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Abstracts
Granular materials have a complex collective behavior based on simple interactions between grains. The global behavior 
stems from dynamic rearrangements in the micro-structure. The local increase (resp. decrease) of the density generates jam-
ming (resp. unjamming). In this paper, instabilities in the form of localized bursts of kinetic energy are studied at both the 
micro-scale (i.e. grain scale) and meso-scale (i.e. cluster scale). The bursts are defined from the variation of kinetic energy. 
The meso-domains (grain loops in 2D) are built from the tessellation of the medium. We analyze the gain and loss of meso-
structures during a localized burst. Surprisingly, micro-structural reorganizations are able to keep the overall statistical 
equilibrium constant. The introduction of strain-like and stress-like quantities at the mesoscopic scale makes it possible to 
propose an expression that can be assimilated to mesoscopic second-order work. At this intermediate scale, the negative 
values of the second-order work are correlated to the appearance of bursts of kinetic energy, which stands for a meso-scale 
counterpart of Hill’s macroscopic criterion of mechanical instability.

Keywords  Granular materials · Kinetic energy · Instability · DEM · Meso-scale · Meso-domain

1  Introduction

Granular materials exhibit a complex behavior. A set of solid 
grains can behave collectively like a solid, in quasi-static 
regime, or like a fluid, in an inertial regime. Understanding 
and modeling the diversity of behavior and especially the 
inertial transition has been an active subject for many years 
[3, 6, 34]. Inertial transition has a key role to play in the trig-
gering of natural hazards such as landslides or avalanches, 
or in the failure of civil engineering structures such as earth 
dams or levees [38]. For such events, bursts of kinetic energy 
are signatures of mechanical instability and they stand for 
early clues of inertial transitions [4, 7, 39]. Thus, a close 
look at these bursts makes a lot of sense to anticipate regime 
changes in granular materials [8, 13, 26, 33, 40]. Although 

these instabilities can have consequences at the macro-scale, 
they come from sources at the microscopic scale. By looking 
at small scales, we tend to find precursors to the bursts and 
identify inertial transition mechanisms. However, it should 
be emphasized that the constitutive features of granular 
materials stem from grain rearrangements and subsequent 
geometrical transformations. Although local behaviour dic-
tates the mutual interaction between contacting particles, 
mechanisms at the mesoscopic scale are also thought to be 
very important. As a desire to bridge the gap between con-
stitutive purposes at the macro-scale and elementary con-
siderations at the micro-scale, multi-scale approaches are 
often considered to study granular materials [11, 15, 16, 31, 
42]. Meso-structures such as force chains [27, 28, 33, 37, 
38] and grain loops [11, 12, 42] have already proven to be 
relevant to give information on how forces and geometrical 
reorganization take place. It is also on a meso-scopic scale 
that experimental investigations are currently being carried 
out [2].

In the context of continuum mechanics, including granu-
lar materials, instabilities depend on a strain/stress state in 
comparison with loading conditions. Nicot and Darve [20, 
23] have formulated a criterion resuming Hill’s sufficient 
condition of stability (1958). For a material point and for 
small increments, this criterion reads as follow : “For a given 
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equilibrium (σ,ε) reached after a given loading history, the 
material point is unstable if there exists at least one stress 
increment ∆σ, associated with a strain response ∆ε such that 
∆σ:∆ε<0”. For granular materials, Nicot and Darve [20] 
have already derived the relationship between kinetic energy 
variations and the second-order work at the material point 
scale. In this work, the second-order work is calculated from 
either macroscopic (stress and strain tensors) quantities or as 
a summation of local terms built on microscopic quantities 
(contact forces and inter-granular velocities). The ability of 
the microscopically defined second-order work to anticipate 
the occurrence of micro-burst of kinetic energy has been 
highlighted [4, 20, 36]. However, no works proposed yet 
a meso-scale definition of the second-order work attached 
to physical meso-structures relevant to capture the driving 
elementary mechanisms giving rise to the overall behavior 
of granular materials.

In this paper, we use meso-domains to study bursts of 
kinetic energy through numerical simulations based on a dis-
crete element method (DEM) which has proved to be a rel-
evant and powerful tool to study granular material either from 
a solid or a fluid like point of view [14, 17, 19, 29]. Grain loops 
are well-defined meso-structures in 2D, but their extension to 
the 3D case is still an open question [18]. Therefore, DEM 
simulations are performed in a two-dimensional set up. Iner-
tial transition potentials and consequences at the micro- and 
macro-scale are examined. The evolution of the second-order 
work is studied on a mesoscopic scale to link potential instabil-
ity and inertial transition, which has not yet been done to our 
knowledge. This paper is organized as follows. In the first sec-
tion, 2D biaxial tests are presented. In the second section, we 
analyze the evolution of kinetic energy during the biaxial test. 
The third section proposes a definition of the meso-structures 
of interest (namely grain loops), and a rationale formulation of 
strain and stress increments attached to them. The last section 
is devoted to the analysis of the results obtained in terms of 
meso-scale evolutions of micro-structure.

2 � Numerical set up

Numerical experiments are carried out with quasi-2D numeri-
cal samples using DEM’s open-source YADE code [30]. 
Quasi 2D conditions refer to planar samples composed of 
spheres, in comparison to the real 2D characterized by pla-
nar samples made of discs [9, 32]. Although 3D simulations 
are possible, meso-structures are, for the moment, only well 
defined in two-dimensional samples by grain loops [11, 12, 
15, 42]. The definition of meso-domains in 3D samples is still 
an object of research [18] and is out of the scope of this paper.

An idealized granular sample consisting of 25,000 
spheres in interaction through an elasto-frictional con-
tact law is considered in this paper (Fig. 1a). The particle 

radii are uniformly distributed with a size ratio Dmax∕Dmin 
of 3.5. All sample parameters are recalled in Table 1. The 
spheres are placed randomly in a square domain which 
allows working at the material point scale, i.e. at a scale 
where it is possible to obtain both global (continuum) 
and local (discrete) views of the granular medium. In 
order to create a dense sample, the friction coefficient � 

Fig. 1   a Contact law used in discrete element method. The sketch 
shows the definition of the stiffness coefficients and how the different 
components of the force contact are calculated. b Drained biaxial test: 
representation of the quasi 2D dense sample of 25,000 spheres and 
loading conditions

Table 1   Parameters of the numerical simulation

Grain density 3000 kg/m3

Friction coefficient � 0.7
k
n
∕D 356 MPa

k
t
∕k

n
0.42

Loading rate 𝜀̇ 0.01 s-1

Numerical damping coefficient 0.05
D

max
∕D

min
3.5

Confining stress �
0

100 kPa
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at each contact is gradually reduced from 0.7 to 0, while 
maintaining a pressure of 100 kPa on the lateral bounda-
ries in the preparation step. For a clear understanding of 
the procedure in quasi 2D, the third and unused dimen-
sion of the specimen has been set to one unit length, so 
that stresses applied on the boundaries can be expressed 
either in kPa or in N/m simply by dividing the sum of the 
contact forces by the sample length or width. Numerical 
damping is chosen low, so as not to inhibit the creation 
and propagation of kinetic energy bursts Table 1.

The biaxial compression test is broken down into two 
phases. An isotropic compression of �0 = 100 kPa is firstly 
applied. The confining pressure �0 is then maintained 
constant on the lateral boundaries while imposing a strain 
rate 𝜀̇ in the vertical direction (Fig. 1b, Table 1).

The 2D expressions of the deviatoric stress q and the 
volumetric strain �v are

The q − �yy curve is typical of the response of a dense 
sample as shown in Fig. 2, where the vertical lines A and B 
represent respectively the characteristic point of the volu-
metric strain �v and the maximum of the deviatoric stress q . 
The curve shows a hardening regime represented by a strong 
increase leading to a peak, then a softening regime takes 
place, with a small decrease of the deviatoric stress followed 
by a plateau. Here the q peak is obtained at less than 1% of 
the axial strain (line B in Fig. 2). An early q peak is often 
found with numerical simulations compared to experimen-
tal simulations, which is attributed to the use of the perfect 
spheres in DEM instead of irregular shapes as with real par-
ticles. The �v curve is also characteristic of a dense material 
with, firstly, a small compression behavior, the maximum of 
which is reached before the q peak (vertical line A in Fig. 2), 
and secondly, a dilation until the end of the test.

(1)q = |�yy − �xx|, �v = �xx + �yy

3 � Analysis of bursts of kinetic energy

Using numerical simulation, the data can be analyzed either at 
the whole sample level or at the grain or cluster scale. Figure 3 
shows the changes in elastic, plastic and kinetic energies as a 
function of axial strain during the biaxial test. Kinetic energy is 
represented with a different scale to highlight the frequency of 
large variations. In Fig. 3, dashed blue vertical lines highlight 
the occurrence of the bursts studied in this paper given by:

where mg is the grain mass, Rg is the grain radius, cg and are 
the translation velocity vector and the rotation velocity of 
the grain, respectively.

For elasto-frictional contacts (Fig. 1a), the stored elastic 
energy of a contact is

where and are the normal and tangential stiffnesses, and the 
normal and tangential relative displacements at contact, and 
are the normal and tangential contact forces.

When contact sliding occurs ( �c
t
= �Fc

n
 ) some energy is 

dissipated. A non-reversible tangential displacement velocity 
generates a positive plastic dissipation

From the Eqs. (2)-(4), energy variations at the sample 
scale during the deviatoric loading over a given time range 

(2)Eg
c
=

1

2
mg||�g||2 +

1

5
mg|�Rg|2

(3)Eg
e
=

1

2
kn(u

c
n
)2 +

1

2
kt||�ct ||

2 =
1

2
k−1
n
(Fc

n
)2 +

1

2
k−1
t
||�c

t
||2

(4)Ėc
p
= �c

t
⋅ �̇c

t

Fig. 2   Deviatoric stress and volumetric strain as a function of the 
axial strain during the biaxial test

Fig. 3   Evolution of elastic energy E
e
 , plastic dissipationE

p
 (left 

y-axis) and kinetic energyE
c
 (right y-axis) as a function of the axial 

strain during the biaxial test. The reference state corresponds to the 
isotropic compression state reached before the deviatoric loading is 
applied. State A and B correspond to the characteristic and the peak 
points shown in Fig. 2. The burst of kinetic energy analysed in this 
paper corresponds to−�

yy
= 0.104 (green dashed line).
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[t0,t] are obtained by summing the kinetic energy on the 
grains, and by summing the elastic energy Ee and the plastic 
dissipation Ep on the contacts:

Local outbursts of kinetic energy are detected if the 
kinetic energy of a part of the sample is greater than the 
mean kinetic energy. The overall kinetic energy of the sam-
ple is of the order of 10−8 J. The mean kinetic energy of a 
grain (out of 25,000) is therefore of the order of 10−13 J. As 
shown in Fig. 3, there are many important variations from 
the mean value. Four bursts of kinetic energy are chosen 
and studied (Fig. 4). They occur on the plateau (Fig. 4a) 
where a quasi-stationary regime corresponding to the so-
called ‘critical state’ is reached (state at which a granular 
material can be continuously sheared under a constant mean 
pressure without any change in volume). A close look on the 

(5)

ΔEc(t) = Σ
g
Eg
c
(t) − Eg

c
(t0),ΔEe(t)

= Σ
c
Ec
e
(t) − Ec

e
(t0),ΔEp(t) =

t

∫
t0

Σ
c
Ėc
e
(t�)dt�

deviatoric stress curve around the appearance of the bursts 
is provided in Fig. 4b–d. This highlights the fact that the 
onset of each burst corresponds to a drop in q. A localized 
explosion of kinetic energy has thus some macroscopic con-
sequences in the form of a small transient instability. Burst 
No.2 and No.3 were initially detected as a single burst, but 
after a more detailed examination, they appeared to be two 
consecutive bursts that propagate in slightly different areas.

For the sake of clarity, only burst No.4 is investigated in 
the following. All the presented results are similar for other 
bursts. Figure 5 shows a reduced time lapse for the burst 4. It 
highlights the typical onset and evolution of kinetic bursts of 
energy observed on the constant plateau of a drained biaxial 
test. In Fig. 5, grains that have a kinetic energy at least twice 
the mean kinetic energy of a grain are highlighted. From a 
state where most grains have a low kinetic energy (less than 
the mean kinetic energy of a grain), the initiation affects only 
a few grains, before spreading to nearly half of the sample 
and disappearing. In its initiation, propagation and attenu-
ation, the center of the burst moves slightly in the positive 
direction of x-axis, but the set of grains with large kinetic 

Fig. 4   Analysis of the four bursts considered in the manuscript, in terms of deviatoric stress q evolution during the biaxial test. The vertical lines 
correspond to the beginning of bursts
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energy remains limited and the burst does not propagate to 
the whole sample, as it could be observed in case of material 
instability [39].

To better understand the mechanisms that trigger a burst 
and drive its propagation, we need to distinguish the area 
where the burst occurs and propagates from the rest of the 
sample domain. This is done with use of a fixed box defined 
around the burst, considering the location of the start and 
the direction of propagation (Fig. 5c). On the Fig. 5c, the 
box is displayed, showing a rectangle of dimensions [0.03 
m, 0.032 m] centered on the point (0.045 m, 0.046 m). The 
same energy variation analysis as in Fig. 3 at the scale of 
the defined box is reported in Fig. 6. The energy varia-
tions show that, when the kinetic energy breaks up (vertical 
lines), the kinetic energy passes through a peak, while the 
elastic energy decreases, and the plastic energy increases 
(Fig. 6). On the basis of these variations, it is concluded that 
there is an excess of elastic energy stored in the contacts, 

which is then transformed into kinetic energy (the grains 
move linearly or rotate) and dissipated by friction (cor-
responding to a slip between the grains in the contacts). 
However, the variations in kinetic energy are very small 
compared with the variations in plastic energy. Frictional 
dissipation is thus the main mechanism active during the 
burst of kinetic energy. Kinetic energy, which is the easi-
est signature of local instabilities, represents indeed only a 
small part of the energy transfer from the elastic energy for 
kinetic outbursts occurring at critical state in drained biaxial 
tests. It should be underlined that this analysis depends on 
the contact friction. In the two extreme cases of friction-
less grains ( � = 0 ) of fully elastic contacts (μ = +∞), no 
plastic dissipation can occur, and the elastic energy trans-
forms entirely into kinetic energy. However, for interme-
diate friction (corresponding to more realistic materials), 
and for similar stress levels, the above analysis holds with 
dissipative mechanisms being prominent.

Fig. 5   Reduced time lapse of the burst of kinetic energy No.4. Particles are coloured according to their kinetic energy (in Joule). The bounding 
box used to provide an approximate definition of the burst domain is shown in red
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These energetic considerations are only a first step 
towards understanding the origins of bursts. Additional 
parameters are required to investigate the location of the 
burst in a specific area. The sliding index for each contact is 
defined as follows:

This index, belonging to the [0,1] interval, is an indicator of 
the potential instability of a contact (the value 1 corresponding 

(6)Ip =
||�t||
�|Fn|

to contact sliding). The probability density of Ip for contacts 
inside and outside the kinetic energy burst zone is given in 
Fig. 7. Before the burst (Fig. 7a), a larger fraction of the con-
tacts is close to sliding ( Ip close to 1) in the burst domain than 
outside. After the occurrence of the burst (Fig. 7b), no unstable 
contacts remain in the burst domain (the tail of the Ip probabil-
ity density function inside the burst domain converges to the 
one out of the burst domain). The probability curve outside the 
zone does not change much.Ip close to 1 is a necessary condi-
tion to observe a burst of kinetic energy. Similar findings were 
obtained by Wautier et al. [39].

This last result reinforces the delineation of the burst zone 
and provides clues to relate the burst spatial extension to some 
underlying microstructure characteristics. There is a strong 
contrast between the behavior of grains inside and outside 
of the area. The burst is likely to be rooted in a zone with 
high level of stored elastic energy and high concentration of 
unstable contacts. The analysis will now be carried out on 
a mesoscopic scale, which requires the definition of relevant 
mechanical quantities at this scale.

4 � Definition of quantities at the mesoscopic 
scale

4.1 � Definition of meso‑domains

In order to define clusters of grains, a convenient method 
in 2D is to tesselate the sample area with grain loops. As a 
result, the sample domain can be seen as the union of loops 
involving a variable number of grains. Recent studies have 
shown the relevance of defining such a meso-scale based on 

Fig. 6   Evolution of the plastic dissipation E
p
 , of the elastic energyE

e
 

(left y-axis), and of the kinetic energy E
c
 (right y-axis) during the 

burst of kinetic energy No. 4

Fig. 7   Sliding index’s probability density before (a) and after (b) the burst of kinetic energy inside (red) and outside (blue) the surroundings of 
the burst area
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grain loops to characterize changes in the micro-structure of 
granular materials [15, 42, 11].

A unique tessellation is obtained, with loops of order 3, 
4, 5 and 6+ according to the number of spheres they contain 
(Fig. 8 show a small portion of the tessellation). The loop 
porosity is expected to increase with the loop order. Thus, 
lower order loops are on average less deformable than higher 
order loops. Grain loops play a key role in the reorganization 
of the micro-structure, as a means of adapting to external 
loadings. Non-contact or single-contact grains, called rat-
tlers, are visible inside the high-order loops in Fig. 8. They 
are also good indicators of reorganization since they are cre-
ated from broken meso-structures and they can be trapped in 
meso-structures under construction.

4.2 � Definition of a mesoscopic second‑order work

The ability of a system to develop kinetic energy with no 
external disturbance from an equilibrium state1 is described 
by the balance equation of second-order works

where Ec represents the overall kinetic energy, Wext
2

 is the 
external second-order work, Wint

2
 is the internal second-order 

(7)2Ec(t+ ▵ t) = Wext
2

−Wint
2

(8)Wext
2

= ∫
�Ω

▵ � ⋅ ▵ �dA, Wint
2

= ∫
Ω

▵ � ∶▵ �dV

work, � = � ⋅ � and � denote the stress and displacement 
vectors on �Ω , � and � denote the stress and strain tensors in 
Ω , and ∆ is the increment between times t and t +∆t.

There are two requirements for using second-order work 
criteria for a stability analysis:

–this criterion is most often used when the system control 
parameters are kept constant, or Δ� ⋅ Δ� =0 on �Ω , to high-
light situations where the deformation of the system can be 
carried on without any input of external energy;

–the system must be in balance initially ( Ec(t) = 0 ). As 
Wext

2
= 0 , the system evolves from a static situation to a iner-

tial regime ( Ec(t + Δt) > 0 ) is only if Wint
2

< 0.Therefore, 
Eq. (8) does not apply once the system is out of equilibrium.

There is a priori no reason for the selected meso-domains 
to check these two conditions. Despite these restrictions, 
we propose to define adequate quantities �Ωl

 and �Ωl
 , cor-

responding to stresses and strains in a mesoscopic domain 
Ωl(t) , and to analyze the evolution of a so-called mesoscopic 
second-order work

This approach assumes that the Macro-Homogeneity 
condition (second-order Hill-Mandel lemma) is respected 
on the domain Ω:

The necessary conditions to ensure the validity of this 
second-order Hill-Mandel lemma has been discussed in 
details in [22]. Such a relationship has not yet been dis-
cussed for mesoscopic quantities, for which the domain Ω 
cannot be considered as a representative elementary volume. 
Therefore, the specific form of equation (7) at the mesoscale 
remains to be discussed. Such an analytical discussion is 
saved for future investigations as it is out of the scope of the 
present paper.

4.3 � Definition of the mesoscopic incremental strain

The average strain rate ⟨�⟩Ωl
 on a domain Ωl is completely 

defined in terms of quantities on the boundary �Ωl as 
follows:

where � is the displacement vector, � is the outer nor-
mal to Ωl , and ⊗s denotes the symmetric tensor product 
( �⊗s � =

1

2
(�⊗ � + �⊗ �) ). The analysis of kinetic energy 

at the microscopic scale is carried out in very small-time 
steps ∆t. It is therefore relevant to assume that the system 
undergoes small perturbations between Ωl(t) , and Ωl(t + Δt) . 

(9)(W2)Ωl
= ⟨Δ�⟩Ωl

∶ ⟨Δ�⟩Ωl

(10)⟨Δ� ∶ Δ�⟩Ω = ⟨Δ�⟩Ω ∶ ⟨Δ�⟩Ω, ⟨⋅⟩Ω =
1

�Ω� ∫Ω

⋅dV

(11)⟨�⟩Ωl
=

1

�Ωl� ∫
𝜕Ωl

�⊗s �dA

Fig. 8   Insight of the tessellation of the sample domain into loops. 
Focus on four loops of different order (L3, L4, L5 and L6)

1  An equilibrium state is characterized by a nil kinetic energy, and by 
the fact that any variation of energy from the current state is a second 
order function of the applied perturbation.
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This point is debatable though and will have to be consid-
ered by further research.

The incremental meso-strain between time t and t+∆t 
can be expressed by means of the incremental displacement 
vector Δ� = �(t + Δt) − �(t):

where Ωl and � are considered at time t. As the domain Ωl 
is updated at each increment, it is an updated Lagrangian 
description which allows large strains at the mesoscopic 
level over a large number of time steps.

A grain loop is delimited by branch vectors joining the 
center of neighbor spheres (Fig. 9a). This is the polygon on 
which the meso-strain calculations are based. The meso-
strain tensor as a grain loop quantity can be expressed as a 
function of a linear interpolation of the incremental displace-
ments of the peripheral grains [15, 1]:

where �0
k
 and �1

k
 are the incremental displacement vectors of 

the vertices of the kth edge (grains centers), lk is the length 
of the kth edge, and �k is the normal to the kth edge (outer 
to Ωl).

4.4 � Definition of the mesoscopic incremental stress

For the stress tensor, deriving an incremental formulation is 
more complex than it might appear at first glance. Indeed, 
defining a meso-stress is relatively simple with use of Love-
Weber or Bagi formulas [1, 21, 41], but an incremental formu-
lation requires that the loops are not reorganized between two 
close configurations. To address this issue, we are looking for 
a definition of incremental meso-stress based on the incremen-
tal stresses in the grains. The meso-stress is expressed as the 
spatial average on Ωl of the micro-stress (Fig. 9b):

(12)⟨Δ�⟩Ωl
=

1

�Ωl� ∫
𝜕Ωl

Δ�⊗s �dA

(13)⟨Δ�⟩Ωl
=

1

�Ωl�
Σ

k∈𝜕Ωl

1

2
(Δ�0

k
+ Δ�1

k
)⊗s �klk

As the local stress tensor � is equal to zero in empty space, 
the integral can be transformed into a sum over the portions 
of the spheres included in Ωl , noted Vg ∩ Ωl:

By introducing the average stress on the parts of the spheres 
included in Ωl , noted ⟨�⟩Vg∩Ωl

 , it comes

In addition, if the average stress calculated on the part of 
the spheres included in the loop is assumed to be equal to the 
average stress of the grain: ⟨�⟩Vg∩Ωl

= ⟨�⟩Vg
 , the meso-stress 

is then proportional to the sum of the grains stress weighted 
by their volume fraction in Ωl (Fig. 9b):

Although the grains are assumed rigid in DEM, they are 
subject to a local stress � , which is a symmetrical second-order 
tensor and verifies the equation of motion 𝜌ẍ = div(�) and 
� = �T . Thus, in dynamic evolution, the average stress ⟨�⟩Vg

 
is equal to

The grain is only subjected to punctual contact forces vec-
tors �c on �Vg , therefore, the left-hand side term of Eq. (18) is 
equal to

where the index c runs through all contacts of the grain g, 
Dg is the grain diameter, and �c is the outer normal to Vg at 
contact c.

The kinematics of the rigid grain is described by 
�̇ = �̇g +�g ⋅

(
� − �g

)
 for any � ∈ Vg , where �g is the grain 

center, and �g is the second-order skew-symmetric tensor 
describing the grain rotation. Therefore, the second right-hand 
side term of Eq. (19) is equal to

(14)⟨�⟩Ωl
=

1

�Ωl� ∫
Ωl

�dV

(15)⟨�⟩Ωl
=

1

�Ωl�
Σ

g∈�Ωl
∫

Vg∩Ωl

�dV

(16)⟨�⟩Ωl
=

1

�Ωl�
Σ

g∈�Ωl

�Vg ∩ Ωl�⟨�⟩Vg∩Ωl

(17)⟨�⟩Ωl
=

1

�Ωl�
Σ

g∈�Ωl

�Vg ∩ Ωl�⟨�⟩Vg

(18)

⟨�⟩Vg
=

1

�Vg� ∫
𝜕Vg

� ⋅ 𝐧⊗s (𝐱 − 𝐜g)dA +
1

�Vg� ∫
Vg

𝜌𝐱̈⊗s (𝐱 − 𝐜g)dV

(19)
1

|Vg| ∫
𝜕Vg

� ⋅ �⊗s (� − �g)dA =
Dg

2|Vg|
Σ

c∈𝜕Vg

�c ⊗s �c

(20)
1

|Vg| ∫
Vg

𝜌𝐱̈⊗s (𝐱 − 𝐜g)dV =
𝜌D2

g

10
(𝐐̇g +𝐐2

g
)

Fig. 9   Sketch of the calculation of the strain (a) and stress (b) defined 
at the scale of a meso-domain
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as ẍ = c̈g +
(
�̇g +�2

g

)
⋅

(
� − �g

)
 It is assumed here that 

the contribution of grain rotation is negligible compared to the 
contribution of contact forces. This is justified by the fact that 
the ratio between rotation term Eq. (20) and contact force term 
Eq. (19) scales with D4

g
 . Nevertheless, since contact forces are 

likely to become very weak during a burst of kinetic energy, 
this point is debatable and will have to be verified by further 
research.

Finally, the expression of the meso-stress is of a form simi-
lar to, but different from the Love-Weber formula for the set 
of grains concerned:

This difference is due to the fact that the domain Ωl is 
defined by the centers of the grains and does not contain the 
entire volume of grains. This definition is similar but not iden-
tical to that of Liu et al [12]. Moreover, this expression is not 
restricted to a quasi-static evolution and can be extended to 
dynamical situations when the contribution of rotations given 
by Eq. (20) is non-negligible. Note that Eq. (18) is consistent 
with the macro-stress definition computed at the scale of the 
sample Ω:

The hypothesis of small geometric transformations between 
times t and t+∆t allows to suppose that

Thus, the incremental meso-stress between time t and 
t+∆t is now simply defined as follows

where Ωl is considered at time t. As the domain Ωl is updated 
at each increment, it is an updated Lagrangian description.

5 � Analysis of the changes at the mesoscopic 
scale during the outburst of kinetic 
energy

5.1 � Evolution of meso‑structures during the burst 
of kinetic energy

The ratio of each loop category (L3, L4, L5, L6+) depends 
on the nature of the sample and the loading history. In 
Fig. 10, the evolution of the loop ratios along a biaxial test 

(21)⟨�⟩Ωl
=

1

�Ωl�
Σ

g∈𝜕Ωl

Dg�Vg∩Ωl�
2�Vg�

Σ
c∈𝜕Vg

�c ⊗s �c

(22)
⟨�⟩Ω =

1

�Ω� ∫
Ω

�dV =
1

�Ωl�
Σ

g∈�Ω
�Vg�⟨�⟩Vg

=
1

�Ωl�
Σ
l

Σ
g∈�Ωl

�Vg ∩ Ωl�⟨�⟩Vg
=

1

�Ωl�
Σ
l
�Ωl�⟨�⟩Ωl

(23)⟨Δ�⟩Ωl
= Δ⟨�⟩Ωl

(24)⟨Δ�⟩Ωl
= ⟨�(t + Δt)⟩Ωl

− ⟨�(t)⟩Ωl

is given against the volumetric strain. Before maximum con-
tractancy (vertical line A in Fig. 4, low order loops are the 
majority (about 70% of loops of order 3 and 4), and loops of 
order 6 or higher are the minority (between 10 and 15% of 
the total fraction of the loop). However, from the maximum 
deviatoric stress state (vertical line B in Fig. 4), loops of 
order higher than 6 are more numerous than those of lower 
order, while the fraction of loops of order 5 remains sta-
ble. Referring to Liu et al. [11], two distinct evolutions can 
be envisaged for dense sample when a strain localization 
develops. In the present biaxial test, no strain localization 
is observed. As a result, it is observed that the final propor-
tion of loops found in at the steady-state are very similar to 
those reported in Liu et al. [11] when restricting the analysis 
to the shear band domain only. With the help of Fig. 2, we 
can also interpret this evolution from less deformable loops 
to more deformable loops as a mesoscopic equivalent of the 
macro-evolution of the volumetric strain: the appearance of 
the dilatancy goes hand in hand with the increase of the 
fraction of loops that contain more void.

The evolution rate of grain loops and rattlers are now 
studied during the burst of kinetic energy, inside and outside 
the burst zone. The relative evolution of the number of loops 
is equal to Nt−Nt+dt

N0

 where Nt (resp Nt+dt ) is the number of 
loops at time t (resp t+dt), and N0 the total number of loops 
in the domain at the beginning of the numerical recording. 
Figure 11 shows the concentration of the changes within the 
burst zone, even if small reorganizations persist after the 
burst. Figure 11a shows the rate of change of the 4 main 
orders of loops, within the burst area. There is about the 
same amount of loops created and lost for each type of loop. 
This means there are reorganizations of the contacts, but the 
mesoscopic structure remains stable on average and regains 
a similar structure after bursting (note that the contact force 

Fig. 10   Evolution of loop fractions as a function of the axial strain 
during the biaxial test. The macroscopic volumetric strain is recalled 
in black. The characteristic point (A) and stress peak (B) defined in 
Fig. 2 are shown with vertical dashed lines
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distribution is modified with less contacts close to sliding). 
However, we can note that the 3, 4 and 5 order grain loops 
are broken first (peak of lost loops in the first part of the 
burst) and then created (peak of gained loops in the second 
part of the burst). This is not obvious for 6+ order loops, 
which are the most affected meso-structures. Thus, low order 
loops are lost and transformed in higher-order loops, while 
higher-order loops are constantly being created and 
destroyed to ensure the stability of the sample during an 
inertial disturbance. Figure 11b shows the evolution of the 
proportions of new and disappeared rattlers within the burst-
ing zone in relation to the number of rattlers just before the 
start of the burst. The maximum numbers of gained and lost 
rattlers are not reached simultaneously. This means that the 
rattlers are first generated and then lost. This finding is in 
line with the results obtained with grain loops. Before the 
peak of kinetic energy, a significant amount of low order 
loops are lost, which creates rattlers. While kinetic energy 
decreases, lower-order loops are created by capturing the 
rattlers. The loss of lower order loops in the first part of the 
burst (i.e. loops containing little void) is consistent with the 
existence of local dilatation as raised in Section III.2 and 
Fig.  6.

Outside the burst zone, no significant trends can be high-
lighted (Fig. 12). Neither grain loops (Fig. 12a) nor rat-
tlers (Fig 12b) outside the burst zone are altered in number 
and nature. Figure 12 shows that the location of changes 
in micro-structures depends on the spatial location of the 
kinetic energy burst.

Identifying changes at the microscopic scale remains a 
difficult task, especially since the micro-structure changes 
are limited and concern a very small fraction of all loops. 
These limited changes are most likely related to the fact that, 
in this dense set of grains subjected to a drained biaxial com-
pression, most of the energy is dissipated by friction rather 
than kinetic energy. However, the meso-domains have made 
it possible to evidence the changes occurring in the burst 
zone. Grain loops highlight the microscopic reorganization 
undergone by the area due to bursting.

5.2 � Analysis of the meso‑stress

In Fig. 13, each component of the macroscopic stress is com-
pared to the corresponding component of the weighted average 
sum of all meso-stresses (the loop contributes for its fraction 
area of the total sample domain). The comparison is made 
on the whole sample domain and on all the biaxial test long. 
The dotted lines represent the components of the sum of the 
meso-stress. They follow very well the evolution of each cor-
responding macro-component. The proposed definition of a 
meso-stress is thus sound as it corresponds to the usual mac-
roscopic definition of a stress when weighted average of the 
meso-stresses is considered.

Fig. 11   Relative variation of grain loops (a) and rattlers (b) in the bounding box domain shown in Fig. 5 (in the vicinity of the burst of kinetic 
energy)
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5.3 � Evolution of mesoscopic second‑order work 
during the kinetic energy burst

Figure 14 shows the spatial distribution of mesoscopic 
second-order works during the propagation of the No. 4 
kinetic energy burst. Meso-stress and meso-strain incre-
ments are defined on macroscopic increments of axial strain 
|Δ�yy| = 10-6. Thus, each panel in Fig. 14 leads to the same 
panel of index in Fig. 5, with the exception of the panel 
(*). The vanishing of mesoscopic second-order work fol-
lows the spatial evolution of kinetic energy, with even wider 
and more detailed limits. Mesoscopic second-order work 

reveals some details that cannot be seen simply by looking 
at kinetic energy. For example, the panel (*) in Fig. 13 is an 
intermediate step between (a) and (b). In Fig. 5, it can be 
suggested that the burst appears at the upper center of the 
sample. However, the panel (*) shows that the instability 
originates from the lower right corner and propagates to the 
upper center of the sample. The origin of the burst at the 
lower right corner is also visible in panel (b) of Fig. 14, but 
to a lesser extent.

Although maps of second order mesoscopic work seem 
to reveal more clearly the origins of the kinetic burst, 
one thing to emphasize is that the whole burst area does 

Fig. 12   Relative variation of grain loops (a) and rattlers (b) outside the bounding box domain shown in Fig. 5 (far from the burst of kinetic 
energy)

Fig. 13   Comparison between 
the macroscopic stress�macro 
and the volume average of the 
mesoscopic stress ⟨�meso⟩
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not only have loops with negative second order meso-
scopic work. Negative and positive mesoscopic second-
order loops are often next to each other. By looking at 
the volume-weighted average second order work, one can 
assess the predominance of negative or positive meso-
scopic second order work. For the bounding box of the 
domain Ωb shown in Fig. 5, the volume-weighted average 
of the second-order work reads

(25)(W2)Ωb
=

1

|Ωb|
Σ
l
|Ωl|(W2)Ωl

The evolution of  ⟨W2⟩Ωb
 during the outburst of kinetic 

energy is shown in Fig. 15.  ⟨W2⟩Ωb
 is negative only at the 

nucleation of the burst. It then increases to positive values 
during the burst and then returns to its pre-burst value. 
The decrease of ⟨W2⟩Ωb

 prior to bursting can be seen as 
a signature of underlying mechanical instability in the 
bursting domain. The following increase shows that the 
active reorganizations of the micro-structure that occur 
during the burst allow for rapid restabilization of the sam-
ple and prevent the burst from continuing to grow. As a 
result, the burst quickly disappears and remains local-
ized. On the other hand, it has been shown by Wautier 

Fig. 14   Reduced time sequence of mesoscopic second-order work 
W

2
 based on the Fig. 7. (a) (b) (c) (d) (e) (f) correspond to the same 

step of Fig. 7 while (*) corresponds to an additional step between (a) 

and (b). A macroscopic axial strain increment  |�
yy
| = 10

−6 is used 
to compute the incremental meso-strains and meso-stresses. The box 
delimiting the burst shown in Fig. 5 is reproduced here.
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et al. [39] that bursts propagating throughout the sample 
domain are related to mechanical instabilities at the mate-
rial point scale.

6 � Conclusion

In this paper, we have emphasized the importance of 
meso-domains in the analysis of a burst of kinetic energy 
that can be observed in granular materials. Changes in 
grain loops highlight structural displacements at the 
microscopic scale during bursts. The opening and clos-
ing of the grain loops release kinetic energy, while the 
micro-structure after bursting is very similar to that before, 
which ensures the statistical equilibrium at critical states. 
Furthermore, focusing on indicators of inertial transition 
and mechanical instabilities, we show that the area where 
the burst occurred contains precursors of kinetic energy 
release. On the one hand, a large number of contacts with 
a sliding index close to 1 is required to enable the burst to 
be triggered in a specific area. On the other hand, the cri-
terion of the second-order work, defined at the mesoscopic 
scale, predicts the burst of kinetic energy and even gives 
information on its origins. These results encourage the fur-
ther use of meso-domains in the study of instabilities. In 

the present study, bursts of kinetic energy were observed 
despite the fact that most of the energy released is directly 
dissipated through contact friction. The influence of the 
friction coefficient on the different energies conversion is 
an aspect that will require additional research work. From 
a more theoretical point of view, the proposed introduc-
tion of a mesoscale attached to meso-structures is based 
on a number of assumptions that will need to be further 
investigated to assess their validity where inertial terms 
could have a larger contribution.
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