a calibrated REV was found. In the next step, 
hydraulic gradients along different directions (say at 10◦ , 
20◦ and 30◦ with respect to horizon) were introduced and 
the hydraulic conductivities were determined. Finally, the 
obtained hydraulic conductivity for the other principal 
direction and the mean value, (as a part of the hydraulic 
conductivity tensor), were then compared with the meas-
ured data.

Fortunately, for the sample SMPM, measurements are 
made for different porosities. We presented the results 
for two samples with n = 0.293 and n = 0.330 in Table 4 
and Fig. 7. In this table, calibrated values correspond to 
one-dimensional (horizontal) flow. Once calibrations had 
been made, predicted values were obtained for arbitrary 
two-dimensional flow analyses. Results indicated that the 
numerical simulations are in reasonable agreement with 
experimental data.

8  Rational equation for the hydraulic 
conductivity of anisotropic soils

In this section, results of the numerical study on the hydrau-
lic conductivity of anisotropic materials are presented. For 
this purpose, a number of realizations have been performed 
for each particular GSD curve with a fixed volumetric poros-
ity but different degrees of anisotropy. The flow velocity 
under different hydraulic gradients of unit magnitude 
( ‖i‖ = 1 ) inclined at angles � = 0, 10◦, 20◦, 30◦, 40◦ and 90◦ 
are calculated.

Fig. 7  Calibrated assemblage of particles for the experimental data of 
Qiu and Wang [46]

Fig. 8  a FE mesh for various arrangements of particles, b Rose diagram, c Variations of the parameter � = n
�∕n0 − 1 with direction d velocity 

field for � = 0 , � = 30◦ e pressure field for � = 0 , � = 30◦
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Figure 8, demonstrates typical results for five different 
soil types, with a random assemblage of particles, under 
two different hydraulic gradients, i.e. with � = 0 and 30◦ . 
In this figure, the finite element mesh, the rose diagram 
and the distribution of the directional porosity, variations 
of the normalized parameter � = n�∕n0 − 1 with direction, 
the velocity field and the pressure field, both corresponding 
to two different gradients, are presented. By conducting a 
number of analyses for a variety of microstructure tensors 
and hydraulic gradients for each soil type (with a fixed GSD 
curve and volumetric porosity), a database of the velocity 
vector versus the microstructure tensor is obtained which is 
a synthetic database for the rest of this work.

In the following, a rational relationship between the 
hydraulic conductivity and the microstructure tensor is 
investigated. It was stated that the hydraulic conductiv-
ity should be expressed as a  2nd order tensor, denoted by 
k which is assumed to be a function of � . For the materials 
under study, i.e. clean medium to coarse sands with fairly 
round particles, such a dependence seems logical.

Some restrictions on the general form of this rational 
equation are originated from the representation theorem 
[49, 53] and the Cayley-Hamilton theorem [20]. Based on 
the representation theorem, the most general 3D form of a 
rational equation relating k to � is as follows:

The general relationship is presented in terms of �M where 
M is a positive integer. Constants �, � and � are to be deter-
mined by the synthetic database. As required by the princi-
ple of objectivity and also the representation theorem, these 
constants must be functions of invariants of �M . In addition, 
as required by the Cayley–Hamilton theorem, higher pow-
ers of �M are unnecessary. It is worth noting that since no 
analytical solution is available, no exact relationship can be 
found between k and � ; in other words, constants, as func-
tions of invariants of �M , can be taken arbitrarily. In addi-
tion, this equation should account for the isotropic condition 
if � reduces to a factor of I . Therefore, the first term can be 
dropped. Now, partly for the sake of convenience and partly 
by inspection of different equations, by taking M = 2 , the fol-
lowing simple linear relationship between k and �2 can be 
considered:

One may note that � is a function of invariants of �2 (or 
equivalently, n2 ) and not � (or n  ). Since the functional depend-
ence of � and invariants of �2 is quite general, it is very dif-
ficult to directly find such a relationship. Therefore, we first 
assumed a rational equation for � in terms of invariants of �2 
and tried to calibrate this equation to the observed numeri-
cal data. To do so, knowing that v = ��2

i , the results of a 

(9)k = �I + ��M + ��2M

(10)k = ��2

series of analyses for a series of realizations under different 
hydraulic gradients of unit intensity ( ‖i‖ = 1 ) were inspected 
based on the database presented in previous section. In each 
case, the hydraulic gradient vector, i , the microstructure ten-
sor, � , and the velocity vector, v , are known. Then, by intro-
ducing an equation for � in terms of invariants of �2 (or n2 ), 
this equation has been calibrated to attain a minimum error 
among all numerical simulations and predictions by the equa-
tion, v = ��2

i . This is done by assuming that for a particu-
lar assemblage of particles, a total number of m different unit 
hydraulic gradient vectors (at different angles) were introduced 
to the REV and velocities were numerically calculated.

Let us suppose that there are m simulations for m different 
unit hydraulic gradients in a particular anisotropic assem-
blage of particles. The velocities in each simulated REV 
can be found by the relation between k and �2 as follows, 
in two dimensions:

In this equation, v(j)
1

 and v(j)
2

 are components of the velocity 
vector and i(j)

1
 and i(j)

2
 are components of the unit hydraulic 

gradient vector, in the jth simulation for a particular ani-
sotropic assemblage of particles ( j = 1, 2,… ,ms ). In each 
assemblage, a total number of 2ms equations for only one 
unknown, � , can be constituted. For this system of equation, 
the total error among all observations and predictions by the 
equation, for a particular anisotropic REV can be defined as:

where v(r)
i

 ’s are calculated velocities by the FE simulations, 
ṽ
(r)

i
 ’s are those obtained by the hypothetical equation for � , 

s is an indicator for that particular assemblage and i = 1, 2.
The total error can be calculated for all anisotropic soil 

matrices under different hydraulic gradients, i.e. for all sim-
ulations, to attain the global minimum error. One should 
note that a particular form for � has been assumed a priori. 
Thus, a variety of different equations for � can be exam-
ined to attain the best agreement and the minimum error. 
In addition to the arbitrary form of such equations and their 
expression in rational form (i.e. in terms of invariants of �2 

(11)

�
v
(1)

1
= �g11i

(1)

1
+ �g12i

(1)

2

v
(1)

2
= �g21i

(1)

1
+ �g22i

(1)

2

,…

�
v
(j)

1
= �g11i

(j)

1
+ �g12i

(j)

2

v
(j)

2
= �g21i

(j)

1
+ �g22i

(j)

2

,…

⎧⎪⎨⎪⎩

v
(ms)
1

= �g11i
(ms)
1

+ �g12i
(ms)
2

v
(ms)
2

= �g21i
(ms)
1

+ �g22i
(ms)
2

, where g
ij
≜ �

im
�

mj

(12)E(s) =

m∑
r=1

(
v
(r)

1
− ṽ

(r)

1

)2

+
(
v
(r)

2
− ṽ

(r)

2

)2

‖‖ṽ(r)‖‖2
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or equivalently, n2 ) this hypothetical form must satisfy the 
following restrictions and conditions. These conditions are 
partly physical and partly rational (or mathematical):

1. This equation should be expressed in terms of some 
power of n0 , mathematically, it must be a homogeneous 
function of n0 . This allows the representation of � to be 
converted from �2 to n2 and vice versa, by a constant 
factor.

2. The relationship should be exactly reducible to the iso-
tropic condition, i.e. by tending � to I∕2 this equation 
must be asymptotically approach to the one for isotropic 
materials. Although this restriction is perhaps not man-
datory, it provides a quite general equation.

3. The equation must be physically meaningful and inter-
pretable; for instance, increase in the mean porosity 
must increase the hydraulic conductivity.

By imposing these conditions and constraints and seek-
ing for a simple and applicable form, after examining a 
variety of different equations, the final form of the equa-
tion for � has been found as follows, which meets all these 
conditions:

(13a)
� ≅

1√
2

f

�
I1I2, J2

�
,
k

k0

= ��2
, I1, I2, J2

Invariants of �2 (in 2 dimensions)

(13b)f
�
I1I2, J2

�
=
√
I1

⎛⎜⎜⎜⎝

���J2�� + I1

I2

⎞⎟⎟⎟⎠
, k0 = �n0(m∕s)

An estimate of the factor � is 4
√
2 × 10−4(m∕s) for the 

simulated data. It can be verified that by letting � approach 
I∕2 (i.e. J2 → 0 ) the factor � tends to 4 (or k∕k0 → I ) 
which is required by this equation to be reducible to the 
one for isotropic materials. In addition, this equation is 
easily expressible in terms of n2 . Note that J2 is not inde-
pendent in 2D flows, but this form was found to be simpler 
and more general.

Figure 9a shows variations of the factor � obtained numeri-
cally versus the function f

(
I1I2, J2

)
 to achieve a linear rela-

tionship between � and f
(
I1I2, J2

)
 . In these simulations, about 

75% of the measured data were used for model calibration 
(with a correlation factor of R2 close to 0.84) while the rest 
were kept for verification. Results indicate that this equation 
complies reasonably with calculated data. One may note that 
the minimum value of f

(
I1I2, J2

)
 , corresponding to isotropic 

condition, is equal to 4 . To further evaluate the ability of this 
rational equation in prediction of the hydraulic conductivity, 
components of the hydraulic conductivity tensors obtained by 
the finite element simulations in anisotropic assemblages of 
particles were compared with those predicted by the suggested 
equation. Results for different samples are plotted in Fig. 9b. 
All three components of k11, k22 and k12 = k21 , normalized by 
k0 , are plotted. Predictions made by the developed equation 
show a fairly good agreement with calculated data, consider-
ing difficulties in accurate measurement or calculation of the 
hydraulic conductivity in granular media.

This equation has been developed based on the database 
recompiled from anisotropic soils simulations. To increase 

(13c)
I1 = tr�2, I2 = det�2, J2 = det

(
�2 −

1

2
I1I

)
= I2 − I2

1
∕4

Fig. 9  a variations of the factor α with the function f (I1I2, J2) =
√
I1(

√�J2�+I1
I2

) to achieve a linear relationship and b predicted and simulated 
hydraulic conductivities by the developed equation and numerical simulations
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the accuracy of the constant � , accounting for isotropic 
condition, a series of measured data on one-dimensional 
fluid flow in some sands are presented in Table 5 (including 
previous data plus some few more, i.e. S1n through S5n). 
This factor can be slightly modified to allow this equation to 
cover the range of data for the isotropic condition. Exact val-
ues of � fitted to experimental data, denoted by �exact , is also 
presented. According to the range of �exact , we would suggest 
� ≅ (2.0 ∼ 5.0)

√
2 × 10−4(m∕s) to achieve better estimates. 

Unfortunately, the isotropy of the set of data reported in 
this table are not clarified and cannot be guaranteed; they 
are just 1D measurements on laboratory samples. In addi-
tion, in some cases the hydraulic gradient under which the 
test has been conducted is not known. Therefore, one may 
use other equations for the isotropic condition instead of 
the one we presented here for numerically simulated sam-
ples. Finally, Table 6, shows some measures of estimated 
errors in the entire range of data. Considering difficulties 

in an appropriate estimate of the coefficient of permeabil-
ity and discrepancies in experimental data or simulations, 
error measures seem to be reasonable for practical purposes. 
Higher accuracy may be obtained by including other factors 
at the cost of more complex analyses.

9  A note on significance and use

The proposed rational equation has been obtained based on 
a series of numerical simulations on a number of clean, uni-
formly graded medium to coarse sands. While the existing 
empirical equations often suffer from difficulties in finding 
quantities such as the tortuosity, threshold pore size, diam-
eter of effective flow channel, etc., this rather simple equa-
tion requires only prescription of the geometric measure of 
anisotropy, � (also n  or � ). There are some practical indirect 
ways to estimate the microstructure tensor, � , beside direct 
measurements (such as X-ray photography). For instance, by 
assuming the validity of the suggested equation and knowing 
the direction of the sedimentation plane, only one hydrau-
lic conductivity test can be conducted to find this tensor as 
the coincidence of the principal directions of k , n  and n2 in 
addition to the relationship between n and n  , leave a system 
of two equations into two unknowns. For cases where there 
is no information about the sedimentation planes, a set of 
two tests along two arbitrary directions is required (together 

Table 5  Comparisons with some available experimental data for one-dimensional flow or isotropic samples

*For these samples D20 was reported instead ofD30

**By taking k0 ≅ �n0

***Data recompiled by Jaafar and Lokos [23]

Sand type Soil properties k in one dimension �exact(
×104

) References

Volumetric 
porosity, n

D10 D30 D50 D60 C
u

Measured Predicted**

S2a 0.3809 0.34 0.62 0.98 1.18 3.5 3.5 × 10
−4

4.1 × 10
−4

3.4
√
2 Kedir [25]

S8 0.4222 0.17 0.23 0.29 0.34 2.0 2.2 × 10
−4

4.2 × 10
−4

2.1
√
2 Kedir [25]

S11 0.4157 0.24 0.34 0.47 0.53 2.2 2.7 × 10
−4

4.2 × 10
−4

2.6
√
2 Kedir [25]

S12 0.3884 0.29 0.49 0.76 0.92 3.2 3.1 × 10
−4

4.1 × 10
−4

3.1
√
2 Kedir [25]

SMPM 0.2930 0.15 1.00 2.50 4.20 28.0 4.1 × 10
−4

3.8 × 10
−4

4.5
√
2 Qiu and Wang [46]

S6 0.3500 0.14 0.20 0.29 0.34 2.4 1.9 × 10
−4

3.9 × 10
−4

1.9
√
2 Jaafar and Likos [23]

S10 0.4100 0.17 0.18 0.20 0.21 1.2 1.5 × 10
−4

4.2 × 10
−4

1.4
√
2 Nemes et al. [32]***

S2b 0.3660 0.30 0.51 0.99 1.04 3.5 9.1 × 10
−4

4.1 × 10
−4

9.0
√
2 Bouteldja et al. [2]

S1n 0.4400 0.26* 0.28 0.35 0.37 1.4 5.4 × 10
−4

4.3 × 10
−4

5.0
√
2 Nemes et al. [32]***

S2n 0.3500 0.14* 0.12 0.29 0.34 2.5 1.9 × 10
−4

3.8 × 10
−4

1.9
√
2 Nemes et al. [32]***

S3n 0.3000 0.15* 0.17 0.22 0.23 1.5 1.1 × 10
−4

3.7 × 10
−4

1.2
√
2 Nemes et al. [32]***

S4n 0.4100 0.11* 0.11 0.16 0.18 1.7 4.0 × 10
−4

4.2 × 10
−4

3.8
√
2 Nemes et al. [32]***

S5n 0.4100 0.11* 0.16 0.22 0.23 2.1 3.9 × 10
−4

4.2 × 10
−4

3.7
√
2 Olanrewaju and Wong (1994)

Table 6  Estimates of different measures of errors in approximating 
all components of the permeability tensor among simulations and 
suggested equation

Measure of error Mean relative error SD RMSE

Value 0.34 0.13 0.31
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with the relation n2D = det n  ) to find the components of � 
(also n  or � ). To make it clear, we present a summary of 
calculations for the dataset of Qiu and Wang [46] in Appen-
dix 2 of this paper. The microstructure tensor can also be 
independently found by other tests as this is just a geomet-
ric measure of anisotropy and not a sole character of the 
hydraulic conductivity. For example, by considering some 
anisotropic failure criterion (if the anisotropy in strength is 
assumed to be the same as that for the hydraulic conduc-
tivity), a series of shear strength tests may be used to find 
components of this tensor with adequate accuracy. Further 
details can be found in Inglis and Pietruszczak [22], Oboudi 
[34] and Oboudi et al. [35].

10  Conclusions

The hydraulic conductivity of anisotropic sands was studied 
to find a tensorial form of the hydraulic conductivity tensor, 
limited to 2D flows. Although there are a number of different 
empirical equations for the hydraulic conductivity, there is no 
such relationship available for anisotropic soils. In addition, we 
showed that the hydraulic conductivity cannot be considered 
as a scalar value changing from one direction to another; but 
this is a  2nd order tensor quantity. To overcome difficulties in 
experimental tests, this research has been conducted based on 
numerical simulations of assemblages of particles which also 
allows accurate measurements on the geometric measure of 
anisotropy.

The concept of the microstructure tensor based on the 
directional porosity, as a geometric measure of anisot-
ropy, has been employed. Practically, the microstructure 
tensor can be measured by direct or indirect methods. 
This measure has been calculated in REVs and once the 
Navier–Stokes equations have been numerically solved for 
all REVs the hydraulic conductivity has been related to the 
microstructure tensor. Although the hydraulic conductivity 
can be related to other factors such as the particles shape, 
porosity, magnitude of the hydraulic gradient, temperature, 
etc. this simple relationship is proved to be reasonable at 
least for a wide range of clean, uniformly graded medium 
sands (classified as SP) with nearly round particles at a 
unit hydraulic gradient. For such materials, the geomet-
ric measure of anisotropy which implicitly involves the 
porosity in its most general form, proves to be adequate 
to characterize the hydraulic conductivity. The procedure 
involves the development of a synthetic database for a 
series of REVs and using this database to find the rational 
equation for the hydraulic conductivity. To produce the 

synthetic database, extensive verifications were also made. 
The developed equation also meets some required physi-
cal and mathematical constraints such as the reducibility 
to the isotropic state and rationality. Verifications with a 
number of simulated cases show that this equation can rea-
sonably predict the hydraulic conductivity of anisotropic 
samples of sand in two dimensions. One may note that the 
suggested equation can be applied to uniformly graded 
medium sands with round particles. It should be noted that 
either the measurement or the determination/estimation of 
the hydraulic conductivity serve as very challenging tasks 
in soil mechanics, particularly in anisotropic media. Thus, 
studies on the hydraulic conductivity of anisotropic soils 
remain an open field of research.

Appendix 1

Here, we show that the following equation violates prin-
ciples of continuum mechanics by deriving the correct 
form for it:

Without loss of generality, we assume Cartesian tensors 
and hence, the Darcy’s law will be as follows:

Therefore, the velocity vector in any Cartesian coor-
dinates system must follow the following transformation 
rule:

with aij being the Cartesian coordinate transform tensor. 
Thus, the components of the hydraulic conductivity tensor, 
in the new coordinates system will be:

Again, without loss of generality, we further assume 
that the x and y directions are principal material direc-
tions, i.e. they coincide with the maximum and minimum 
hydraulic conductivities. These are typical assumptions 
in most standard texts on soil mechanics. The coordinates 
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transformation under an orthogonal transformation (form 
x − y to r − s coordinates) and hence, components of the 
hydraulic conductivity will be:

As a result:

Therefore, the hydraulic conductivity tensor obtained 
this way, will not violate principles of continuum mechan-
ics. In other words, the Darcy’s equation, expressed in 
tensorial form, will remain unchanged under any such 
transformation. This equation is indeed different from the 
conventional equation based on the partial derivative of h 
with respect to r only. In other words, vr depends not only 
on krr but also on krs.

Appendix 2

A summary of calculations to estimate the hydraulic con-
ductivity tensor for an anisotropic soil is presented in order 
to show how to use Eqs. (10) and (13). Let us inspect the 
case where only the bedding plane is known with no direct 
information on the microstructure tensor. The experimental 
data of Qiu and Wang [46] is examined. We start by using 
the following set of experimental data, i.e. employing n and 
kh while keeping kv for verification:

If the coordinates system is taken along the material axes, 
both n  and � will become diagonal in the material coordi-
nates system. By denoting the principal values of � by �1 
and �2 and those for n  by n1 and n1 , one may write:

A =
(
aij
)
=

(
cos � − sin �

sin � cos �

)
,

k
� = A

T
kA =

(
cos � sin �

− sin � cos �

)(
kx 0

0 ky

)(
cos � − sin �

sin � cos �

)

krr = kx cos
2 � + ky sin

2 �,

krs = ksr = −kx cos � sin � + ky cos � sin �,

kss = kx sin
2 � + ky cos

2 �

n ≅ 0.33, k1 = kh ≅ 6.7 × 10−4m∕s,
(
k2 = kv ≅ 3.6 × 10−4m∕s

)

The invariants I1, I2 and J2 of �2 are �2
1
+�2

2
 , �2

1
�2

2
 and 

−
(
�2

1
−�2

2

)2
∕4 , respectively. Referring to Eq. (13) after 

some manipulations and substitution of �1 and �2 with n1 
and n1 in the equation for � , one will get:

Solution for n1 and n2 gives n1 ≅ 0.81 and n2 ≅ 0.58 . 
Thus, the hydraulic conductivity tensor will be obtained:

with k2 = kv = 3.5 × 10−4m∕s only slightly different from 
the experimental data (i.e. 3.6 × 10−4m∕s).

Here, knowing the orientation of the bedding plane and 
the constraint det n = n2D , only one independent component 
of n  (or � ) was required to be found. If the bedding plane 
is not known, at least two tests will be required to calculate 
the microstructure and the hydraulic conductivity tensors as, 
after applying the condition det n = n2D , there will be two 
independent components for n  (or �).
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