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Abstract
The granular temperature is an index of the level of collisional activity in a granular flow, and increasingly important in 
the verification of extended kinetic theories. The granular temperature is related to the square of the difference between a 
particle’s velocity and that of the group mean. Image analysis of high-speed video is the most common method to measure 
granular temperature in experimental flows and depends on correlation of a search mask or a portion of the original image 
to the next image frame to determine the particle’s movement. This invariably involves some level of estimation of the loca-
tion at a resolution finer than the pixels that make up the image. However, errors in determining particle movement at the 
subpixel level can be shown to have a significant impact on granular temperature identification. We show that taking particle 
movement to be a chain of displacement vectors provides context to the apparent impulses on the particle. Here we propose 
two novel methods for determining the granular temperature of experimental flows, namely a novel method of initializing 
Particle Image Velocimetry (PIV) for granular systems where each search subset is centred on a previously determined 
particle location to reduce bias, and a method of filtering the apparent impulses on a particle on a frequency basis. We term 
these methods Guided-PIV and Impulse Frequency Filtering (IFF), respectively. In a verification exercise using synthetically 
generated images, we show Guided-PIV to produce substantially more accurate results than ordinary applications of PIV. 
The IFF method is shown to greatly reduce the influence of analyzed framerate on granular temperature results. Our results 
demonstrate practical improvements for granular temperature identification from image analysis, throughout a range of 
experimental image quality levels, and we anticipate that these improvements will enable experimental assessment towards 
verification of theorized models of collisional-frictional granular flows.
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1 Introduction

In the study of granular flows, recent attention has centred on 
the collisional activity between particles. Generally, the low 
flow resistance of a granular flow is attributed to a reduction 
in the long-lasting frictional contacts between particles. The 
overburden pressure of the flow may instead by balanced 
by a collisional particle pressure [1], originally termed a 

dispersive pressure by Bagnold [2]. The granular tempera-
ture was originally termed by Ogawa [3] as an index of the 
collisionality of the flow, and corresponds to the average 
fluctuating component of the energy of a particle. For a field 
of particles with known velocity, the granular temperature is 
calculated by comparing each particle’s velocity to the group 
mean velocity, and averaging the square of these velocity 
fluctuations. Granular temperature was rapidly adopted as 
an input into kinetic theories [4–6]. However, the ability 
to accurately measure the granular temperature of physical 
flows has lagged behind the quantity’s adoption in constitu-
tive models.

The most commonly applied methods to quantify granular 
temperature in published experimental results have involved 
automated image analysis of high-speed imagery, namely 
Particle Tracking Velocimetry (PTV) [7–9] and Particle 
Image Velocimetry (PIV) [10]. While the analyzed images 
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are typically photographs taken through transparent flume 
side walls, Planar Laser Induced Fluorescence [11] and 
dynamic X-ray radiography [12] have been used to image 
inside flows. PTV requires video that clearly shows discrete 
particles, and as such is typically limited to monodisperse 
flows in laboratory settings. PTV involves determining the 
particle locations in each frame, and linking the particles 
between frames to generate displacement vectors (Fig. 1a). 
Alternatively, PIV consists of partitioning the initial image 
into search subsets (typically 8 to 64 pixels) and search-
ing for the best matching location in the following image 
to generate displacement vectors. Either method returns a 
field of displacement vectors from which the granular tem-
perature can be calculated. This is theoretically sound, but 
as this paper will discuss, small errors in image analysis can 
lead to large inaccuracies in measured granular temperature. 

Furthermore, without an accepted reference standard, there 
is no way to calibrate measurements.

The calculation of granular temperature from a vector dis-
placement field is a natural extension of the original use of 
image analysis for flows: i.e. the calculation of flow velocity. 
The velocity profile (Fig. 1b) is the most commonly refer-
enced depth profile for a flow and can be calculated by aver-
aging the velocity vectors of each of the particles in a region 
of the flow (‘ensemble average’). If the errors in particle 
position are distributed without bias, the ensemble averag-
ing process will lead to an unbiased estimation of velocity 
profile. Gollin et al. [13] utilized PTV and PIV algorithms 
independently on high-speed video images of granular flows 
in a small laboratory flume and found both algorithms to 
similarly determine the velocity profile, independent of the 
image frame rate.

(b)(a)

(c) (d)

Fig. 1  A typical analysis workflow of side-on video of a monodis-
perse granular flow (a) using PTV identification of displacement vec-
tors, which are averaged in horizontal bins to calculate (b) depthwise 
velocity profile. However, (c) identification of the particle centroid 

location, especially on a sub-pixel level, is often impercise. d Illustra-
tion of particle path from identified displacement vectors, demonstrat-
ing how errors at the sub-pixel level can result in false components of 
displacement vectors which would contribute to granular temperature
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Recent advances in cameras with high temporal resolu-
tion and increased image resolution have fundamentally 
changed the input data available for image analysis. The 
high temporal resolution minimizes the particle displace-
ment between frames, enabling a minimum displacement 
matching algorithm to be used rather than requiring more 
advanced filtering. The camera can be placed ‘closer’ to the 
flow (physically, or by means of a longer focal length lens). 
The higher image resolution means each particle is repre-
sented by more pixels (hereafter termed the ‘image diam-
eter’). This can aid particle delineation as well as increase 
the texture available for PIV. For the purposes of determin-
ing the collisionality of the flow, the high temporal resolu-
tion also enables full tracking of the particle’s trajectory and 
minimizes the error due to undersampling [13, 14].

However, as this paper will discuss, some of the sources 
of error in measuring granular temperature are worse for 
faster camera frame rates or for particles represented by 
more pixels. Gollin et al. [13] demonstrated that the potential 
for mismeasurement of granular temperature can be much 
higher with PTV than PIV, and is dependent on the mag-
nitude of particle displacement per frame, with lower dis-
placements per frame leading to higher identified granular 
temperatures. This counterinuitively can lead to a reduction 
in the accuracy of granular temperature measurement as 
technology improves, unless the methods used are under-
stood and assessed critically. The image remains represented 
by discrete pixels (Fig. 1c), hence, sub-pixel inaccuracies 
in the image analysis methods can lead to spurious compo-
nents in the identified displacement vectors (Fig. 1d) and 
substantial errors within the calculated granular temperature. 
Rather than averaging out velocity fluctuations as with the 
calculation of the velocity profile, the calculation of granular 
temperature isolates and compounds the fluctuations. The 
apparent fluctuations may be real (due to collisional particle 
movement) or artifacts of the particle location identification 
process. Even a flow without any granular temperature can 
exhibit a ‘noise floor’, a minimum granular temperature that 
would be apparent from the identification process. Granular 
temperature measurements do not benefit from averaging in 
the same way that an a velocity measurements do, and thus 
even long duration measurements on a steady-state flow are 
not immune to this error.

Here, an error framework is presented to assess the influ-
ence of sub-pixel particle position errors on the determination 
of granular temperature. A review of PIV and PTV methods 
is presented, including a discussion on the general sources of 
error which are common to image correlation and sub-pixel 
estimation schemes. Subsequently, a first novel hybrid method 
(‘Guided-PIV’) is described where identified particle locations 
are utilized to initialize PIV tracking. Synthetic images are 
then analyzed to evaluate the noise floor of both Guided-PIV 
and PTV methods. Then, a second novel method is presented 

based on frequency based filtering of PTV results. Using this 
approach, we decompose a chain of particle movement into 
orthogonal vectors of velocity fluctuation, suitable for con-
version into the frequency domain. The frequency spectra of 
the impulses can indicate if alternating compensatory errors 
are present. The possibility for frequency-based filtering 
is explored with a view to reducing the influence of image 
frame rate on granular temperature measurements. Finally, 
both novel methods are demonstrated on simulated images 
of a collisional flow generated in a Discrete Element Model.

2  Granular temperature from image 
analysis

The typical method for calculating granular temperature is 
performed on the displacement vectors between two image 
frames, as identified by PIV or PTV (Fig. 2a). When the dis-
placement vectors are grouped into bins, each corresponding to 
a discrete partition of the flow height, the mean flow velocity 
can be found by averaging the results of each identified vector 
in the bin (Fig. 2b). This is done for each coordinate direction 
(u, v). The granular temperature for bin k can be calculated by 
first calculating the fluctuation components (Fig. 2c) in each 
coordinate of an orthogonal system: [13]

where * denotes the fluctuation component, i represents 
an individual vector and ūk the average flow velocity in the 
coordinate direction. The mean of the squares of this quantity 
is calculated for each bin k as follows by an ensemble average 
of the Nk particles in the bin:

The granular temperature is given as (units of velocity 
squared):

In Eq. (3), the factor 1
2
 is a scaling factor to account for the 

spatial dimension of the system [15]. When a three-dimen-
sional system is observed through planar (two-dimensional) 
imagery, a 1

3
 scaling factor is used when assuming the out-of-

plane movement is zero. Alternatively, when assuming that 
out-of-plane movement is equal to bed-normal movement, 
the granular temperature is given as: [16, 17]
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2.1  Effects of misidentification of particle 
movement

Figure 1d schematically illustrates a particle on a straight path 
(zero granular temperature), with the identified particle loca-
tions from successive frames indicated. Displacement vectors 
are then drawn between particle locations. If the particle loca-
tions deviate from the true path, the displacement vectors will 
have spurious components of movement, which would errone-
ously increase granular temperature. The effects of misiden-
tification of particle movement can be assessed by propagat-
ing a particle velocity error term �⃗𝜀 through the expression for 
granular temperature. If �⃗𝜀 is zero-mean and uncorrelated with 
�⃗utrue , and the length of the vector has the average E

(‖‖�⃗𝜀‖‖
)
≡ a , 

the granular temperature can be shown to increase by a2.
Estimation of the average particle velocity error a can be 

made from an estimation of the particle positioning variance 
b (in physical units, not pixels) and the analyzed framerate 
f =

1

Δt
 . Through propagation of the positioning error in a 

two-point linear velocity equation, a characteristic veloc-
ity error term can then be taken as some multiple of f

√
2b , 

leading to a granular temperature noise floor on the order of 
2f 2b . As an example, a characteristic positioning error of 
�(�) =

√
b = 0.1 px (pixels), for images analyzed at 1000 fps 

with PTV and a 3 px / mm scale factor would result in a granu-
lar temperature error ε (T) of:

As PIV is subject only to the positioning error on the final 
point, the variance would be half of the variance for PTV. 
Further detail on the above deriviations is provided as Sup-
plementary Material.

2.2  Particle tracking velocimetry

Particle Tracking Velocimetry (PTV) involves determin-
ing the location of each particle in successive frames, and 
using an algorithm to link the particle locations between 
the frames. As the results include tracking information on 
a particle basis, the results, in theory, are better suited to 
calculation of granular temperature than PIV. However, the 
accuracy of PTV is influenced by both particle location iden-
tification and matching particles between frames because 
the method reduces a particle to its centroid location and 
discards information about the particle’s appearance.

PTV requires video frames with clearly distinguishable 
particles (Fig. 3a) as each particle must be identified and the 

�(T) = 2f 2b

= 2
(
1000 s−1

)2[
(0.1 px)

(
0.001m

3px

)]2

= 0.0022
m2

s2

(c)(b)(a)

Fig. 2  Calculation of granular temperature from (a) field of dis-
placement vectors of individual particles, averaged within bins into 
(b) mean flow velocity depth profile. The mean flow velocity is sub-

tracted from the individual vectors to calculate (c) the flucuating 
component of velocity. These velocity components are squared and 
averaged within the bins to quantify granular temperature



The influence of image analysis methodology on the calculation of granular temperature for…

1 3

Page 5 of 17 96

centre-of-mass estimated (Fig. 3b). Particles in dilute flows, 
appearing with well-defined edges, may be detected using 
a single pixel intensity threshold (binarization) [13]. For 
dense flows, the Particle Mask Correlation (PMC) method 
[18] involves assuming an image of a representative particle 
(the “mask”) and calculating the cross-correlation between 
this mask and the image. The correlation score between the 
mask, centred on each pixel of the image, forms the basis 
for detecting particles. Local peaks in the correlation score 
are likely to be the centre of mass of the particles. To gener-
ate the mask, a two-dimensional Gaussian distribution is 

commonly utilized [19]. A further step is to then interpolate 
the fit of the particle mask on a sub-pixel basis (Sect. 2.4).

After the particle locations are identified, the next step in 
PTV is for a matching algorithm to determine the location 
of the same particle between successive frames (Fig. 3e). 
The simplest matching algorithm pairs the locations with 
minimum displacement. Matching algorithms for PTV also 
typically enforce that one particle in the first frame corre-
sponds to one particle in the second frame.

If the matching algorithm incorrectly matches particle 
locations, the ‘wild vector’ that results will increase the 

Fig. 3  Comparison of classic PIV, Guided-PIV, and PTV methods, 
each for analyzing (a) high speed videos of distinguishable monodis-
perse particles. b The PTV and Guided-PIV methods begin by iden-
tifying particle locations. c The classic PIV method uses a regularly 
spaced grid of search subsets while (d) the Guided-PIV method uses 

the particle location results to center each search subset on a particle 
location. Both PIV and Guided-PIV use the full image information 
during matching, while (e) the PTV matching phase uses only the 
field of particle locations
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calculated granular temperature. Wild vectors most com-
monly occur when the PMC step did not recognize a particle 
in one of the paired frames. To reduce wild vectors, various 
methods of matching and filtering have been proposed. The 
simplest is to tightly limit the search neighbourhood to the 
maximum probable travel distance. While this is compatible 
with simple direct matching, the flow velocity in terms of 
particle diameters per frame becomes a limiting factor in 
the matching success. Cross-correlation and displacement 
algorithms [20] compare the displacement of a potential 
matching pair to the average displacement of the adjacent 
group. Because they enforce a general measure of uniform-
ity on the identified vectors, these methods are not suitable 
for the determination of granular temperature of highly col-
lisional flows. Other proposed matching algorithms include 
a method based on Voronoï tesselation [7].

2.3  Particle image velocimetry

Particle Image Velocimetry (PIV) methods were developed 
for tracer particles in a fluid flow and essentially correlate 
textures between successive image frames. The original 
geotechnical application of PIV was to identify small dis-
placements within continuum geomaterials. As such, great 
emphasis has been placed on developing improved shape 
functions utilized to interpolate the fits of the cross-correla-
tion at a subpixel level. PIV consists of defining a region of 
the image as a subset or Interrogration Window, typically a 
square of 8 to 64 pixels per side, and searching for the loca-
tion in the second (comparison) image where the best corre-
lation is seen with the original subset location. The matching 
algorithms consider only the best correlation match within a 
prescribed search zone, similar to Minimum Displacement 
matching in PTV, owing to the small displacements expected 
within geomaterials. Popular implementations of PIV meth-
ods include PIVlab [21] and geoPIV [22].

Typically, the subsets are laid out in a regular grid pattern 
(Fig. 3e), and may or may not be overlapping. Here, we refer 
to this method as Grid-PIV. The original locations are not 
informed by a priori knowledge of particle locations. The 
size of the subset is typically set larger than a characteristic 
particle diameter and therefore typically contains multiple 
particles. Adrian and Westerweel [23] suggested the opti-
mum range was 5–10 particles per subset.

For uniform, lightly shearing flows, the particles within a 
subset are not likely to move relative to each other. For flows 
with high rates of shear, such as in the vicinity of frictional 
boundaries, the position of the particles in the faster and 
slower moving layers will be different to each other, and thus 
the appearance of the subset would be different in the second 
image. This phenomenon, known as gradient biasing [24], 
has been subject to attempts to improve cross-correlation 

performance by deforming the sub-images using a multi-
pass method.

However, for more collisional flows, the change in rela-
tive particle positions within a subset is not as easily deter-
mined, and these methods are not as applicable. PIV for 
subsets of multiple particles will have an inherent averaging 
effect, or suffer loss-of-correlation that precludes matching. 
Additionally, tracking information for individual particles is 
not available. It has been found that the identified granular 
temperature decreases as the size of the PIV subset increases 
[16, 25–27]. Sarno [27] has suggested a multi-pass approach 
where the size of the subset is systematically varied. Hart 
[28] proposed using progressively smaller subsets, down the 
order of one particle size. This method does not use a priori 
knowledge of particle locations but does use a priori knowl-
edge of maximum displacement as results from subsets are 
used to limit the search distance for smaller subsets.

2.4  Image matching by cross‑correlation 
on a subpixel level

At the heart of both the PIV and PTV methods is the require-
ment to match a search image to its location within a final 
image. An important difference between PIV and PTV is 
that in PTV the particle mask is utilized as the search subset 
for both the original and final image. For PTV, all particles 
are essentially identical during the matching phase, as only 
the identified location is input into the matching algorithm. 
This means that during the PMC phase any texture or dif-
ferentiation between particles would typically worsen the 
scores. In contrast, the PIV matching algorithm uses a por-
tion of the original image as the search subset and is aided 
by texture and differentiation between particles.

In both PIV and PTV, the cross-correlation method is uti-
lized to identify the movement on the basis of whole pixels. 
To determine movement on a sub-pixel level, a method is 
required to interpolate these results and estimate the loca-
tion of the maximum [22]. The definition of this sub-pixel 
estimation function is part of the technology of the method 
of image analysis. The PTV routine utilized in this paper 
uses MATLAB’s lsqcurvefit function to optimize the 
sub-pixel location and size parameters of the Gaussian mask 
to best fit the window of the final image. For PIV, a bi-cubic 
interpolant was utilized in the original geoPIV [29] and 
extended to a bi-quintic B-spline interpolant for geoPIV-
RG [30]. PIVlab [21] fits a Gaussian distribution using up 
to nine points.

In this paper, the geoPIV software package [22] was used 
with a bi-cubic shape function and a B-spline function, respec-
tively. The use of these two versions of the software does not 
represent a proposed novel improvement, but instead serves 
to demonstrate the capabilities of existing PIV software in 
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comparison to PTV, for the purposes of determining the granu-
lar temperature of monodisperse granular flows.

3  Guided‑PIV: PIV initiated with particle 
location information

As discussed above, PIV is typically deployed for granular 
flow analysis using a regular grid of search subsets (Fig. 3c). 
This often leads to averaging within the subset and/or poor 
correlation as the particles move relative to each other. As 
an alternative, a hybrid method of particle location identifi-
cation and PIV tracking is proposed here for granular flows 
where the particles have a sufficient image diameter and are 
distinguishable in the images. The method seeks to locate 
the PIV subsets at the particle locations, limiting loss-of-cor-
relation through relative particle movement in a shearing or 
collisional flow. Unlike tracer particles in a continuum fluid 
flow where the tracer particle displacements are representa-
tive of the continuum in which they transported, the particle 
displacement results in a collisional granular system need to 
be captured for all particles to mitigate bias. Enforcing one 
subset per particle and vice versa at PIV initiation is critical 
to obtain an image analysis displacement vector field that is 
representative of the true particle displacement vector field.

In this method, the particle locations determined by Parti-
cle Mask Correlation are used to initialize PIV for each pair 
of frames (Fig. 3d). We thus term the new method Guided-
PIV. One PIV subset is centred at each identified particle 
location, and the subset size is set to the average particle 
diameter. The search zone is set to be slightly larger than the 
maximum expected particle movement, based on the results 
of an initial pass of PTV. By using PIV instead of PTV for 
measuring particle displacements, advancements made in 
PIV subpixel identification can lead to reduced noise in 
measurements. For flows of slightly irregular particles, the 
particle shapes and texture will generally aid matching with 
PIV as opposed to having a detrimental impact on PTV.

Note that Cowen and Monismith [31] proposed a hybrid 
technique where a deformation field was reconstructed from 
regularly spaced non-overlapping PIV interrogration win-
dows, and PTV was used to determine the particle locations 
in that field. The currently proposed method differs from the 
Cowen and Monismith method in that the PIV interrogration 
windows are located after the particle locations have been 
determined, rather than a regular grid, and the subset sizes 
are set to the particle size.

4  Simulated flows and synthetic images

In order to explore the potential effects of errors in particle 
location determination from image analysis, it was desired 
to generate synthetic images from simulated flows where 

the particle positions are explicitly known to enable com-
parison of the true granular temperature and any measured 
values from imaging methods. A Discrete Element Model 
(DEM) using the MercuryDPM software [32, 33] was 
used to simulate a flow in a chute, inclined at 24◦ , under 
steady-state conditions with the model parameters listed 
in Table 1. Particles which left the periodic boundary at 
the bottom of the chute reentered the model at the top of 
the chute. Figure 4 presents a visualization of the particles 
in the cell, with the color gradient representing particle 
velocity. The model is laterally confined by flat, rigid, and 
frictional sidewalls and was thus only singly periodic. 
The DEM returns the position of all 27,500 particles at a 
sample rate of 2000 Hz. Gollin et al. [34] provide further 
details on the specific DEM technique.

For each frame, the model can be queried for particles 
close to the sidewall, designated as the ‘camera’ location. 
Synthetic images (Fig. 5a) were built by layering particles 
from back to front. Each particle was represented by a 2-D 
Gaussian distribution, with the parameters adjusted with 
distance from the ‘camera’ lens to simulate the shallow 
depth-of-field associated with a wide aperture lens.

In the following sections, exercises are conducted on 
these synthetic images where the granular temperature is 
known. In Sect. 5, two exercises are conducted on images 
where the particles do not move relative to each other, and 
thus the true granular temperature is zero. A third exercise 
is conducted in Sect. 7 on 1250 images of the simulated 
collisional flow. The true granular temperature can be cal-
culated from the known particle positions and compared 
to the measured values.

Table 1  Discrete Element Model parameters for flows constrained by 
frictional sidewalls. Superscript ( w ) indicates wall contact; subscripts 
( n ) and ( 

t
 ), normal and tangential parameters, respectively

Parameter Symbol Scaling Value

Diameter dp 1.5 mm
Mass m 4.29 ⋅ 10−6kg

Contact model Simple Linear 
Spring-
Dashpot

Collisional time 0.005
Normal restitution en 0.7
Normal stiffness Kn mg∕d2 2 ⋅ 105

Sliding stiffness Kt , Kw
t mg∕d2 2∕7 ⋅ Kn

Normal damping �n
√
g∕d 70

Sliding damping �t , �wt
√
g∕d 2∕7 ⋅ �n

Particle-particle friction � 0.45
Particle-wall friction �w 0.35
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5  Rigid body displacement exercises

5.1  Synthetic image exercise 1: subpixel accuracy

The accuracy of the subpixel estimation process has been 
shown to be influenced by the texture in the image as well 
as the choice of interpolation function. The phenomenon 
of PIV results that are biased towards integer values of dis-
placement is known as ‘peak locking’. Stanier et al. [35] 

investigated this bias in the estimated subpixel components 
and found that the bias was higher for particles represented 
by fewer pixels. Murray et al. [14] performed a series of sim-
ple experiments and generated synthetic images to explore 
the sources of error affecting the determination of velocity 
and acceleration for non-deforming interrogation windows. 
The largest error source was found to be due to poor texture, 
leading to peak locking, and exceeded 0.1 pixels. In this 
way, the use of somewhat irregular particles is considered 

Fig. 4  Front and side views (a,b) of a flow, laterally confined 
by flat, rigid, and frictional sidewalls. The simulation domain is 
lx × ly = 30d × 66d with a total of N = 27500 particles simulated. 
Glued (black) particles make the base bumpy and the colour gradi-

ent represents slow (blue) to fast (red) particles as z increases. Nota-
bly there is an additional influence of wall friction in the spanwise (y) 
velocity gradient. c flowing particle system. b taken from [34]
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beneficial for PIV performance. The choice of shape func-
tion used for the subpixel interpolant led to an error on the 
order of 0.01 px for a cubic shape function, as opposed to 
0.001 px for a B-spline function.

Here, a series of synthetic images was generated based 
on the first frame of the simulated flows, described in 
Sect. 4, to evaluate the sub-pixel accuracy in the determi-
nation of particle location for each method. In each image, 
the particle was moved 0.025 px horizontally (x direction). 
Over 40 frames, this corresponds to 1 px of movement. 
At each step, the error between the true position of the 
particle and the identified position of the particle was 

calculated. The error was calculated as the length between 
positions, so it follows that the error is always positive. 
The above process was completed for 4 rows (y direction) 
each 0.33 px apart. The errors were averaged over all rows 
(over all y) for each x (Fig. 6). Four particle diameters dp 
were trialled: 5, 6, 12, and 24 px . The PTV, Guided-PIV, 
and Guided-PIV-B-spline methods (Table 2) were included 
in this comparison.

The PTV method (Fig. 6a) returned very low average 
error values ( < 0.07 px ). This is not unexpected, as the 
image was generated using the same equation as that which 
the Particle Mask Correlation process utilizes. The error was 

(a) (b)

(d)(c)

Fig. 5  Representative frames from synthetic image exercises
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highest for larger particle diameters. This confirms proper 
functioning of the subpixel algorithm for PTV.

The Guided-PIV method with bi-cubic subpixel interpo-
lant (Fig. 6b) was suitable for particle (and subset) sizes 
of dp = 5 px or larger. The average error is lowest for the 
larger dp = 24 px particles, on the order of 0.12 px . For the 
dp = 5 px particles, the average error ranged up to 0.24 px . 
These error values are considerably increased from those of 

PTV. When the Guided-PIV method is used with a B-spline 
subpixel interpolant (Fig. 6c), only particle sizes of 12 and 
24 ox are suitable for the B-spline. The level of error reduces 
to a maximum of 0.08 px for the dp = 24 px particles.

This exercise confirms that the PTV method can perform 
well when particles are similar to the mask. For PIV, it was 
seen that the sub-pixel estimation algorithm has a significant 
influence on accuracy.

5.2  Synthetic image exercise 2: noise floor 
of granular temperature measurements

To quantify the ‘noise floor’ of granular temperature as 
identified by the different image analysis methods, a veri-
fication exercise was undertaken using synthetic images of 
multiple particles in a flow field. The implications of the 
particle location identification error on granular temperature 
were previously shown in Sect. 2.1. In this exercise, the true 
granular temperature is zero as the particles do not undergo 
relative displacement. The synthetic images were analyzed 
using both PTV and the Guided-PIV methods (Table 2), and 
the errors in particle location identification are expected to 
manifest as a ‘false’ granular temperature.

The images were generated using the first frame of the 
simulated flow (Fig. 5a), but with a uniform horizontal dis-
placement applied to each particle in each image ranging 
between 0.3 px to 9.6 px per frame. The movement per frame 
was intentionally chosen to not be a whole or half pixel, as 
these were previously shown to have the least error for PIV 
(Fig. 6b). The left and right boundaries were made periodic, 
such that as particles exited the frame, the particles entered 
the frame on the other side. Each particle was represented by 
a 24 px diameter Gaussian mask. Once again, these condi-
tions are ideal for PTV as the search mask is identical to the 
mask used to generate the images.

Figure 7 illustrates the average identified granular tem-
perature, normalized by the square of the average velocity. 
The noise is over one order of magnitude higher for PTV 

(a)

(b)

(c)

Fig. 6  Accuracy of subpixel estimator and peak-locking phenomenon

Table 2  Image analysis methods considered

Method name PIV subset layout PIV 
subpixel 
estimator

Filtering applied

Grid-PIV Regular grid Bicubic None
Guided-PIV Centred on 

particle
Bicubic None

Guided-PIV-B-
spline

Centred on 
particle

B-spline None

Guided-PIV-IFF Centred on 
particle

Bicubic Frequency-based

PTV n/a n/a None
PTV-IFF n/a n/a Frequency-based
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than Guided-PIV over the range of particle movements per 
frame trialled. Both methods illustrated a decrease in noise 
as movement per frame is increased, which was expected 
from Sect.  2.1, through 4.8 px displacement per frame. 
Guided-PIV demonstrated a minimum of noise at 7.2 px 
per frame, with an increase in noise at 9.6 px . It is expected 
that for larger displacements, large errors could occur due 
to a breakdown of the matching algorithm (especially direct 
matching in PIV).

This exercise confirmed that granular temperature iden-
tification signfiicantly depends on the particle movement 
between frames, and that consideration should be made for 
this when selecting the analyzed frame rate for images. The 
exercise also produced promising results for Guided-PIV.

6  Tracking particle trajectories 
between frames

Considering the flow on a particle basis rather than a frame-
by-frame basis can be instructional to help quantify and 
illustrate the influence of particle location misidentification 
on the granular temperature. A post-processing routine cre-
ated chains of particle movement for the PTV and Guided-
PIV results by matching the end points and start points of 
the displacement vectors in successive frames. Figure 8a 
illustrates the path of three representative particles from 
the simulated flow which undergo multiple collisions. The 
true particle path is shown from the DEM results, as well as 
the identified particle location from PTV. The Guided-PIV 

results are also shown as a cumulative sum of the displace-
ment vectors from the start of the chain. Overall, the two 
tracking methods illustrate general agreement with the true 
particle locations.

6.1  Comparison of impulse spectra

Spurious components of velocity vectors are discernable 
when considered in the context of particle movement across 
many frames. Considering a particle on a path (Fig. 9a), an 
error in determination of particle location would lead to a 
velocity vector with both a true component (the actual move-
ment) and an errant component. In the next frame, the errant 
component would require an equal and opposite error com-
ponent to return to the original path. Viewed over the entire 
chained path. the error components would have the prop-
erty of alternating about the mean in each successive frame 
and be akin to high-frequency noise. We now explore using 
frequency-based methods to identify and filter out the error 
component during the measurement of granular temperature.

To analyze the apparent impulses on a frequency basis, it 
can be assumed that velocity changes of the particle are due 
to impulses at a right angle to the instantaneous direction 
of the particle, or directly in line with the particle’s instan-
taneous direction. Each orientation can include impulses in 
the positive or negative direction. The displacement vec-
tors are decomposed into the vector projection (inline) and 
rejection (perpendicular) oriented to the displacement vec-
tor from the previous interval (Fig. 9b). For the rejection, 
the vector is compared with the current particle direction, 
and cast as negative or positive based on whether it acts to 
direct the particle to the left or right. For the projection, the 
scalar b1 = ‖�1‖ is compared with the original velocity ‖�‖ 
to determine the scalar impulse.

When the particle motion is decomposed into these 
impulses, this produces a scalar signal of positive and nega-
tive values and a near-zero mean (Fig. 9c). This signal is 
suitable for transformation into the frequency domain by 
the Discrete Fast Fourier Transform (DFFT) (Fig. 9d). A 
series of equal magnitude impulses in alternating directions 
for each frame would manifest as a harmonic signal at the 
Nyquist frequency fn , defined as half the sampling frequency 
fs . The frequency spectra also has the property of being sym-
metrical about fn.

Using this method of impulse decomposition and spec-
tral analysis, Fig. 8b) presents the frequency spectra of 
apparent impulses on the same particle trajectories as 
Fig. 8a). Results are presented for tracking by the PTV and 
Guided-PIV, as well as the true particle path from the sim-
ulation. The magnitude of impulses identified by Guided-
PIV is similar to the the true particle path across the 
frequency spectrum. The magnitude of PTV impulses is 
much higher, which would lead to a much higher granular 

Fig. 7  Identified granular temperature, normalized by the square of 
mean flow velocity, as a function of particle movement (in terms of 
pixels per frame) for a synthetically generated image ( dp = 24 px ) 
where no relative displacement occurs and thus the true magnitude 
of granular temperature is zero. The results illustrate a noise floor for 
granular temperature identification, with Guided-PIV performing at 
least one order of magnitude better. The optimum displacement for 
Guided-PIV for lowest noise is around 7.2  px/frame, as opposed to 
around 4.8 px/frame for PTV
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temperature result. There is also a frequency dependence 
visible in the PTV results (Fig. 8b) that is absent from the 
Guided-PIV results. The magnitude of the impulses gener-
ally increase up to fn . With a clear indication that the error 
in particle location identification is distinguishable on the 
frequency spectra of apparent impulses, we investigate the 
possibility of using a frequency-based filter (Fig. 9d) to 
improve the accuracy of measuring granular temperature 
from high-speed imagery of monodisperse granular flows.

6.2  Granular temperature on a particle basis

The granular temperature T of a particle can be related to 
the change in energy from a collision. If the particle had 
initial velocity ca before the collision and now has the final 
velocity cb

where ⟨−⟩ denotes ensemble averaging over all particles. The 
1/3 factor is a dimensional scaling factor similar to Eq. (3), 
and subject to the same considerations.

Assuming particle mass m, the momentum balance 
between three successive frames is:

where v is the velocity fluctuation term.
If we consider impulse co-ordinates aligned with the 

initial direction of travel ca , Eq. (5) may be expanded to 
be:

(4)T =
1

3

⟨[
c
2

b
− c

2

a

]⟩

(5)mca + mv = mcb

Fig. 8  True particle positions 
(from DEM) and the frequency 
spectra of apparent impulses 
on three representative single 
chains of particle motion. Also 
shown is a comparison of a 
particle location tracking and b 
frequency spectra of apparent 
impulses on the particle, for 
Guided-PIV and PTV methods

(a) (b)
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By Eqs.  (4) and (6), the granular temperature can be 
expressed by the sum of impulses:

For granular temperature of a chain of particle movement N 
intervals long, in each interval k:

By Parseval’s theorem, the sums of the squares of the 
impulses 

∑N

k=1

�
v2
k,i
+ v2

k,p
+ v2

k,q

�
 may be taken from the 
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0

0
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time-domain series or the frequency spectra. When averag-
ing over all chains to comprise the flow, the chain should be 
weighted by N to maintain equivalence to the ensemble 
average.

6.3  Impulse frequency filtering (IFF)

The potential for the error components to be distinguishable 
by frequency (Sect. 6.1) leads to the possibility of filtering 
the impulse series of a trajectory by frequency. The novel 
Impulse Frequency Filtering (IFF) method is based on the 
concept that modern-day high-speed cameras can produce 
images with a sufficiently high frame rate that the frequency 
of the apparent impulses brought on by misidentification 
of particle location is well above the actual frequency of 
particle collisions. A low-pass filter can be applied to the 
frequency series, the simplest of which would be a cut-off 
frequency (Fig. 9d). Here, after the DFFT is taken, the com-
ponents smaller than the frequency of interest are summed 
and used in the calculation of the granular temperature 

(a) (b)

(c) (d)

Fig. 9  Schematic of a chained PTV displacement vectors represent-
ing the path of a particle, b decomposing the changes in velocity to 
perpendicular and inline impulse components, c a timeseries of the 
perpendicular and inline impulse components, which are subject to 

the DFFT to produce (d) a frequency spectrum of apparent impulses 
on the particle. The components less than the frequency of interest 
can be summed for calculation of granular temperature, with higher 
frequencies regarded as spurious
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(Eq. 7). In the application example (Sect. 7), the cut-off fre-
quency was determined on a per-chain basis by consider-
ing the cumulative sum of the frequency components. The 
cut-off frequency was set as the lowest frequency where the 
average component value (from 0 Hz to the interested fre-
quency) exceeded 1.5 times the average component value 
from 0 to 300 Hz.

7  Synthetic image exercise 3: simulated 
collisional flows

Here we present the results of a verification exercise to 
demonstrate the concept of distinguishing real collisions 
from the error component by using the frequency-filtering 
method, described in Sect. 6.3, and to validate the two pro-
posed novel improvements for granular temperature determi-
nation. The exercise was conducted using the DEM results 
for a steady-state collisional flow (Sect. 4). 1250 sequential 
frames of the simulated flow were analyzed. For each frame, 
three images were generated, representing three levels of 
image quality. The particle locations are identical in each 
set of images. In the base case (Fig. 5a), the particles are 
represented by a Gaussian distribution identical to the search 
mask in the Particle Mask Correlation step.

In Fig. 5b, the same image has been corrupted by Gauss-
ian white noise that is generated anew each frame by the 
MATLAB imnoise function. The standard deviation of 
the noise magnitude is 1.2% of the amplitude of the par-
ticle image. The noise simulates when the imaging sensor 
is amplified excessively. Experimental images may also be 
subject to optical imperfections which are persistent and 
stationary across the images. We simulated the case of 
scratched and smeared sidewall glass by merging a picture 

of a worn area of an experimental flume (Fig. 5c) onto the 
synthetic images (Fig. 5d).

The images were analyzed by the regular Grid-PIV, PTV, 
and Guided-PIV methods. Both PIV methods used bicu-
bic subpixel estimation, a subset size equal to the particle 
diameter dp = 24 px , and a search zone size of 5 px in each 
direction from the edge of the search subset. All methods 
are able to correctly identify the velocity profile (Fig. 10), 
however in the scenario with scratched glass, both Grid-
PIV and Guided-PIV slightly underidentify the velocity. The 
stationary scratches are likely the dominant feature in some 
subsets, resulting in zero movement identified for the subset.

A comparison was made of the granular temperature pro-
file identified by each analysis method for each of the image 
sets (pure, noisy, and scratched sidewall glass) generated 
for collisional flow simulated by the DEM (Fig. 11). The 
“actual” granular temperature has been calculated using 
Eqs. (1)–(3) and true positions of the particles adjacent to 
the sidewall as exported from the DEM. Therefore, all com-
pared quantities are the local granular temperature in the 
vicinity of the sidewall.

For the classic methods, Grid-PIV and PTV were tri-
alled without frequency-based filtering. The regular Grid-
PIV methods are found to systematically underpredict 
granular temperature for each of the image sets by up to 
approximately 30%. Each of the PTV cases also results in an 
identified granular temperature well in excess of the actual 
values, typically by a factor of 2 or more. For PTV, the low-
est granular temperature result is for the ‘pure’ case, which 
overidentifies the granular temperature by at least 70% for 
the majority of the flow height. The addition of white noise 
to the image increases the measured granular temperature 
further by approximately 15%. The granular temperature 
for the ‘scratched glass’ case is much higher. The match is 

Fig. 10  Measurement of veloc-
ity profile by PTV and Guided-
PIV methods
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poorest in the lowest portion of the frame, where the glass 
has the highest opacity (Fig. 5d).

The proposed Guided-PIV method demonstrates results 
that are much closer to the actual granular temperature than 
both of the PTV and Grid-PIV results. The comparison 
for the ‘pure’ particles case is the closest to actual (within 
+/− 16%), followed by the ‘white noise case’ (overidentifi-
cation up to 29%). The granular temperature is underiden-
tified in the ‘scratched glass’ case, in which the velocity 
profile is also underidentified (Fig. 10).

The impulse-frequency-based filtering method, discussed 
in Sect. 6.3, was then applied to both the Guided-PIV and 

PTV results with the results termed Guided-PIV-IFF and 
PTV-IFF, respectively. With the frequency-based filter 
applied to the Guided-PIV results, the closest match to 
actual is seen for the images corrupted by white noise. For 
the pure images, the frequency filtering method results in a 
generally underidentified granular temperature. In the case 
of scratched and smeared sidewall glass, the filtering exacer-
bates the underidentification of granular temperature.

The frequency-based filtering method demonstrates 
the largest improvement for the PTV results. After filter-
ing impulses by frequency, the ‘pure’ particle case follows 
the actual granular temperature profile within 15% for the 

(a)

(b)

(c)

Fig. 11  Measurement of granular temperature profile by PTV, 
Guided-PIV, and Grid-PIV methods. Frequency-based filtering of 
impulses applied to the PTV and Guided-PIV methods, shown as 

PTV-IFF and Guided-PIV-IFF, demonstrates an improvement in 
accuracy of granular temperature identification, except where side-
wall glass was heavily scratched and smeared
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majority of the dense flow height. The case with white noise 
improves as well, with the results within 20% of actual for 
the majority of the flow height. The case with scratched 
glass shows similar results in the upper portion of the flow, 
where the optical obstruction was not as pronounced, but 
continues to overidentify granular temperature in the lower 
portion of the flow.

8  Conclusion

Granular temperature, as a measure of the collisionality of 
a flow, is one of the two primary inputs in kinetic theories 
regarding particle pressure in a granular flow. The direct 
measurement of granular temperature is not possible, and is 
either inferred from backcalculation or approximated from 
image analysis. Recent advances in ultra-high-speed video 
cameras have enabled experiments to be recorded at higher 
frame rates, which in turn lends itself to capturing a more 
magnified image (in terms of pixels per particle). This may 
make it easier to track particles between frames as the rela-
tive movement between frames is minimized. However, Gol-
lin [36] found that a decreased interval between analyzed 
images can skew the identified granular temperature.

A framework to relate sub-pixel errors to granular tem-
perature measurements illustrated that even errors on the 
order of 0.1 px can increase the identified granular tempera-
ture by an amount similar to the ‘true’ granular tempera-
ture of many flows. As such, it is important that researchers 
understand the accuracy of their methods and understand the 
potential bias that the analysis method may have on granular 
temperature. In many cases, a higher resolution image cap-
tured at a higher frame rate may actually be detrimental to 
the accurate measurement of granular temperature.

Images captured at a higher framerate and each particle 
represented by more pixels are well-suited for PIV methods. 
The lower relative movement per frame allows for parti-
cle tracking with the matching guided only by a maximum 
search zone set to reasonable limits of particle movement 
between frames. Any available texture and differentiation is 
helpful for PIV to distinguish between particles and perform 
sub-pixel identification. However, early work with PIV has 
resulted in systematically lower granular temperature than 
the true value and hence a novel hybrid method of PIV was 
proposed, where for each frame the particle location infor-
mation from the Particle Mask Correlation step of PTV is 
used to lay out the search subsets for PIV. This allows for 
one particle per subset in PIV, avoiding the inherent aver-
aging effects or loss of correlation when a subset contains 
multiple particles.

Synthetic images were utilized to assess the ‘noise 
floor’ of granular temperature determinations from both 

the PTV and Guided-PIV methods. The Guided-PIV 
method returned over an order of magnitude less noise. 
The noise floor typically decreased as particle movement 
per frame increased, however, Guided-PIV illustrated a 
local minimum beyond which the matching algorithm 
begins to return false matches.

Synthetic images of a simulated collisional flow were 
analyzed in a verification exercise to check local granu-
lar temperature adjacent to a sidewall. The Guided-PIV 
method performed with much greater accuracy than Grid-
PIV or PTV. The use of particle location information to 
initialize PIV is shown to reduce bias affecting granular 
temperature. This led to an improvement in ability to 
measure granular temperature over PTV (Fig. 11), using 
only a classical PIV algorithm.

A frequency-based method (IFF) was proposed to 
account for errors in the determination of particle location 
from video. This method was developed for the case where 
the video was captured at a much higher frame rate than 
frequency of collisions. The method sucessfully improved 
the accuracy of granular temperature measurement by PTV 
analysis.

Finally, a discussion must be had regarding error miti-
gation versus error suppression. Firstly, our results demon-
strate that experimental considerations such as cleanliness 
of the sidewall glass and the quality of the lighting trump 
the relative differences between image analysis algorithms. 
Careful experimental procedure is recommended to miti-
gate errors. Secondly, the impulse-frequency-filtering 
(IFF) method is a method of error suppression, but when 
applied to PTV results was not able to perform better than 
the Guided-PIV method which produces much less error, 
even before filtering. The PTV-IFF method remains useful 
for the case of severely scratched glass sidewalls or parti-
cles displaying less texture. It also is likely applicable to 
internal images of a flow captured by advanced methods 
[12, 37] which do not display the level of detail required 
for PIV.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10035- 021- 01153-y.
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