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Abstract
We study the highly complex wave transmission at the interface between a two-dimensional (2D) hexagonally structured 
granular medium and a linearly elastic thin plate; we refer to this system as the “granular-solid interface”. By applying an 
impulsive excitation at the free end of the granular medium we study the nonlinear acoustics at the interface. A computational 
model is developed, where the thin plate under the plane-stress assumption is discretized by finite-elements (FEs), whereas 
the granular medium by discrete-elements (DEs). Apart from the highly discontinuous Hertzian granule-to-granule and 
granule-to-plate interactions, we also take into account rotational and frictional effects in the granules; these effects render 
the acoustics of the granular-solid interface strongly nonlinear and highly discontinuous. The interaction forces coupling the 
granular medium to the plate are computed by means of an algorithm of interrelated iterations and interpolations at succes-
sive time steps. Since frictional effects may yield numerical instabilities, our approach incorporates the continuous “Cou-
lomb–tanh” friction model, whose efficacy is verified through convergence studies. By formulating appropriate theoretically 
predicted convergence criteria, we show that the stability of the algorithm depends on the time step, the mesh size of the FE 
model, and the frictional model parameters. Accordingly, convergence is ensured by introducing a self-adaptive time step 
scheme, which is informed by theoretical convergence criteria. An application of the algorithm for a specific granular-solid 
interface demonstrates its validity, accuracy and robustness. Wave transmission through the discrete–continuum interface 
is drastically delayed by the granular medium, which, inflicts significant “softening” to the nonlinear acoustics. Moreover, 
there is strong nonlinear wave dispersion and energy localization in the granular medium, resulting in highly reduced wave 
transmission to the plate. Moreover, these nonlinear acoustical features are tunable with the applied shock (or input energy). 
The model and results presented in this work apply to a broad class of nonlinear discrete–continuum interfaces, with broad 
applications, e.g., shock/blast mitigation, granular containers with flexible boundaries and acoustic non-reciprocity.

Keywords Two dimensional granular-solid interface · Discrete element modelling · Nonlinear wave transmission · Ordered 
granular media

1 Introduction

Granular media composed of contacting discrete elastic par-
ticles (granules) has attracted considerable attention in the 
field of nonlinear acoustics from both practical and theoreti-
cal points of view. Nesterenko pioneered the study of pulse 
transmission in one-dimensional (1D) homogeneous granu-
lar chains composed of spherical, linearly elastic particles 
(granules) in Hertzian contact under zero or weak compres-
sion, and discovered the propagation of spatially localized, 
coherent, and shape-preserving, strongly nonlinear solitary 
pulses [1–4]. These so-called Nesterenko-solitary pulses 
result in intense momentum transfer through homogeneous 
granular chains and are tunable (self-adaptive) to energy or 
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pre-compression. Due to the governing nonlinear Hertzian 
interactions, the propagation speed of this class of solitary 
pulses exhibits strong dependence on the pulse amplitude, 
and is an order of magnitude slower than the speed of 
sound in the homogeneous elastic medium of the material 
of granules [4, 5]; hence, ordered granular media without 
pre-compression “slow’ the propagation of waves, and, in 
fact, the linearized speed of sound (as defined in classical 
linear acoustics) in these media is zero, hence, their desig-
nation as “sonic vacua” by Nesterenko [1–4]. This means 
that their nonlinear acoustics is essentially nonlinear (i.e., 
devoid of any linearized components), while any weak pre-
compression introduces a small linearized component in the 
acoustics and affects the speed of pulse transmission. In this 
work we will study exclusively 2D ordered sets of linearly 
elastic, spherical granules that are initially in contact with 
no pre-compression. Moreover, granular interactions will be 
strongly nonlinear due to Hertzian interactions during com-
pression, “free flight” in the absence of compressive forces 
and ensuing collisions, and tangential frictional effects. We 
will model the collective dynamics of the considered granu-
lar assemblies by the discrete element (DE) method based 
on certain assumptions [6], which are satisfied in this work.

It is the strong tunability to (or, equivalently, passive 
self-adaptivity with) energy in synergy to the strong non-
linearity that yields interesting and unique nonlinear acous-
tic features in these media, having no counterparts in lin-
ear or weakly nonlinear acoustical systems. Indeed, it has 
been shown that the 1D ordered granular media can support 
tunable (with energy) frequency pass bands [7], traveling 
waves [8], intense nonlinear energy exchanges [9], targeted 
energy transfers [10], and even break of acoustic reciproc-
ity [11–13]. Inspired by these distinctive acoustical features 
of granular media, previous studies exploited these unique 
characteristics and reported various potential engineering 
applications such as shock mitigation and energy absorb-
ing layers [14–16], acoustic imaging devices [17], nonlinear 
acoustic lenses [18, 19], passive acoustic filters [20] and 
acoustic switches [21].

To incorporate the remarkably versatile nonlinear acous-
tics of ordered granular media into practical applications, 
a natural step is to try to gain a better physical insight and 
understanding on the complex interactions of these highly 
discontinuous media with linearly elastic homogenous con-
tinua at their boundaries. Typical boundary conditions that 
were considered in studies of granular media were the stand-
ard ones, namely, traction-free or fixed boundaries [22], 
and only a limited number of works considered the effects 
of “non-standard” flexible boundaries. The reflection and 
localization of solitary waves propagating in the 1D granu-
lar chains and interfacing with a cylindrical elastic medium 
[23] or thin plate [24] have been previously explored. It 
was found that the formation and propagation of reflected 

solitary waves from the flexible interface was significantly 
influenced by the bounding medium’s mechanical proper-
ties, such as the elastic modulus, thickness and geometry, as 
well as the size of the granules. Potekin et al. [25] developed 
an iterative numerical algorithm to study nonlinear wave 
scattering at the interface of 1D dimer granular chains with 
an elastically supported linear elastic string, while Zhang 
et al. [26] extended the numerical algorithm to study the 
nonlinear acoustics of a 1D granular chain interfacing with 
a membrane. Both investigations showed that the energy 
eventually transferred from the granular chain to the flexible 
boundary was inversely proportional to the local stiffness at 
the interface.

Nonlinear wave propagation in 2D and 3D granular media 
has been largely unexplored with only a limited number of 
recent works appearing in the literature on force chains, 
and ordered or disordered lattices [27–42]. Perhaps this is 
due to the complex nature of granular interactions in two 
dimensions, which involve axial as well as tangential loads. 
Amnaya et al. [27] and Li et al. [43] numerically investi-
gated impulse-induced wave propagation in closely packed 
2D granular media, observing the propagation of 2D soli-
tary waves. Likewise, Leonard [30] reported on decaying 
propagating pulses in 2D hexagonal granular assemblies. 
Moreover, intense nonlinear energy exchanges in coupled 
2D granular networks were studied by reduced order mod-
els, capturing interesting nonlinear dynamical phenomena. 
These include nonlinear energy equi-partition [34, 44, 
45] and beat phenomena [46]; nonlinear targeted energy 
transfers [10]; and other interesting response regimes [47, 
48]. Leonard and Daraio [28] studied the capacity of 2D 
granular crystals to alter the shape of propagating wave-
fronts in 2D ordered granular arrays, whereas Leonard et al. 
[29] examined the rapid reduction of the amplitudes of pri-
mary pulses traveling through networks of interconnected 
chains of particles. Lisyansky et al. [35] provided analytical 
approximations for primary wave transmission in hexago-
nally packed and damped granular crystals with a spatially 
varying cross section using a nonlinear mapping technique 
and homogenization.

Typically, 2D numerical models account only for axial 
Hertzian interactions between granules and neglect dissipa-
tion effects, particularly those related to relative rotations 
between granules yielding frictional effects. Yet neglecting 
such effects may lead to significant modeling errors and 
deviations of the computational predictions from experi-
mental measurements. This was clearly demonstrated by 
Yang and Sutton [49] who studied the propagation of non-
linear waves in a hexagonally packed granular channel and 
proved that the rotational dynamics of the granules influ-
ence significantly the dynamics. Moreover, Goldenberg and 
Goldhirsch [50], Chattoraj et al. [51] and Charan et al. [52], 
showed that frictional forces play an important role in the 
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dynamics of 2D granular media, even leading in some cases 
to dynamical instabilities. Hence, accounting for rotational 
and frictional effects in 2D ordered granular configurations 
can significantly improve the agreement between simula-
tions and experiments [12, 50]. Furthermore, to the best of 
the authors’ knowledge there is no rigorous prior work on 
the interaction of 2D (or 3D) granular media with flexible 
boundaries. Such a multi-dimensional interaction between 
a strongly nonlinear 2D granular medium and a linearly 
elastic (receiving) medium poses distinct challenges, given 
the highly discontinuous, strongly nonlinear and transient 
nature of the granule-medium interactions, as well as the 
complexity stemming from the dispersive wave dynamics 
in both media. Moreover, rotational frictional effects in the 
granule-to-granule and granule-to-flexible boundary interac-
tions further complicates the computational modeling.

The main aim of the present work is to formulate a com-
putationally efficient and robust computational algorithm to 
model the strongly nonlinear acoustics of interfaces between 
2D ordered granular media and linearly elastic plates; we 
will refer to these discrete–continuous systems as “granular-
solid interfaces”. In this work the acoustics of the thin plate 
will be modeled by the finite element (FE) method based 
on the simplifying plane-stress assumption. In addition, the 
2D planar motions of the granular medium (assuming that 
it is without any pre-compression) will be modeled by the 
discrete element (DE) method. Our approach will take full 
account of compressive Hertzian granule-to-granule and 
granule-to-plate interactions, as well as, of relative gran-
ule rotations yielding frictional effects. Hence, there will be 
three major sources of strong nonlinearity in the 2D granu-
lar media under consideration, namely, Hertzian contacts, 
“free flights” of granules followed by collisions between 
them or with the plate boundary, and frictional tangential 
interactions. As a result, the acoustics of the wave transmis-
sion and scattering through the granular-solid interface is 
expected to be highly discontinuous, nonlinear and com-
plex. Apart from developing the computational algorithm 
discussed herein, we wish to provide an example with a spe-
cific granular-solid interface that will validate the algorithm 
and demonstrate its accuracy and robustness. Moreover, the 
example will highlight the capacity of the granular medium 
to drastically “slow down” the transmitted stress wave front 
and drastically disperse it before it transmits to the thin plate.

The contents of the paper are structured as follows. In 
Sect. 2, we introduce the model for the granular-plate inter-
face. Then in Sect. 3, the iterative/interpolative computa-
tional algorithm based on a combined FE/DE analysis is 
discussed, and convergence criteria are theoretically derived 
to ensure robustness of the computation. An example of 
application is presented in Sect. 4 to illustrate the efficacy 
and accuracy of the computational algorithm and highlight 
the capacity of the granular-solid interface to drastically 

attenuate transmitted stress waves; to this end, compari-
son of the acoustics of the interface to a “monolithic” plate 
system is made. Finally, in Sect. 5 we summarize the main 
results and discuss some possible future research directions.

2  Model of the granular‑solid interface

We consider wave transmission in the 2D granular-solid 
interface shown in Fig. 1. The elastic solid medium is a 
linearly elastic thin plate, whereas the granular interface is 
an ordered network of granules with no prior compression. 
A distributed shock (impulse) excitation is applied at the 
left boundary granules of the granular medium at a direc-
tion normal to the edge of the contacting plate (cf. Fig. 1), 
while, apart from the boundary in contact with the granular 
medium, the other boundaries of the thin plate are assumed 
to be either clamped or traction-free. Moreover, before the 
application of the impulsive excitation the system is in a 
state of rest. As a simplifying assumption we will assume 
that all deformations, rotations and forces are planar. The 
granules interact with each other and with the boundary of 
the plate though axial (Hertzian) and tangential (frictional) 
forces, so there is direct coupling between the granular 
medium and the thin plate. We are interested on the early-
time (primary) wave front transmission through the granular-
solid interface, especially before secondary wave reflections 
at the plate boundaries occur. Following previous works 
[25, 26] we will apply the discrete element (DE) method 
to model the granular medium, and the finite element (FE) 
method to model the elastic plate. Special attention will be 
given to the accurate modeling of the compatibility of defor-
mations, rotations and forces at the boundary between the 
granular medium and the thin plate, as well as the overall 
energy conservation that includes dissipative effects.

Thin plateGranular 
interface

Shock
excitation

Fig. 1  Schematic of the granular-solid interface subject to shock exci-
tation



 C. Wang et al.

1 3

21 Page 4 of 24

2.1  Discrete element (DE) modeling of the 2D 
granular medium

Considering the initially uncompressed 2D hexagonal granu-
lar medium of Fig. 1, we assume that it is composed of a 
number of identical and spherical granules that are in point 
contact with each other prior the application of the applied 
excitation. The granules themselves are linearly elastic. 
However, the granular system is strongly nonlinear due to 
the granule-granule and granule-plate contact interactions. 
Following the application of the shock excitation, and under 
certain assumptions related to small elastic deformations [6], 
the nonlinear planar dynamics of the granules are simulated 
using the discrete element (DE) method that approximates 
each granule as a point mass [6, 53, 54] with three degrees 
of freedom, i.e. two translational degrees of freedom and 
one rotational degree of freedom (cf. Fig. 2). There are three 
sources of nonlinearity in this system, namely (i) Hertzian 
interactions under compressive loads, (ii) collisions between 
granules after separation and “free flight,” and (iii) frictional 
forces due to granule rotations; moreover, such nonlinear 
interactions occur not only between neighboring granules in 
the interior of the granular medium, but also between gran-
ules that are in contact with the boundary of the thin elastic 
plate. All these nonlinearities will be accounted in the DE 
simulation, by constructing a new 2D granular interaction 
model based on a prior model developed by Yang and Sutton 
in [49], and optimally incorporating (important) frictional 
model. Indeed, as discussed in [49], omitting rotational and 
frictional effects in 2D granular networks leads to erroneous 
results (see also [12]).

In the DE model the kinematic equations of motion of a 
single granule are given by (where unless otherwise noted 
bold symbols denote (2 × 1) vectors),

where si denotes the displacement vector and �i = �ik the 
angular displacement pseudo-vector for the ith granule—
where �i denotes the amplitude of �i and k denotes the unit 
pseudo-vector assuming positive anti-clockwise rotation, Ri 
denotes the radius of ith granule, and overdot denotes dif-
ferentiation with respect to the time variable � . In (1) mi 
denotes the mass and Ii the moment of inertia of the ith 
granule, respectively, where for spherical granules, 
Ii = (2∕5)miR

2

i
 . Referring to Fig. 2, the vectors Nij and f ij 

denote the normal and tangential (friction) force acting on 
the ith granule by the jth granule respectively, whereas, Nik 
and f ik denote the normal and friction force acting on the ith 
granule by the thin plate at the boundary, respectively. The 
vector nij is the position vector pointing from the center of 
ith granule to the center of jth granule, and is defined as 
nij =

(
sj − si

)
∕
(|||sj − si

|||
)
 . Similarly, nik is the vector point-

ing from the center of the ith boundary granule perpendicu-
lar to the point k on the boundary of the thin plate (cf. 
Fig. 2); note that the contact point k on the boundary is 
located on a granule–specific point which “moves” with its 
neighboring contacting granule so that the unit vector nik is 
always normal to the boundary of the thin plate.

In the DE model the kinematic Eqs. (1) need to be sup-
plemented by a set of constitutive equations. To this end, 
the normal force Nij between two interacting granules under 
compression obeys the following Hertzian law [49, 53, 54],

where �n,ij denotes the radial relative deformation (overlap) 
between the geometric centers of the two interacting gran-
ules i and j , defined as �n,ij = max

(
Ri + Rj −

|||sj − si
|||, 0

)
 , 

indicating that expression (2) is valid only when the argu-
ment in the parenthesis is non-zero when 𝛿n,ij > 0 while it is 
zero otherwise; this models the absence of interaction 
between granules in the absence of compression between 
them. The scalar constants Aij and �ij are the elastic and vis-
cous damping coefficients in the normal contact force 
between granules, respectively, and depend on the material 
and geometric parameters of the granules, as well as the rela-
tive deformation �n,ij,

where �n is a constant coefficient related to the restitution 
coefficient of the granules [53], E∗ denotes the effective 
Young’s modulus, R∗ the effective radius and m∗ the effec-
tive mass defined as:

(1)
s̈i =

∑
j (Nij+f ij)+

∑
k (Nik+f ik)

mi

; �̈i =
Ri

∑
j (nij×f ij)+Ri

∑
k (nik×f ik)

Ii

(2)Nij = −
(
Aij𝛿

3∕2

n,ij
+ 𝛾ij�̇�n,ij

)
nij

(3)Aij = (4∕3)E∗
√
R∗, �ij = �n

�
m∗Aij

�1∕2
�
1∕4

n,ij

Fig. 2  Free body diagram for granule–granule and granule–thin plate 
interactions, showing normal and tangential unit vectors and forces
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In (4) Ei(j) , Ri(j) , mi(j) and �i(j) denote the Young’s modulus, 
radius, mass and Poisson ratio of the ith(jth) granule. The 
Hertzian model (2) also applies to model the contact 
between the boundary granule and the thin plate by replac-
ing the normal relative deformation �n,ij by the relative nor-
mal deformation �n,ik between the center of the granule and 
the thin plate. In this case the coefficients Aik and �ik are 
defined similarly to Eq. (3) with E∗ =

Ei

1−�2
i

 , m∗ = mi , and 
R∗

→ Ri given that the flat boundary of the thin plane has 
infinite radius of curvature. The model (2) is reliable for the 
collision of two granules in free flight. In this work, we study 
exclusively closely-packed granules. Hence, we will employ 
model (2) for the following computational work (following 
previous works [12, 49]), taking into account that the estima-
tion of the dissipation is approximate, but still valid for 
studying the nonlinear acoustics.

Considering now the tangential force component on a 
granule, if its magnitude is much smaller than the corre-
sponding normal force, the previous Hertzian model is still 
applicable for approximating the normal force [6]. Under 
this assumption, the tangential deformations of the gran-
ules are neglected [49] (this is within the assumptions of 
the DE modeling of the granular dynamics [6]), and we only 
consider the slide frictional force in the tangential direction 
on the granule surfaces. For reasons related to numerical 
stability of the DE simulations, in our work, a continuous 
smooth Coulomb-tanh model [55, 56] is adopted in order to 
ensure convergence of the numerical results. Accordingly, 
the frictional forces applied to the granules due to their rota-
tions are approximated as (cf. Fig. 2),

where � is the friction coefficient (assumed to be constant), 
ks is a parameter controlling the smoothness of the frictional 
law, and �̇�t,ij denotes the (scalar) tangential relative velocity 
between granules at the contact point:

(4)1

E∗
=

1−�2
i

Ei

+
1−�2

j

Ej

;
1

R∗
=

1

Ri

+
1

Rj

;
1

m∗
=

1

mi

+
1

mj

(5)f ij = −𝜇
|||Nij

||| tanh
(
ks�̇�t,ij

)
tij

(6)�̇�t,ij =
[(
ṡi + Ri�̇i × nij

)
−
(
ṡj + Rj�̇j × nji

)]
⋅ tij

In (6) tij denotes the unit vector in the tangential direction 
of the contact interface between the ith and jth granules. 
The unit vector tij is perpendicular to the normal unit vec-
tor nij and the positive direction of tij is defined such that 
tij = k × nij (cf. Fig. 2). Clearly, the friction model (5) is 
also applicable for the tangential force f ik between a bound-
ary granule and the thin plate (cf. Fig. 2) if we replace the 
relative tangential velocity between granules, �̇�t,ij , with the 
relative tangential velocity �̇�t,ik between the contact granule 
and the plate.

At this point we make some remarks regarding the fric-
tional coefficient in the Coulomb-tanh model (5). In particu-
lar, it can be shown that for relatively large tangential rela-
tive velocity |||�̇�t,ij

||| and/or large coefficient ks , so that 
ks
|||�̇�t,ij

||| ≫ 1 , the Coulomb-tanh model approaches the clas-
sical Coulomb friction model; whereas if ks

|||�̇�t,ij
||| ≪ 1 , the 

Coulomb-tanh model approaches the classical viscous 
damping model. We note that as ks increases the visco-elastic 
effect in the Coulomb-tanh model also increases, but dispro-
portionally compared to the overall dissipative effect of the 
model; hence, in that case the visco-elastic effect can be 
neglected compared to the nonlinear friction component. As 
discussed in a later Section, the appropriate choice of the 
coefficient ks plays an important role for correctly accounting 
of the frictional effects, and the numerical stability of the 
numerical DE simulations.

Another way to verify the accuracy of the following 
numerical simulations is physics-based, namely, by check-
ing the conservation of instantaneous total energy in the 
entire granular-solid interface. Indeed, given that the initial 
energy that is induced to the granular medium by the applied 
impulsive loads can be accurately estimated, one can verify 
that at each time instant of the simulation the summation of 
the potential and kinetic energies of the granular medium 
and the plate, as well as the total dissipated energy up to 
that time instant, are conserved. Considering the DE simu-
lations of the granular medium, the instantaneous potential 
and kinetic energy of each granule can be directly estimated. 
For simplicity, the potential energy due to granule-granule 
elastic interaction is equally assigned between the interacting 
granules, whereas the potential energy due to granule-thin 
plate interaction is fully assigned to the granule. Therefore, 
the instantaneous energy of each granule of the granular 
medium is expressed as follows,

(7a)Ebi(t) =
1

2
mi
||ṡi(t)||2 + 1

2
Ii�̇�

2

i
(t) +

∑
j

(1∕5)Aij𝛿
5∕2

n,ij
(t) +

∑
k

(2∕5)Aik𝛿
5∕2

n,ik
(t)
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where Ebi(t) denotes the total instantaneous (kinetic and 
potential) energy on the ith granule and GI(t) the total instan-
taneous energy of the granular medium.

Moreover, since the granular medium is dissipative due to 
structural (viscous) damping in the interior of the granules 
and frictional interactions, the total energy D(t) dissipated up 
to time instant t is computed based on the work performed 
by the dissipative forces,

where Wfriction(t) and Wviscous(t) denote the work performed 
by the frictional and internal viscous forces up to time 
instant t  , respectively. Note that since the work performed 
by the dissipative forces always non-positive, the total dissi-
pated energy being the negative of this work is non-negative 
at each time instant. The total energy of the granular medium 
including the dissipated energy is given by the expressions 
(7) and (8). The total instantaneous energy of the granular-
solid interface is conserved, taking into account the expres-
sions (7) and (8) together with the instantaneous energy 
of the plate. The conservation relation will be evaluated at 
each time instant of the following numerical simulations as 
a check of the accuracy of the computational results.

2.2  Finite element (FE) modeling of the thin plate 
under the plane stress assumption

The plate is assumed to be planar, orthogonal and with 
small thickness in the dimension normal to the plane. The 
thin plate is assumed to have three clamped or traction-free 
edges, while the fourth traction-free edge is in contact with 
the boundary granules and constitutes the granular-solid 
interface. Under these conditions the plane stress model is 
applied so that the full 3D infinitesimal elasticity equations 
of the plate are simplified to a 2D model that is compat-
ible with the corresponding 2D DE model of the granular 
medium. The plane stress approximation has been shown to 
be valid in the limit of small thickness of the plane or curved 
plates [57]. To this end, we start by considering the full 3D 

(7b)GI(t) =
∑
i

Ebi(t)

(8a)Wfriction(t) =

t

�
0

[∑
i

(∑
j

f ij(𝜏) ⋅
(
ṡi(𝜏) + Ri�̇�i(𝜏)tij

)
+
∑
k

f ik(𝜏) ⋅
(
ṡi(𝜏) + Ri�̇�i(𝜏)tik

))]
d𝜏 ≤ 0

(8b)Wviscous(t) =

t

�
0

[∑
i

(∑
j

𝛾ij�̇�n,ij(𝜏)nij ⋅ ṡi(𝜏) +
∑
k

𝛾ik�̇�n,ik(𝜏)nik ⋅ ṡi(𝜏)

)]
d𝜏 ≤ 0

(8c)D(t) = −
[
Wviscous(t) +Wfriction(t)

] ≥ 0

infinitesimal elasticity equations in the interior continuum 
of the plate [58],

where � denotes the stress tensor, � the strain tensor, E the 
elastic (stiffness) tensor, u the displacement vector and � the 

density of the material of the plate. In addition, ∇ represents 
the nabla symbol and (⋅)T the transpose operator. Assuming 
that the thin plate is composed of a metal, it is appropriate 
to assume that it has small capacity for internal (structural) 
dissipation. Notice that in the granular system, we applied 
the DE model where we implicitly assumed that the wave 
transmission in the granular medium is much slower than 
the wave transmission within each granule (i.e., in the bulk). 
Moreover, we assume that the dissipative effect mainly origi-
nates due to granular interactions, where we infer that the 
dissipative effect in the elastic solid (plate) is much smaller 
compared to the dissipative effect in the granular medium, 
so the internal (structural) dissipation in the plate may be 
neglected altogether. This is justified even further, when we 
note that the (linear) acoustics in the plate is much faster 
than the (nonlinear) acoustics in the granular medium (this 
is verified computationally later in this work), that the struc-
tural loss factor of steel is very low, and, lastly, since we are 
only interested in the early-time wave transmission through 
the thin plate, when the effects of structural (internal) dis-
sipation are expected to be minimal due to the relatively 
fast speed of the wave front. This is not so in the granular 
medium where primary pulse transmission will be shown to 
be considerably slower, nonlinear and non-smooth so that 
dissipative effects are stronger compared to the plate and 
need to be accounted for—see discussion that follows.

Imposing the plane-stress assumption we assume that the 
out-of-plane stress components in the z-direction are zero, 
�z = �xz = �yz = 0 , the reduced 2D stress–strain equations 
for equilibrium and compatibility are given by,

(9a)𝜌ü − ∇ ⋅ � = 0

(9b)� = (1∕2)
[
∇u + (∇u)T

]

(9c)� = E�
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where ux and uy denote the displacements in the x and y 
directions, respectively, �x, �y and �xy the normal and shear 
strains, whereas �x, �y and �xy the normal and shear stresses 
in the plane; in addition, E and � denote the Young’s modu-
lus and Poisson’s ratio of the material, respectively. These 
equations are discretized in the following FE simulations.

We note that in the plane-stress assumption the deforma-
tion along the thickness is approximately uniform. How-
ever, the plane stress assumption is not expected to hold at 
the granular-solid interface since the contact area between 
a boundary granule and the plate is expected to be approxi-
mately circular under compression. To overcome this incon-
sistency, we assume that there are small rigid layers that are 
perfectly bonded on the plate at each granule-plate inter-
face, as shown in Fig. 3 [59]. These layers are assumed to 
be perfectly rigid, and with negligibly small thickness and 
mass; moreover, the total length of each rigid layer should 
be much smaller than a characteristic length of the granule-
solid interface so that its effect on the dynamics of the plate 
is small.

Typically, for ordered granular media with identical 
close-packed granules, the length of each rigid layer should 
be much smaller than the radius of the granule (which repre-
sents the previous characteristic length). Then, St. Venant’s 
principle [57] ensures that the rigid layers do not have any 

(10a)𝜌
(
üx, üy

)T
=

(
𝜕𝜎x

𝜕x
+

𝜕𝜎xy

𝜕y
,
𝜕𝜎xy

𝜕x
+

𝜕𝜎y

𝜕y

)T

(10b)
(
�x, �y, �xy

)T
=

(
�ux

�x
,
�uy

�x
,
�ux

�y
+

�uy

�x

)T

(10c)
�
�x, �y, �xy

�T
=

E

1 − �2

⎛
⎜⎜⎝

1 � 0

� 1 0

0 0 (1 − �)∕2

⎞
⎟⎟⎠
�
�x, �y, �xy

�T

significant effects on the response in the far field of the solid 
medium. Note that only rigid body motions are allowed for 
the rigid layers, and as they are approximately massless, the 
forces applied on the rigid layer by the contacting granule 
and the supporting plate are in equilibrium. As an approxi-
mation, we assume that the contact force by the granule is 
applied at the middle of the rigid layer, and that the direc-
tions of the normal and tangential forces on the later are 
invariant. These assumptions are legitimate provided that the 
deformations in the granular-plate system are small. Under 
these conditions, the rigid layers transmit directly compres-
sive forces from the boundary granules to the plate without 
violating the overall plane-stress approximation. Moreover, 
the normal and tangential forces exerted by the granules to 
the rigid layers can be computed as discussed previously; 
these forces are transmitted through the rigid layers directly 
to the plate.

The finite element (FE) method was applied to discre-
tize the 2D plane-stress equations of motion (9a) subject 
to the approximate constitutive Eq.  (10c). In this work, 
8-node quadrilateral isoparametric elements [60, 61] are 
employed for the discretization of the elastic continuum. 
Moreover, special care is given on the FE modeling of the 
rigid layers that connect the contacting granules to the thin 
plate. To this end, we impose multi-point constraints on the 
nodes of the FE mesh on each rigid layer, so that the transla-
tional and tangential degrees of freedom (x- and y-directions, 
respectively in Fig. 3) of the center node of each rigid layer 
as a whole are considered as the driving degrees of freedom, 
whereas the other nodes of the rigid layer are considered as 
driven; this can be performed by formulating a transforma-
tion matrix and reducing the driven degrees of freedom. The 
modified result of FE modeling is the following discretiza-
tion of the thin plate with the attached rigid layers,

(11)Mẍ + Kx = F

Fig. 3  Schematic diagram of 
the contact interaction model 
between a boundary granule and 
the thin plate through the rigid 
layer, with interaction forces 
and displacements at the bound-
ary shown (positive directions 
are indicated); note the notation 
for the normal and tangential 
interaction forces applied to k-th 
node of the plate, Nk ≡ Nik and 
fk ≡ fik , respectively



 C. Wang et al.

1 3

21 Page 8 of 24

where x denotes the displacement vector involving the gen-
eralized displacements of all nodes, M the system mass 
matrix of the plate, K the corresponding system stiffness 
matrix, F the force vector applied to the plate, and overdot 
the differentiation with respect to the time variable � . It is 
worth mentioning that the elements related to the driving 
degrees of freedom (DOFs) in F are the corresponding cou-
pling interaction forces applied to the rigid layers by the 
granular medium with which it couples, and the other ele-
ments remain zero.

Furthermore, in correspondence to the previous energy 
measures that were formulated the granular medium, we 
introduce the following energy measures for the thin plate,

where Ee denotes the instantaneous energy of each finite 
element, xe the element displacement vector, Ke and Me the 
element stiffness and mass matrices, respectively, and PE the 
total instantaneous (kinetic and elastic) energy of the plate. 
The conservation law is given by GI(t) + D(t) + PE(t) = E , 
where E is the initial energy induced to the system by the 
shock excitations. The energy measures of the plate given by 
(12), together with the corresponding measures (7) and (8) 
for the granular medium, will enable the detailed investiga-
tion of complex, nonlinear energy transmission and reflec-
tion at the interface between the granular medium and the 
thin plate.

In synopsis, the integrated granular-solid system is gov-
erned by the nonlinear Eq. (1) and the linear Eq. (11), which 
are coupled through the coupling force vector F applied to 
the plate through the rigid layers. Clearly this vector cannot 
be evaluated in closed form since it is determined by the 
solution itself, i.e., by the transient record of the highly non-
linear and discontinuous (non-smooth) interactions between 
the boundary granules and the free edge of the plate. The 
accurate and robust numerical computation of this transient 
force vector requires special consideration and is the main 
focus of this work; this is discussed in detail in the next 
Section where the computational algorithm is discussed in 
detail. By solving the coupled equations of motion, we can 
study the complex, early-time nonlinear wave scattering 
that occurs at the granular-solid interface and characterize 
the (energy dependent) transmission and reflection features 
of the governing nonlinear acoustics. To the authors’ best 
knowledge this is the first such computation reported in the 
literature.

(12a)Ee =
1

2
(xe)TKe(xe) +

1

2
(ẋe)TMe(ẋe)

(12b)PE =
∑

Elements

Ee =
1

2
xTKx +

1

2
ẋTMẋ

3  Computational algorithm

A computational algorithm was developed to model the 
complex acoustics of the granular-solid interface by numeri-
cally solving the strongly nonlinear DE Eq. (1) for the granu-
lar medium concurrently to the linear FE Eq. (11) for the 
thin plate. These two sets of equations are coupled through 
the interaction forces at the 2D interface, which need to be 
solved accurately and robustly. A similar (in spirit) algo-
rithm was developed in two previous works [25, 26], but for 
much simpler, 1D granular media (where friction effects do 
not need to be accounted for) interacting with flexible sys-
tems (chords or membranes). Special consideration is given 
to the numerical stability of the algorithm, in view of the 
frictional effects in the granular medium which may lead to 
instabilities [50–52].

Given the great disparity between the DOFs of the linear 
FE Eqs (11) and the nonlinear DE Eq. (1) (as there are much 
more many degrees of freedom in the FE plate model), it 
is necessary to solve Eqs (11) and (1) separately. Moreo-
ver, it is critical to accurately compute the highly discon-
tinuous, nonlinear interaction forces that couple the FE and 
DE models; as highlighted in Fig. 3, these forces represent 
normal (Hertzian) and tangential (frictional) contact forces 
between the boundary granules and the free edge of the thin 
plate. In this work, we will compute the interaction forces 
through a robust iterative computational algorithm, whose 
origin can be traced in [25, 26], but for much simpler, 1D 
granular media interacting with flexible systems (chords or 
membranes) at their boundaries. Here we provide a brief 
synopsis of the basic elements of the algorithm, and for a 
more detailed exposition we refer to “Appendix 1”.

The computational algorithm is outlined in the flow chart 
of Fig. 13 in “Appendix 1”. The coupled granular-solid sys-
tem viewed as an integrated acoustical system is discretized 
into time steps. Central to the algorithm is the accurate com-
putation of the complex, highly discontinuous and strongly 
nonlinear interaction forces between the granular medium 
and the plate. In terms of notation, the subscript s ( s + 1) 
denotes a vector evaluated at the time instant �s ( �s+1) , where 
the time step is given by Δ� = �s+1 − �s . The force vector 
applied to the plate in (11) at the time instant �s+1 is denoted 
by Fs+1 , containing all interaction forces. The only non-zero 
terms in the global force vector Fs+1 are located at the nor-
mal and tangential driving DOFs; for simplicity these are 
partitioned in terms of the normal force vector Ns+1 and the 
tangential force vector f s+1 at the given time instant �s+1 , so 
Fs+1 ≡ (

Ns+1, f s+1
)
 . Specifically, the k-th elements in the 

force vectors Ns+1 and f s+1 are the components at the normal 
and tangential DOFs of the node at the k-th contact point, 
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that is, the normal and tangential forces, Nk,s+1 and fk,s+1 , 
respectively, applied at the k-th contact point (node) on the 
plate at the time instant �s+1 (cf. Fig. 3). As discussed below 
an iterative method is employed to compute the force vec-
tors Ns+1 and f s+1 , with initial guesses (at iteration j = 1) 
chosen as N(1)

s+1
= NC

s
 and f (1)

s+1
= fC

s
 . Here the superscript 

C denotes convergence, so NC
s

 and f C
s

 are the converged 
normal and tangential interaction forces at the previous time 
instant �s , respectively; furthermore, the order of the itera-
tion is denoted by the superscript in parenthesis.

The iteration scheme is performed in two phases. In the 
first phase we consider exclusively the response of the thin 
plate. To demonstrate the iterative scheme, we start with the 
first iteration ( j = 1 ) in the flow chart of Fig. 13 (“Appendix 
1”) at the time instant �s+1 . The first estimate for the force 
vector applied to the plate is taken as F(1)

s+1
= FC

s
 , as dis-

cussed previously Then, the first iteration of the response of 
the plate, x(1)

s+1
 , at the same time instant �s+1 is computed by 

solving Eq. (11) using the �-Newmark method under on the 
assumption of constant acceleration between successive time 
steps (see “Appendix 1”). Then interpolation is used to com-
pute the first iteration of the plate response in the entire 
interval � ∈

[
�s, �s+1

]
 . This also computes the responses of 

the rigid layers at the interface, which act, in essence, as 
moving boundaries for the DE system governing the granu-
lar medium. This completes the first phase of the first itera-
tion for the plate response. In the second phase of the first 
iteration (i.e., still with j = 1 ), we compute the response of 
the granular medium by solving numerically the DE Eqs (1) 
of the granular medium in the time interval � ∈

[
�s, �s+1

]
 . 

This is performed using the fourth order Runge–Kutta 
method (see details in “Appendix 1”). Hence, in the second 
phase of the first iteration, the response of the granular 
medium is computed for � ∈

[
�s, �s+1

]
 by “relaxing” the 

positions of the contact points with the plate; this, in turn, 
informs the updated interaction force vector applied to the 
plate. This yields the second iteration for the interaction 
forces, F(2)

s+1
≡ (

N
(2)

s+1
, f

(2)

s+1

)
 , at the time instant �s+1 by apply-

ing Eqs (2) and (5) with the first iteration responses of the 
plate and the granular medium. This completes the first 
iteration.

Then, the computation proceeds to the second iteration at 
the time instant �s+1 , setting j = 2 and repeating the previous 
two phases, and so on. In essence, at each step of the itera-
tion at the (fixed) time instant �s+1 we evaluate the responses 
of the rigid layers at the boundary of the plate (during the 
first phase of the iteration), and then compute the response 
of the granular medium for � ∈

[
�s, �s+1

]
 assuming that the 

rigid layers at the plate are acting as moving boundaries (at 
the second phase of the iteration). Ultimately, this iterative 

scheme generates a nonlinear map relating the j-th iterates 
of the interaction forces applied to the rigid layers on the 
plate to the corresponding (j + 1) th iterates, or, in symbolic 
form, 

[
N

(j)

s+1
, f

(j)

s+1

]
→

[
N

(j+1)

s+1
, f

(j+1)

s+1

]
 at the current time step 

�s+1 . With increasing iterations, the interaction forces are 
expected to converge, as discussed in “Appendix 1”. Sup-
posing that convergence is achieved at the J-th iteration, we 
denote the converged interaction force vectors at the time 
instant �s+1 as, 

(
NC

s+1
, fC

s+1

) ≡ (
N

(J)

s+1
, f

(J)

s+1

)
 . Once the interac-

tion forces applied to the plate have converged, the plate and 
granular medium responses at the current time step �s+1 will 
have converged as well, and the computation proceeds to the 
next time step �s+2 , where the outlined iteration scheme is 
re-initiated. This is repeated until the entire time interval T  
of the simulation is exhausted and completes the computa-
tional algorithm according to the flow chart of Fig. 13.

Central to the numerical convergence of the computa-
tional algorithm is the stability of the global map [
N

(j)

s+1
, f

(j)

s+1

]
→

[
N

(j+1)

s+1
, f

(j+1)

s+1

]
 generated by the iterations. 

This issue is discussed in detail in “Appendix 1”, so here we 
provide a synopsis of a set of theoretically predicted condi-
tions to ensure convergence. To start with, to ensure the 
convergence of the �-Newmark method, the time step incre-
ment Δ� should be sufficiently small so that variations of the 
interaction forces at a contact point has negligible effects on 
the responses at the other contact points at the current time 
instant �s+1 . It follows that, since the interaction forces at a 
contact point of the plate have a local effect, the next itera-
tion of the interaction forces at that contact point should also 
be determined solely by the local response at the contact 
p o i n t .  A c c o r d i n g l y ,  t h e  g l o b a l  m a p [
N

(j)

s+1
, f

(j)

s+1

]
→

[
N

(j+1)

s+1
, f

(j+1)

s+1

]
 can be decomposed into indi-

vidual 2D local maps 
(
N

(j)

k,s+1
, f

(j)

k,s+1

)
→

(
N

(j+1)

k,s+1
, f

(j+1)

k,s+1

)
 at 

each contact point (say k ) at the current time step. Clearly, 
the global map is stable if all 2D local maps are stable (i.e., 
for every contact point k on the plate). Following the analy-
sis in “Appendix 1”, the 2D local map is stable if the moduli 
of both of its linearized eigenvalues are smaller than unity. 
Moreover, as an approximation we can use the converged 
data of the previous time step to judge whether the iteration 
is stable or not at the current time step. Therefore, the condi-
tions for convergence of the local map can be formulated as 
follows,

(13a)

��𝜆k1,s+1�� =1

2
E∗

√
R∗Δ𝜏2Tk,n

�
M +

1

4
KΔ𝜏2

�−1

T
T
k,n

�
uC
k,p,n,s

− uC
k,b,n,s

�1∕2

+
< 1
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where �k1,s+1 and �k2,s+1 are the linearized eigenvalues of the 
local map 

(
N

(j)

k,s+1
, f

(j)

k,s+1

)
→

(
N

(j+1)

k,s+1
, f

(j+1)

k,s+1

)
 and the k-th con-

tact point and time instant �s+1 . Clearly, for convergence of 
the algorithm the conditions (13a, b) should apply at every 
contact point and at every time step �s+1 . In (13a, b) super-
script C denotes the converged value at the previous time 
instant �s , Δ�  the time step, 

(
uC
k,p,n,s

− uC
k,b,n,s

)
 and (

vC
k,p,t,s

− vC
k,b,t,s

)
 the relative normal displacement and tan-

gential velocity, respectively, between the plate and the con-
tacting granule at the k − th contact point, and Tk,n , Tk,t are 
sparse vectors whose only non-zero terms, equaling unity, 
are located at the normal and tangential driving DOFs at the 
k − th contact point, respectively. Lastly, from the previous 
notation, NC

k,s
 denotes the converged normal force applied at 

the k − th contact point (node) on the plate at the time instant 
�s . Note that the convergence criteria (13a, b) are formulated 
in terms of the response at all contact points k on the rigid 
layers of the plate. The criteria (13a, b) can be conveniently 
checked at each iteration and time step in tandem with the 
main computation of the interaction forces and responses.

Based on the conditions (13a, b) the critical value for the 
time step Δ� for convergence of the computation can be esti-
mated at each time instant. Note that as the friction coeffi-
cient tends to infinity, ks → +∞ , and vC

k,p,t,s
− vC

k,b,t,s
→ 0 , the 

critical time step tends to zero, Δ� → 0 . Therefore, the Cou-
lomb friction model (obtained in the limit of the current 
Coulomb-tanh friction model as ks → +∞) leads to diver-
gence of the computational algorithm. This was confirmed 
by direct numerical simulations. Following this reasoning, 
in the following applications of the computational algorithm 
we select ks such that ksvch ≫ 1 , where vch is a characteristic 
velocity of the acoustics. As discussed in [55] a sufficiently 
large value of ks yields results close to the Coulomb friction 
model; however, if ks becomes exceedingly large, in practice 
it is more difficult for the iteration algorithm to converge. 
Similarly, the iteration algorithm has convergence problems 
for any discontinuous friction model. On the contrary, based 
on (13a, b) the numerical algorithm can easier converge for 
larger local mesh sizes of the plate close to the contact 
points, and/or smaller interaction forces applied to the plate. 
Hence, parameters such as, the time step Δ� , the friction 
parameter ks , and the local mesh size may be regarded as 
important control parameters affecting the convergence of 
the algorithm. In a physical context, the convergence rela-
tions (13b) indicates that the critical value of the time step 
may occur when the relative tangential velocity at the 

(13b)

||𝜆k2,s+1|| =1

2
𝜇ks

|||N
C
k,s

|||Δ𝜏Tk,t

(
M +

1

4
KΔ𝜏2

)−1

T
T
k,t
cosh

[
ks

(
vC
k,p,t,s

− vC
k,b,t,s

)]−2
< 1

interface is close to zero, where the friction force is highly 
sensitive to the local relative velocity.

4  Application to specific a granular‑solid 
interface

We now demonstrate the efficacy of the computational algo-
rithm and, in the process, test the validity of the previous 
theoretical convergence analysis. To this end, we consider 
the 2D granular-solid interface of Fig. 4, composed of a 
thin plate and an ordered granular medium with fourteen 
hexagonally placed granules, of which the five right bound-
ary granules are in contact with the edge of the plate. The 
top and bottom edges of both the granular medium and the 
plate are assumed to be clamped (fixed), and the right edge 
of the plate traction-free. The middle region of the left edge 
of the plate is in contact with the granular medium, while 
the remaining region of the left edge of the plate is clamped 
as well. Uniform impulse excitations are applied to the left 
granules of the granular medium at � = 0 , and the state of 
the system at � = 0− is zero; this amounts to imposing uni-
form initial velocities equaling v0 to the five left granules of 
the medium at � = 0+.

Following [49], the friction and damping coefficients of 
the granular medium are selected as � = 0.099—cf. rela-
tion (5), and �n = 6.313 × 10−3—cf. relation (3), respec-
tively. Unless otherwise noted, the intensity of the uniformly 
applied impulse is selected so that v0 = 0.5 m/s . This level 
of impulse intensity ensures that the elastic strains and 
stresses, and contact forces in the granule-to-granule and 
granule-to-plate interactions are within the elastic limit of 
the material and fulfill the requirements of DE modeling 
of the granular medium [6]. Given that the rigid layers on 
the plate in contact to the granular medium should be much 
smaller than the (common) radius of the granules, R , their 
lengths are selected as R∕10 , a value which is comparable to 
the maximum expected contact diameter at the interface (cf. 

Fig. 4  The granular-solid interface considered in the application
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Fig. 5). In addition, considering vch = v0 as the characteris-
tic velocity of the acoustics and imposing the convergence 
requirement ksv0 ≫ 1 , we select the Coulomb-tanh friction 
model parameter as ks = 100 s/m . We note that the same 
numerical value for this parameter was used also in [55], 
with the results obtained by the Coulomb-tanh model being 
close to those obtained by the Coulomb model. Finally, for 
simplicity we designate the boundary granules in contact 
with the edge of the plate as “granules 1–5” (cf. Fig. 5). 
Lastly, both the granular medium and the elastic plate are 
made of steel, and their geometrical and material parameters 
are listed in Table 1.

The FE mesh for the thin plate is depicted in Fig. 5. To 
ensure accuracy and convergence of the computational algo-
rithm, we considered a variable-size FE mesh, with smaller 
finite elements being placed in the neighborhoods of the five 
contact points. At each contact point, the two smallest plate 
finite elements are the ones attached to the rigid layer; these 
have dimensions 

(
5 × 10−4

)
×
(
5 × 10−4

)
m2 , whereas the 

rigid layer has negligible thickness and length 1 × 10−3 m 
(cf. detail in Fig. 5). Taking into account that the speed of 
sound in the steel plate is nearly 5700 m/s , in the initial sim-
ulation we consider the constant time step, Δ� = 2 × 10−8 s , 
to best capture the nonlinear stress wave transmission across 
the granule-plate interface. The total simulation time is set 
to T = 0.2 ms . A preliminary estimation indicates that for 
the expected range of relative normal displacements and 

tangential velocities at the granular-solid interface, the first 
convergence condition (13a) is always satisfied; therefore it 
is the second convergence criterion (13b) that solely deter-
mines the convergence of the algorithm.

Before we test the efficacy of the computational algo-
rithm, we introduce an additional energy-based convergence 
measure that, apart from the benefit of being physics-based, 
it provides a direct measure of the accuracy and consistency 
of the numerical results at each time step. To this end, at 
each time instant of the computation we compute the total 
instantaneous energy of the granular-solid interface by add-
ing, (i) the total instantaneous energy (potential and kinetic) 
of the granular medium—cf. relations (7a, b), (ii) the total 
instantaneous energy of the plate—cf. relations (12a, b), 
(iii) the cumulative energy dissipated by structural (viscous) 
damping in the granules up to that time instant—cf. relation 
(8b), and (iv) the cumulative frictional energy dissipated 
due to relative rotations at granule-to-granule and granule-
to-plate interfaces up to that time instant—cf. relation (8a). 
Note that we have neglected any dissipative effects in the 
steel plate, as its structural damping is very low (compared 
to the granular medium), and since we are only interested 
in the early-time propagation of the stress wave front where 
the effects of dissipation in the plate are expected to be mini-
mal due to the relatively fast wave speed in that medium. 
To ensure accuracy and convergence of the computation, at 
each time instant the previous summation of energies should 
be equal to the total input energy induced by the impul-
sive excitation. This type of convergence criterion based on 
energy preservation will prove to be highly efficacious for 
the following highly nonlinear and discontinuous acoustics 
of the granular-solid interface.

The results of the simulation are depicted in Fig. 6. In 
Fig. 6a we show the instantaneous energies of the granu-
lar medium and the plate, as well as the total instantaneous 

Fig. 5  Variable FE mesh topol-
ogy for the thin plate—the 
detail shows the local topol-
ogy of the mesh close to each 
contact point

Table 1  System parameters of the granular-solid interface (cf. Fig. 4)

Elastic 
modulus

Pois-
son’s 
ratio

Granule 
radius

Plate 
thick-
ness

Plate lateral 
dimensions

Material 
density

200 GPa 0.3 0.01 m 0.005 m 0.07 m × 0.14 m 7850 N/
m3
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energy of the entire interface, which, since it includes the 
dissipated energy, is preserved at each instant of time. Note 
that the simulation ends at ∼ 0.055 ms since at then the 
algorithm cannot converge and yields numerical instabil-
ity. Yet, the total energy preservation convergence criterion 
holds before the simulation stops, verifying the accuracy 
of the simulation before the onset of numerical instability. 
The validity of the convergence condition (13b) is shown 
in Fig. 6b, which depicts the moduli of the three eigenval-
ues �k2, k = 1, 2, 3 , at the corresponding contact points (due 
to the symmetry of the interface and the uniform load dis-
tribution we only need to consider three of the five con-
tact points). We deduce that, as predicted in the previous 

Section, at the time instant when the modulus of at least 
one of the eigenvalues (13a, b) exceeds unity, the iteration 
scheme ceases to converge. This result validates the theoreti-
cal stability analysis and highlights its predictive capacity. 
Furthermore, it proves that even very small, but fixed, time 
steps may introduce numerical instability.

To eliminate the numerical instability, we change to a 
self-adaptive (variable) time step while still keeping the 
maximum time step to 2 × 10−8 s . To this end, at each time 
instant of the computation the critical time step increment 
Δ�cr is calculated based on the convergence condition (13b), 
and the actual time step is chosen to be smaller than the crit-
ical one, Δ𝜏 < Δ𝜏cr ; according to the previous convergence 

Fig. 6  Initial simulation with fixed time step Δ� = 2 × 10−8 s : a 
Instantaneous energies of the granular medium (purple curve) and 

plate (blue curve), respectively, and total instantaneous energy 
(black line) that includes dissipative effects; b eigenvalue moduli ||�k2||, k = 1, 2, 3 computed from relation (13b)

Fig. 7  Simulation with self-adaptive time step, v0 = 0.5 m/s : a 
Instantaneous energies of the granular medium (purple curve) and 
plate (blue curve), respectively, and total instantaneous energy 

(black line) that includes dissipative effects; b eigenvalue moduli ||�2k||, k = 1, 2, 3 from (13b); dashed line indicates the arrival of the 
primary stress wave front at the granular-plate interface
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analysis this should ensure the convergence of the interac-
tion force vector at the given time instant. Since the critical 
time step varies with time, the actual time step will be self-
adaptive. The computational results with self-adaptive time 
step are depicted in Fig. 7. Note that total energy remains 
constant at each time instant, verifying the accuracy and 
robustness of the numerical computation. Moreover, the 
results depicted in Fig. 7b confirm that the computational 
algorithm converges at all time steps, given that the moduli 
of the eigenvalues �2k at all contact points remain smaller 
than unity.

From Fig. 7a we note that there occur intense energy 
exchanges between the granular medium and the plate, start-
ing at � ∼ 0.7 ms when the early-time stress wave front prop-
agating through the granular medium reaches the boundary 
with the plate. Following this, the total energy in the plate 
reaches its maximum at � ∼ 0.12 ms , while at � ∼ 0.17 ms 
the energy exchange stops as all five boundary granules 
(1–5) lose contact with the plate boundary. At the time of 
loss of contact the residual energy that is localized in the 
plate is small, namely, only about 10% of the total impulsive 
energy; the energy of the plate remains at this constant low 
level until the boundary granules (or a subset of them) regain 

contact with the plate, at which time the energy exchanges 
between the granular medium and the plate resume. This, 
however, occurs at a much later time instant, not shown 
in Fig. 7. Finally, we note that the frictional and structural 
damping effects in the granular medium dissipate a mod-
erate portion of the input energy, which steadily increases 
with time.

To gain further insight into the nonlinear acoustics of 
the wave transmission through the granular-solid interface, 
in Fig. 8 we depict successive early-time snapshots of the 
spatial distributions of the total instantaneous energy densi-
ties of the granular medium and the plate. A normalization 
is introduced so that the initial energy densities of the left 
granules (the ones directly excited by the applied impulsive 
loads) are equal to unity:

In (14) ŵ and w denote normalized and unnormalized 
energy density, respectively, Vb and mb the volume and mass 

(14)ŵ =
w

w0

= w ⋅

[
(1∕2)mbv

2

0

Vb

]−1

= w ⋅

[
(1∕2)𝜌bv

2

0

]−1

Fig. 8  Snapshots of normalized energy density ŵ of the granular-
solid interface for v0 = 0.5 m/s : a � = 0.001 ms , b � = 0.08 ms ; c 
� = 0.10 ms , d � = 0.11ms , e � = 0.13 ms , and f � = 0.15 ms ; note 

that at the later-tame snapshots (d–f) secondary wave reflections have 
already occurred from the boundaries of the plate
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of each granule, respectively, and v0 the initial velocity of the 
five left granules at � = 0+ . For the granular medium, the 
energy density of each granule is computed as wb = Ebi∕Vb , 
where Ebi denotes the total instantaneous energy of the i-th 
granule—cf. relation (7a). For the plate, the energy density 
is defined as wp =

[
Ee∕

(
Aet

)]
 , where Ee denotes the total 

instantaneous energy of a specific finite element—cf. rela-
tion (12a), Ae the area the finite element, and t the thickness 
of the plate.

A first observation is that, since the boundary conditions 
at the left boundary of the plate are not continuous, intense 
stress concentration occurs at the points of discontinuity 
where the energy density attains relatively large values. Pri-
mary wave transmission from the granular medium to the 
plate is depicted only in the early-time snapshots, namely 
Fig. 8a–c, that is, before the primary wave front has under-
gone secondary reflections from the plate boundaries. Exam-
ining in more detail the transmitted wave front, we note that 
most of the energy transmitted from the granular medium to 
the plate occurs through the three middle contacting gran-
ules 2–4. This is especially evident when one considers the 
snapshot of Fig. 8b corresponding to � = 0.08ms , where 
intense “focusing” of the shock energy in granules 2 and 4—
and to a lesser extent in granule 3—is deduced. The capacity 
of the granular medium for nonlinear focusing (or defocus-
ing) of propagating waves (and energy), is one of the most 
interesting aspects of its acoustic and can be beneficial in its 
application as passive shock mitigator.

Another interesting aspect of the nonlinear acoustics in 
the granular-solid interface is deduced when we consider the 
partition of the instantaneous energy of its two constituent 
parts in terms of kinetic and potential energy. In Fig. 9a, b 
we depict the normalized instantaneous kinetic, potential 
and total energies in the granular medium and the plate, 

respectively. It is interesting to note that the 2D granular 
medium acts nearly as a “global (nonlinear) oscillator”, 
given the coherent exchange between its kinetic and poten-
tial energies in a single cycle during the simulation period 
0 < 𝜏 < 0.2 ms . No such exchange is realized in the (lin-
ear) plate, where its energy is mainly potential, with a small 
residual kinetic energy component (cf. Fig. 9b). The “global 
oscillator” behavior is even more evident in Fig. 9c where 
the entire granular-solid interface is considered; hence, it 
appears that the granular medium introduces a remarkable 
coherence in the entire early-time acoustics of the interface. 
The striking behavior of the granular medium as a coher-
ent global nonlinear oscillator might explain its capacity 
to confine (localize) and locally dissipate a major portion 
of the induced impulsive energy, while “releasing” only a 
small portion of it to the plate, mainly in the form of poten-
tial energy. Previous studies (e.g., [62, 63]) have demon-
strated both theoretically and experimentally the capacity 
of nonlinear oscillators for energy localization and motion 
confinement.

The previous findings are corroborated by the energy 
plots of Fig. 7a, where the maximum percentage of the 
applied shock energy transmitted to the plate is nearly 41%, 
with a moderate part of shock energy being dissipated by 
frictional and structural damping in the granular medium, 
and a larger part being confined (localized) in the granular 
medium itself. Moreover, as time progresses and the sec-
ondary reflected wave from the right boundary of the plate 
reaches the boundary with the granular medium, a large por-
tion of the shock energy backscatters from the plate to the 
granular medium, so by the time of loss of contact of the 
boundary granules (at � ∼ 0.17 ms—not shown in Fig. 8), as 
low as ∼ 10% of the input shock energy remains in the plate; 

Fig. 9  Instantaneous energy partition in the granular-solid interface in terms of kinetic and potential energies in the a 2D granular medium, b 
plate, and c entire granular-solid interface, for v0 = 0.5 m/s
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of course this energy confinement is not permanent, since at 
a later time the boundary granules regain contact.

These acoustical phenomena originate from the strongly 
nonlinear and highly discontinuous nature of the granule-
to-granule and granule-to-plate interactions, and as shown 
below, greatly enhance the shock mitigation capacity of the 
granular-solid interface. What is even more noteworthy is 
that the nonlinear acoustics of the interface is self-adaptive 
to (or tunable with) the applied shock excitation; that is, 
the wave transmission and scattering in the granular-plate 
interface is dependent on the intensity level of the applied 
shock excitation, and on its frequency and wavenumber con-
tent. This is an additional interesting feature of the nonlinear 
acoustics, which, however, is typical of the highly nonlinear 
granular medium studied herein, e.g., cf. [6]. Since in the 
considered the applied shock is uniform in space and ideal-
ized in time (as it is generalized a delta-function), in what 
follows we will highlight only the dependence of the non-
linear acoustics on energy, that is, by varying the intensity 
of the applied shock excitation.

To this end, we reconsider the granular-solid interface of 
Fig. 4, but now consider a higher-intensity load of uniform 
impulses corresponding initial velocity v0 = 1.0 m/s for the 
left boundary granules; this will be referred to as the “high 
energy case” in Fig. 10. For comparison, in the same plot we 
reproduce the energy plots of Fig. 7a for v0 = 0.5 m/s , which 
we will designated as the “low energy case”. We note that in 
the higher energy case the wave transmission in the granular 
medium is faster, so that energy exchange with the plate 
starts occurring earlier; this clearly highlights the energy 
dependence of the speed of the propagating stress wave in 
the 2D hexagonally ordered granular medium, which results 
due to the nonlinear constitutive relation and the discontinu-
ous topology of the medium itself. In the high energy case, 
the energy transmitted in the plate reaches its maximum 

at � ≈ 0.1 ms (earlier than the lower energy case), while 
a larger proportion of the initial impulsive energy is now 
transmitted to the plate at that time instant. Moreover, at the 
high energy case, a slightly higher portion of the impulsive 
energy gets “trapped” in the plate after the right boundary 
granules of the medium loose contact at � ≈ 0.15ms.

In the next numerical simulations, we highlight the capac-
ity of the granular medium to drastically “delay” the early-
time transmitted wave through the interface, and strongly 
disperse it, thus greatly attenuating the intensity of the wave 
that is eventually transmitted to the plate. These additional 
nonlinear features of the granular medium demonstrate its 
efficacy as effective shock mitigator. To this end, we con-
sider a “monolithic” plate system, composed of the plate 
of the system of Fig. 4 (labelled the “right” plate), but with 
the granular medium replaced by a “left plate” of lateral 
dimensions analogous to the 2D granular medium, and 
material-thickness properties identical to the right plate 
(cf. Fig. 11a). Furthermore, the boundary conditions of 
the monolithic system are analogous to the granular-solid 
interface (cf. Fig. 11a, c). The resulting system is linear and 
homogeneous, and, under identical shock excitation can 
be used to compare the wave transmission to the granular-
solid interface. Given that the response of the monolithic 
system is computed by FE discretization, it is not possible to 
apply a uniformly distributed impulse load as in the granu-
lar medium of Fig. 4. To this end, a uniformly distributed 
impulse is applied at the left boundary of the left plate in the 
form of a half-sine force in time. The duration of the impulse 
is 1 μs and its intensity, 20000 N/m . Since the duration of 
the applied force is much smaller than the anticipated time 
scale of the wave propagation, we may consider this loading 
condition as a good approximation of an idealized impulse 
(that is instantaneously applied). This corresponds to input 
energy by the shock equal to 0.0096 J . For a fair comparison, 

Fig. 10  Instantaneous energies 
of the granular medium and the 
plate, and total instantaneous 
energy with/without dissipative 
effects, for v0 = 0.5 m/s (low 
energy) and v0 = 1.0 m/s (high 
energy); note the dependence of 
the acoustical response on the 
intensity of the applied shock
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the exact same amount of input energy is considered for the 
impulsive loading at the granular-solid interface (cf. Fig. 4) 
corresponding to an initial velocity of v0 = 0.3414 m/s for 
its five left granules. Under such “equal forcing” conditions, 
we wish to compare the transmitted energy in the monolithic 
system to the corresponding energy in the granular-solid 
interface.

In Fig. 11b we depict the instantaneous total energies 
in the left and right plates of the monolithic system and 
compare them to the corresponding energy measures for 
the granular-plate interface depicted in Fig. 11d the for the 
same time window. Note that since we neglect dissipative 
effects in the monolithic plate system, its total instantane-
ous energy is conserved. The comparison of these results 
shows that the 2D granular medium inflicts a drastic delay 
in the primary propagating front; indeed, whereas in the 
monolithic system the primary stress wave reaches the 
left boundary of the right plate in less than 0.01 ms, in the 
granular-plate interface the time of arrival of the wave front 
at the plate boundary increases to ∼ 0.07ms . Clearly, this 
significant time delay is caused by the highly discontinuous 
and nonlinear stress wave transmission through the hexago-
nal 2D granular medium, and also by its capacity to redirect 
a portion of the shock energy in a direction normal to the 
main (axial) direction of wave propagation (cf. Fig. 9). The 
resulting intense nonlinear wave dispersion in the granular 

medium is reflected by the highly diminished transmitted 
energy in the right plate of the granular-plate interface, with 
the maximum energy transfer reaching ∼ 39% of the initial 
impulsive energy, compared to ∼ 88% for the monolithic 
plate system. A last comment regards the time scales govern-
ing the acoustics of the systems considered. Comparing the 
energy transmission plots of Fig. 11b, d we deduce that the 
linear acoustics of the monolithic plate system is governed 
by faster time scales (or higher frequencies) compared to 
the strongly nonlinear (and energy-tunable) acoustics of the 
granular-solid interface. In fact, the 2D granular medium 
appears to greatly “soften” the acoustics, compared to the 
much “stiffer” acoustics of the monolithic plate system.

Lastly, in Fig. 12 we demonstrate more clearly the time 
delay and strong dispersion in the acoustics caused by the 
2D granular interface, by comparing certain snapshots of 
the normalized energy density ŵ of the previously discussed 
granular-solid interface and the monolithic plate system. The 
snapshots of Fig. 12a, c depict the arrival of the primary 
stress wave front at the granular-plate interface, and the 
boundary between the left and right plates of the monolithic 
system, respectively. We note that, whereas in the granular-
solid interface most of the energy of the early-time wave 
front gets strongly dispersed in the granular medium before 
it reaches the interface with the plate, in the case of the 
monolithic system most of the impulsive energy remains 

Fig. 11  Comparison of the 
responses of the “monolithic” 
plate system and the granular 
interface subject to same energy 
impulsive loads: Configuration 
and energy transmission meas-
ures of (a, b) the monolithic 
plate system, and (c, d) the 
granular-solid interface
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localized in the primary wave front throughout the early-
time wave transmission. Therefore, contrary to the mono-
lithic plate system where most of the impulsive energy gets 
transmitted from the left plate to the right in a high-intensity 
primary wave front (indicated by the high-intensity localized 
energy areas in Fig. 12c, d), in the granular-plate interface 
only a small portion of the impulsive energy gets eventu-
ally transmitted to the plate—cf. snapshots of Fig. 12b, d. 
In the latter case, the intensities of the disjoint wave fronts 
that eventually reach the plate are small, due to the strong 
nonlinear wave dispersion in the granular medium.

In “Appendix 2” we provide links for animations of the 
acoustics described in Figs. 11 and 12. Specifically, we pro-
vide an animation for the linear acoustics of the monolithic 
plate of Fig. 11a subject to a uniform impulse of 1 μs and 

20000 N/m intensity; this is compared to an animation of 
the nonlinear acoustics of the granular-solid interface of 
Fig. 11c with uniform impulsive loading corresponding 
to uniform initial velocities v0 = 0.3414 m/s of its five left 
granules. As mentioned previously, in both systems the input 
impulsive energy equals 0.0096 J . To highlight the tunability 
of the nonlinear acoustics to the intensity of the impulse, 
in “Appendix 2” we include two additional animations of 
the granular-solid interface of Fig. 11c with uniform ini-
tial velocities v0 = 0.5 m/s and v0 = 1.0 m/s of its five left 
granules.

These results conclude the application of the computa-
tional code. Summarizing, we proved the validity of the 
theoretical convergence measures of Sect. 3 and showed that 
the computational algorithm can be applied to accurately 

Fig. 12  Snapshots of normalized energy density ŵ of the (a, b) 
granular-solid interface for v0 = 0.341m/s at � = 0.075 ms and 
� = 0.12 ms , respectively, and (c, d) monolithic plate system subject 

to same-energy impulsive loads at � = 0.01 ms and � = 0.012 ms , 
respectively; the results show the time delay and strong dispersion in 
the acoustics due to the 2D granular medium
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and robustly solve highly complicated acoustical problems 
involving the interactions of 2D granular media and their 
flexible boundaries. Moreover, the numerical analysis car-
ried out for this application shed valuable physical insight 
into the highly nonlinear and discontinuous acoustics of 2D 
ordered granular media and underscored the efficacy of uti-
lizing such media as effective passive shock mitigators.

5  Concluding remarks

We studied the strongly nonlinear wave transmission in 2D 
granular-plate interfaces subject to shock excitations, tak-
ing into account not only the highly discontinuous Hertzian 
granule-to-granule and granule-to-plate interactions, but also 
the frictional effects due to relative granular and granular-
plate rotations. Friction effects are especially challenging to 
model, given that they can give rise to numerical instabili-
ties; yet there is the need to take them into full consideration 
to ensure the accuracy of the computational results. To the 
authors’ best knowledge, the present is the first study in the 
literature that addresses granular-elastic solid interfaces in 
two dimensions taking into account the combined frictional 
and Herzian effects.

To study this challenging problem, we formulated a 
computational algorithm based on interrelated iterative and 
interpolative schemes, in conjunction with a set of predictive 
convergence criteria that informed the appropriate param-
eter selection that ensured robustness and stability of the 
computation. These convergence criteria were theoretically 
derived by studying the linearized eigenvalues of local non-
linear maps governing the interaction forces that coupled the 
granular medium and the plate at successive time steps. The 
validity of the resulting self-adaptive algorithm was tested 
with a specific granular-plate interface. The application 
demonstrated the efficacy of the computational approach to 
accurately and robustly predict the highly complex patterns 
of transmitted and reflected stress waves at the discrete-con-
tinuum interface. Moreover, the developed computational 
algorithm could serve not only as useful and predictive tool 
for engineering complex granular-solid interfaces, but also 
can be extended to a broader class of problems in engineer-
ing and physics involving discrete-continuum interfaces 
(e.g., granular flows in containers with flexible walls, shock/
blast protection systems, etc.).

The application of the self-adaptive computational algo-
rithm reported herein already provided interesting findings 
on the nonlinear acoustics of granular-plate interfaces, but 
at the same time posed some important open questions that 
dictate further investigations. A first finding was that the 
2D hexagonal granular medium inflicts drastic time delay 
to the wave transmitted to the plate due to significant “sof-
tening” of the acoustics compared to the “monolithic” plate 

system. This is accompanied by shock energy localization, 
nonlinear dispersion and effective dissipation in the granular 
medium itself, with only a relatively small portion of the 
shock energy being eventually “released” to the plate at a 
relatively slow time scale. The causes for this significant 
nonlinear dispersion in the granular medium can be only 
surmised at this point; e.g., the nonlinear motion confine-
ment in the granular medium might be caused by the entire 
granular-medium interface acting coherently as a “global 
nonlinear oscillator”; in addition, there is possible directed 
energy transfer within the granular medium in directions 
orthogonal to the axial direction of main energy propaga-
tion; or there is the possibility that the highly discontinuous 
and nonlinear granule-to-granule and granule-to-plate Hert-
zian and frictional interactions drastically delay the wave 
transmission, enhance nonlinear wave dispersion and reduce 
the energy transmission to the plate. Clearly, more research 
is required to answer interesting questions like these.

An additional promising prospect is to consider gran-
ular-solid interfaces of the type studied herein in acous-
tic non-reciprocity applications. Indeed, in this work we 
only considered direct shock excitation of the 2D granular 
medium, but not a similar excitation of the plate. It would 
be of interest to study the non-reciprocal acoustic features 
of these granular-plate systems, especially given their strong 
nonlinearity and high asymmetry; this, for example, could 
yield new types of nonlinear “acoustic diodes” that would 
support mainly unidirectional wave transmission. Some 
promising results in this area have already been reported 
with nonlinear asymmetric lattice systems [64]. A final note 
concerns the passive self-adaptiveness (or tunability) of the 
granular-solid interfaces considered to the applied shock 
excitation. As shown in this work, the nonlinear acoustics 
of these systems depend on the intensity of the applied shock 
(or energy), but also on its frequency and wavenumber con-
tent (this particular aspect was not studied here, since only 
uniformly distributed, idealized shocks were considered). 
The source of this very interesting passive tunability feature 
could be exploited in the design granular-based protective 
systems against shock, with the capacity to self-tune their 
acoustics depending on the type of the applied excitation 
(e.g., low/high rate, low/high intensity, spatially extended/
localized, etc.). This could lead to a new class of passive 
shock mitigators of enhanced performance.

Appendix 1: The computational algorithm 
and its numerical stability

The computational algorithm is outlined in the flow chart 
of Fig. 13.

An iterative scheme computes the converged global inter-
action force vector FC

s+1
 between the granular medium and 



Wave transmission in 2D nonlinear granular-solid interfaces, including rotational and…

1 3

Page 19 of 24 21

the plate at the time instant � = �s+1 once the solution at the 
previous time instant � = �s has been determined (where the 
notation of the main text holds throughout). The iteration 
scheme is divided into two distinct phases. In the first phase 
we consider exclusively the response of the thin plate. To 
compute the response of the plate in the first iteration ( j = 1 ) 
of the flow chart of Fig. 13 at time instant �s+1 , we select 
the global force vector applied to the plate as F(1)

s+1
= FC

s
 . 

Then, the first iteration of the response of the plate x(1)
s+1

 at 
the time instant �s+1 , is computed by solving Eq. (11) using 
the �-Newmark method based on the assumption of constant 
acceleration between successive time steps,

with � = 1∕4 and � = 1∕2 . Note that we use the converged 
values for the response variables at the previous time step 
�s , and that the equations above are linear with respect to the 

(15a)ẋ
(1)

s+1
= ẋC

s
+
[
(1 − 𝛾)ẍC

s
+ 𝛾 ẍ

(1)

s+1

]
Δ𝜏

(15b)x
(1)

s+1
= xC

s
+ ẋC

s
Δ𝜏 +

[
1 − 2𝛽

2
ẍC
s
+ 𝛽ẍ

(1)

s+1

]
Δ𝜏2

(15c)Mẍ
(1)

s+1
+ Kx

(1)

s+1
= F

(1)

s+1

Fig. 13  Flow chart of the 
computational algorithm for 
computing the converged 
interaction forces applied to 
the plate in the time interval 
0 ≤ � ≤ T  ; (N, f )(j)

s+1
 denotes the 

j-th iteration of the interaction 
force vector, and Fs+1 the con-
verged force vector at the time 
instant �s+1
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response “status” vectors of the plate, x(1)
s+1

 , ẋ(1)
s+1

 and ẍ(1)
s+1

 , at 
the current time instant �s+1 . Once the first iteration for the 
status vectors x(1)

s
 , ẋ(1)

s
 and x(1)

s+1
 have been evaluated, the 

first iteration of the displacement vector x(1)(�) of the plate 
can be evaluated over the entire time interval � ∈

[
�s, �s+1

]
 

as follows:

This expression is based on the assumption of (approxi-
mately) constant acceleration between successive time steps. 
Once the response of the thin plate in the entire interval 
� ∈

[
�s, �s+1

]
 is determined, the responses of the rigid layers 

at the free boundary of the plate are also available, which 
act as a moving boundary for the DE system modeling the 
granular medium. This completes the first phase of the first 
iteration, as it evaluates the first iterate of the plate response.

In the second phase of the first iteration (i.e., still for 
j = 1 ), we compute the response of the granular medium at 
the time instant �s+1 . To this end, the DE Eqs (1) are solved 
numerically using the fourth order Runge–Kutta method. 
To this end, the DE system (1) is transformed into a set of 
first-order differential equations,

or,

where u(1)
b

 denotes the first iteration of the displacement vec-
tor of all granules in the time interval � ∈

[
�s, �s+1

]
 , v(1)

b
= 

u̇
(1)

b
 , w(1)

b
≡ (

u
(1)

b
, v

(1)

b

)
 , and L(⋅), G(⋅) are highly discontinu-

ous functions, given that the interaction forces between gran-
ules can be Hertzian, frictional and viscous (due to structural 
damping of the material of the granules). The DE system 
(17c) is then numerically solved by applying the fourth order 
Runge–Kutta method,

This computation yields the status vectors of the first 
iteration of the granular medium at � = �s+1 . Following that, 
the second iteration of the interaction forces at �s+1 is com-
puted by applying Eqs (2) and (5) with the first iteration of 
the plate and granular mediums responses. Hence, we com-
pute the second iterates of the interaction force vectors 
applied to the plate, namely, F(2)

s+1
≡ (

N
(2)

s+1
, f

(2)

s+1

)
 at time 

instant �s+1 . This competes the second phase of the first itera-
tion at �s+1 . Then, the previous iteration scheme can continue 
with the second iteration at �s+1 , setting j = 2 , and repeating 
the two previous phases, and so on.

(16)
x(1)(𝜏) = xC

s
+
(
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)
ẋC
s
+
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)
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b

(17b)v̇
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b
= L

(
u
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b
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b
, x(1)(𝜏), ẋ(1)(𝜏)
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(17c)ẇ
(1)

b
= G

(
w
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b
, x(1)(𝜏), ẋ(1)(𝜏)

)
, 𝜏 ∈

[
𝜏s, 𝜏s+1

]

This iterative scheme generates a nonlinear map that 
relates the j-th iterates of the interaction forces at the rigid 
layers on the plate to the (j + 1)-th iterates, or in symbolic 
form, 

[
N

(j)

s+1
, f

(j)

s+1

]
→

[
N

(j+1)

s+1
, f

(j+1)

s+1

]
 at the current time step 

�s+1 . With increasing number of iterations the interaction 
forces are expected to converge (the conditions for conver-
gence are discussed below), by satisfying the following two 
convergence criteria,

where abstol denotes the absolute tolerance, and reltol the 
relative tolerance. As a reminder, N(j)

k,s+1
 and f (j)

k,s+1
 denote the 

k-th elements of the global normal and tangential interaction 
force vectors on the plate, N(j)

s+1
 and f (j)

s+1
 at time instant �s+1 . 

The interaction force vectors are considered to have con-
verged if either (18a) and/or (18b) is satisfied for all nodes 
k at the rigid layers of the plate (cf. Fig. 3). Supposing that 
convergence has been achieved at the J-th iteration, we 
denote the converged interaction force vectors at time instant 
�s+1 by 

(
NC

s+1
, fC

s+1

) ≡ (
N

(J)

s+1
, f

(J)

s+1

)
 . Once the interaction 

forces on the plate have converged, all the response status 
vectors at the current time step �s+1 will have converged as 
well, and the computation proceeds to the next time step 
�s+2 , where the outlined iteration scheme is repeated until 
the entire time interval T  of the simulation is exhausted.

Clearly, central to the stability and convergence of the 
computational algorithm is the stability of the previous 
global map 

[
N

(j)

s+1
, f

(j)

s+1

]
→

[
N

(j+1)

s+1
, f

(j+1)

s+1

]
 at an arbitrary—say 

the (j + 1)th iteration. To ensure the convergence of the �
-Newmark method, the time step increment Δ� should be 
sufficiently small so that variations of the interaction forces 
due to the time delay of the wave propagation at a contact 
point at �s+1 has negligible effects on the responses at the 
other contact points at the current time step �s+1 . Hence, 
since the interaction forces at a contact point of the plate 
have an approximately local effect, the next iteration of the 
interaction forces at that contact point should also be deter-
mined only by the local response at the contact point (i.e., 
we assume that Δ� is small enough so that “coupling” effects 
between different contact points may be neglected). Accord-
ingly, the global map 

[
N

(j)

s+1
, f

(j)

s+1

]
→

[
N

(j+1)

s+1
, f

(j+1)

s+1

]
 can be 

decomposed in to  indiv idual  2D local  maps (
N

(j)

k,s+1
, f

(j)

k,s+1

)
→

(
N

(j+1)

k,s+1
, f

(j+1)

k,s+1

)
 at each contact point k at 

the current time step. Clearly, the global map is stable if all 
2D local maps are stable (i.e., for every contact point k on 
the plate).

(18a)
|||f

(j+1)

k,s+1
− f

(j)

k,s+1

||| < abstol;
|||N

(j+1)

k,s+1
− N

(j)

k,s+1

||| < abstol

(18b)

|||f
(j+1)

k,s+1
− f

(j)

k,s+1

|||∕
|||f

(j)

k,s+1

||| < reltol;
|||N

(j+1)

k,s+1
− N

(j)

k,s+1

|||∕N
(j)

k,s+1
< reltol
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Note that the (j + 1)th iterate of each interaction force 
component at the contact point k of the plate at time instant 
�s+1 can be expressed in explicit form as follows,

where referring to the notation introduced in Fig. 3, the sub-
scripts p, b denote plate and contacting granule, respectively, 
whereas the subscripts n, t denote normal and tangential 
components, respectively. Hence, in (19a,b) the variables 
u
(j)

k,p,n,s+1
 and u(j)

k,b,n,s+1
 
(
u
(j)

k,p,t,s+1
and u

(j)

k,b,t,s+1

)
 denote the j-th 

iterates of the normal (tangential) components of the defor-
mations of the plate and the contacting granule at time 
instant �s+1 , respectively. In addition, v = u̇ , represents the 
corresponding velocity. Furthermore, N(j+1)

k,s+1
 and f (j+1)

k,s+1
 denote 

the normal and tangential forces applied at the kj-th contact 
point of the plate at the current time instant �s+1 . As the 
small rigid layers at the boundary of the plate are assumed 
to be flat and massless, the dissipative term in the normal 
force is omitted, while E∗ = Eb∕

(
1 − �2

b

)
 and R∗ = Rb.

Relations (19a, b) are in scalar form, with the positive 
directions defined in Fig. 3. To evaluate the stability of the 
2D local map 

(
N

(j)

k,s+1
, f

(j)

k,s+1

)
→

(
N

(j+1)

k,s+1
, f

(j+1)

k,s+1

)
 it is necessary 

to examine its (2 × 2) Jacobian matrix,

and compute its eigenvalues. The first multiplicative term 
in (20) can be explicitly evaluated by relations (19a, b). To 
evaluate the second multiplicative term, we consider the 
discretized differential equations at successive time steps to 
evaluate the sensitivities of the responses of the plate and 
granules at the current time step. The response of the plate at 
the j-th iteration and time instant �s+1 subject to the interac-
tion forces at the same iteration can be computed by solving 
Eq. (11):

(19a)N
(j+1)

k,s+1
= −

4

3
E∗

√
R∗

�
u
(j)

k,p,n,s+1
− u

(j)

k,b,n,s+1

�3∕2
+

(19b)f
(j+1)

k,s+1
= −�

|||N
(j+1)

k,s+1

||| tanh
[
ks

(
v
(j)

k,p,t,s+1
− v

(j)

k,b,t,s+1

)]

(20)
�

�
N

(j+1)

k,s+1
, f

(j+1)

k,s+1

�

�

�
N

(j)

k,s+1
, f

(j)

k,s+1

� =
�

�
N

(j+1)

k,s+1
, f

(j+1)

k,s+1

�

�

�
u
(j)

k,p,n,s+1
− u

(j)

k,b,n,s+1
, v

(j)

k,p,t,s+1
− v

(j)

k,b,t,s+1

�
⎡⎢⎢⎢⎣

�

�
N

(j+1)

k,s+1
, f

(j+1)

k,s+1

�

�

�
u
(j)

k,p,n,s+1
− u

(j)

k,b,n,s+1
, v

(j)

k,p,t,s+1
− v

(j)

k,b,t,s+1

�
⎤⎥⎥⎥⎦

(21a)ẋ
(j)

s+1
= ẋC

s
+

1

2
ẍC
s
Δ𝜏 +

1

2
ẍ
(j)

s+1
Δ𝜏

(21b)x
(j)

s+1
= xC

s
+ ẋC

s
Δ𝜏 +

1

4
ẍC
s
Δ𝜏2 +

1

4
ẍ
(j)

s+1
Δ𝜏2

We note at this point that the normal and tangential dis-
placements at the k − th contact point can be linearly related 
to the plate displacement vector x(j)

s+1
 as follows:

Note that u(j)
k,p,n,s+1

 and u(j)
k,p,t,s+1

 are the components of x(j)
s+1

 
at the normal and tangential DOFs at the node of the k-th 
contact point, respectively; also, Tk,n and Tk,t are sparse vec-
tors whose only non-zero terms, with value equal to unity, 
are located at the normal and tangential driving DOFs, 
respectively, for the k-th contact point. Since the correspond-
ing components of the force vector F(j)

s+1
 are N(j)

k,s+1
 and f (j)

k,s+1
 , 

It follows that:

Therefore, the plate component of the second multiplica-

tive term in Eq. (20) could be computed by the chain rule:

(21c)

ẍ
(j)

s+1
=
(
M +

1

4
KΔ𝜏2

)−1

F
(j)

s+1
−
(
M +

1

4
KΔ𝜏2

)−1

K
(
xC
s
+ ẋC

s
Δ𝜏 +

1

4
ẍC
s
Δ𝜏2

)

(22a)u
(j)

k,p,n,s+1
= Tk,nx

(j)

s+1

(22b)u
(j)

k,p,t,s+1
= Tk,tx

(j)

s+1

(22c)Tk =
(
Tk,n,Tk,t

)T

(23)
�F

(j)

s+1

�

(
N

(j)

k,s+1
,f
(j)

k,s+1

) = TT
k

(24a)

𝜕

(
u
(j)

k,p,n,s+1
, u

(j)

k,p,t,s+1

)
(
N

(j)

k,s+1
, f

(j)

k,s+1

) =

𝜕

(
u
(j)

k,p,n,s+1
, u

(j)

k,p,t,s+1

)

𝜕x
(j)

s+1

⋅

𝜕x
(j)

s+1

𝜕ẍ
(j)

s+1

⋅

𝜕ẍ
(j)

s+1

𝜕F
(j)

s+1

⋅

𝜕F
(j)

s+1

𝜕

(
N

(j)

k,s+1
, f

(j)

k,s+1

)

(24b)

𝜕

(
v
(j)

k,p,n,s+1
, v

(j)

k,p,t,s+1

)

𝜕

(
N

(j)

k,s+1
, f

(j)

k,s+1

) =

𝜕

(
u̇
(j)

k,p,n,s+1
, u̇

(j)

k,p,t,s+1

)

𝜕ẋ
(j)

s+1

⋅

𝜕ẋ
(j)

s+1

𝜕ẍ
(j)

s+1

⋅

𝜕ẍ
(j)

s+1

𝜕F
(j)

s+1

⋅

𝜕F
(j)

s+1

𝜕

(
N

(j)

k,s+1
, f

(j)

k,s+1

)
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Substituting relations (21), (22) and (23) into Eqs. (24a, 
b), we derive the following expressions:

Since we assumed that the effect of the interaction forces 
is nearly local, it is logical to assume that due to the sym-
metry of the rigid layers the normal forces cannot generate 
tangential responses, while the tangential forces cannot gen-
erate normal responses at the current time step. This yields 
the following further approximations:

Substituting (26) to relations (25a, b), we derive the 
following closed form simplified diagonalized sensitivity 
matrix for the responses at the contact points on the plate:

Similarly, by imposing the previous assumptions we can 

compute the corresponding sensitivities 
�

(
u
(j)

k,b,n,s+1
,v
(j)

k,b,t,s+1

)

�

(
N

(j)

k,s+1
,f
(j)

k,s+1

)  of 

the contacting boundary granules. However, as the mass of 
a single granule is much larger than the mass of the finite 
element of the plate attached to the contacting rigid layer, it 
is logical to assume that the response of the rigid layer 
should be much more sensitive with respect to the interac-
tion forces compared to the response of the granule. Hence, 
as an additional approximation, we may neglect the sensi-
tivities related to the granule responses, thus simplifying 
Eq. (20) as follows:

As a final step, the Jacobian matrix of the local nonlinear 
map at contact point k on the rigid layer of the plate, (
N

(j)

k,s+1
, f

(j)

k,s+1

)
→

(
N

(j+1)

k,s+1
, f

(j+1)

k,s+1

)
 is approximated in closed 

form by substituting the relations (19a, b) and (27) into (28). 

(25a)

�

(
u
(j)

k,p,n,s+1
, u

(j)

k,p,t,s+1

)

�

(
N

(j)

k,s+1
, f

(j)

k,s+1

) =
1

4
Δ�2Tk

(
M +

1

4
KΔ�2

)−1

TT
k

(25b)
�

(
v
(j)

k,p,n,s+1
, v

(j)

k,p,t,s+1

)

�

(
N

(j)

k,s+1
, f

(j)

k,s+1

) =
1

2
Δ�Tk

(
M +

1

4
KΔ�2

)−1

TT
k

(26)
�u

(j)

k,p,n,s+1

�f
(j)

k,s+1

≈
�v

(j)

k,p,n,s+1

�f
(j)

k,s+1

≈
�u

(j)

k,p,t,s+1

�N
(j)

k,s+1

≈
�v

(j)

k,p,t,s+1

�N
(j)

k,s+1

≈ 0

(27)
�

(
u
(j)

k,p,n,s+1
, v

(j)

k,p,t,s+1

)

�

(
N

(j)

k,s+1
, f

(j)

k,s+1

) = Diag

[
1

4
Δ�2Tk,n

(
M +

1

4
KΔ�2

)−1

TT
k,n
,
1

2
Δ�Tk,t

(
M +

1

4
KΔ�2

)−1

TT
k,t

]

(28)

�

(
N

(j+1)

k,s+1
, f

(j+1)

k,s+1

)

�

(
N

(j)

k,s+1
, f

(j)

k,s+1

) ≈
�

(
N

(j+1)

k,s+1
, f

(j+1)

k,s+1

)

�

(
u
(j)

k,p,n,s+1
, v

(j)

k,p,t,s+1

) ⋅

�

(
u
(j)

k,p,n,s+1
, v

(j)

k,p,t,s+1

)

�

(
N

(j)

k,s+1
, f

(j)

k,s+1

)

As the Jacobian matrix is semi-negative definite for arbitrary 
interaction forces, according to the Banach fixed point theo-
rem the local map has a unique fixed point (i.e., it is guaran-
teed to converge to a solution), and its eigenvalues are 
approximately evaluated in closed form as follows:

Accordingly, the local map is stable if the moduli of both 
eigenvalues are smaller than unity, which gives the condi-
tions (27a, b).

Appendix 2

Below we provide links for the following animations for the 
acoustics of:

The monolithic plate of Fig. 11a subject to a uniform 
impulse of 1 μs and 20000 N/m intensity https ://uofi.box.
com/s/13ia0 9hrmn sctw2 tl5xm 47p6t e78qz by

The granular-solid interface of Fig. 11c with uniform 
initial velocities v0 = 0.3414m/s of its five left granules, 
corresponding to the same energy input to case (i) for the 
monolithic plate https ://uofi.box.com/s/tvxsu qehqf hgs1w 
8ype4 s89tc wve0q ly

The granular-solid interface of Fig. 11c with uniform 
initial velocities v0 = 0.5m/s and v0 = 1.0 m/s of its five 
left granules https ://uofi.box.com/s/xi8hp 6zzz6 1ofan vy6iq 
102t8 e00h9 lv, https ://uofi.box.com/s/5ck6x jbnha c76t6 bf0d0 
44zdw ikgxo t2

Acknowledgements This work was supported in part by the China 
Scholarship Council (Grant 201706160084) that supported the visit of 
Qifan Zhang to the University of Illinois, Urbana Champaign.

Compliance with Ethical Standards 

Conflict of interest The authors declare that they have no conflict of 
interest.

(29a)

�k1,s+1 = −
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2
E∗

√
R∗Δ�2Tk,n

�
M +

1

4
KΔ�2

�−1

T
T
k,n

�
u
(j)

k,p,n,s+1
− u

(j)

k,b,n,s+1

�1∕2

+

(29b)

−
1

2
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|||N
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k,s+1

|||Δ�Tk,t
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1

4
KΔ�2

)−1

T
T
k,t
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[
ks

(
v
(j)

k,p,t,s+1
− v

(j)

k,b,t,s+1

)]−2
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