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Abstract
This paper deals with the modelling and simulation of segregation in granular materials. The basis is a hydrodynamic model 
for granular material flows, which is extended to capture the dynamic process of segregation in shear flows of systems with 
small and large particles. The granular flow equations consist of a set of compressible Navier–Stokes-like equations as well 
as an equation for the granular temperature. With the help of the granular temperature equation, the granular flow equations 
are able to cover a wide range of regimes, starting from dilute to arresting flows. However, this paper focuses on dry granular 
shear flows. It extends this hydrodynamic system in a dense shear flow regime by a segregation equation using the framework 
of mixture theory. Special focus is lain on the segregation direction. A procedure from mechanics is adapted to obtain the 
segregation direction from the granular flow system independent of the choice of the coordinate system. In particular, this 
is done in three-dimensional space. Due to the compressibility of the granular flow system and the structure of the derived 
segregation equation, solving the segregation equation requires special numerical treatment. Therefore, a suitable numerical 
scheme is presented which prevents the system from reaching unphysical states.

Keywords  Granular media · Non-Newtonian flows · Continuum approach · Particle segregation

1  Introduction

Granular materials consist of macroscopic particles of dif-
ferent size and kind. Examples range from avalanches and 
dunes in geophysics, grain filled silos in agriculture to pow-
ders in the cosmetic and pharmaceutical industry. They are 
omnipresent in humans daily lives. Many industrial and 
chemical processes have to deal with granular materials. 
The worldwide annual production of grains and aggregates 
reaches 10 billion metric tons and their processing con-
sumes 10% of all energy produced on earth. It is the most 
manufactured material in industry after water [7]. For these 
reasons granular materials have been the subject of inten-
sive engineering research for many decades, but fully under-
standing their dynamic behaviour still poses a major chal-
lenge to engineering science and physics. The natural and 
industrial processes described above can be quite complex, 
since granular materials can behave similar to either fluids 

or solids. For the aforementioned processes, the different 
regimes occur at the same time or consecutively. Due to the 
macroscopic size of the discrete particles, Brownian motion 
has no relevance for the collective behaviour. The dissipative 
forces acting on the particles, such as inelastic collisions and 
friction, lead to different material properties than conven-
tional fluids, solids or gases. For a granular system to remain 
active, it needs to gain energy from external forces (grav-
ity, electric or magnetic fields), shear or vibration. Thermal 
fluctuations are insufficient to move grains and therefore do 
not play a role for granular systems. Consequently, granular 
materials exhibit metastable steady states far from equilib-
rium [1]. All these aspects contribute to the difficulties one 
encounters in the field of modelling granular flows.

To simulate the behaviour of granular materials, for 
researchers, the field of granular physics is still a mixture of 
different modelling tools, concepts, and phenomenological 
theories. After all, there is no general hydrodynamic theory 
as the Navier–Stokes equations (NSE) for simple fluids, 
which can model a granular system with the same accuracy. 
Quite good results can be acquired from discrete models 
like the discrete element method (DEM), but they are too 
costly to simulate entire industrial processes. With kinetic 
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theory there exists a unified description for dilute systems of 
rapid grains, but it is not applicable in general for granular 
systems approaching close-packing density. However, it has 
been shown that extensions to kinetic theory can be derived 
that are applicable to denser flows [22].

In case of granular systems composed of different grain 
sizes, segregation effects may occur during flow. The seg-
regation effect might be very helpful in the mining industry 
for mineral processing, but it leads to problems in many 
other industrial areas. In the pharmaceutical and the food 
industry, mixing processes using rotating tumblers are very 
common. A uniform mixing is also desired in the production 
of ceramics or plastics. Here, segregation can degrade the 
quality of the products [40].

Since size segregation is the most dominant mechanism 
compared to segregation effects due to particle density or 
particle shape, the focus lies on the topic of size segrega-
tion. In recent years, the starting point for the derivation of 
most segregation models is to look at a simple process. Typi-
cally, granular avalanches of small and large particles flow-
ing down an inclined plane serve as a common example. For 
the mathematical description of the segregation process, an 
advection-diffusion equation for the solid volume fraction of 
the small particle phase � ∈ [0, 1] with a certain non-linear 
structure of the flux term is established in literature. In the 
most publications, it can be given by

where u defines the bulk velocity in x-direction, q the seg-
regation velocity, and D the diffusion coefficient. A first 
one-dimensional model, which ignores the transport with 
the granular material and a flux term with � = 2 , was given 
by Bridgwater et al. [3]. Later models are similar to equa-
tion (1) but with a flux term where � = 1 , like in the work 
of Dolgunin and Ukolov [6]. Since 2005, mixture theory, 
which is a theory to model multiphase systems using the 
principles of continuum mechanics, has often been used 
to derive segregation equations. A first rigorous derivation 
of an equation like (1) was given by Gray and Thornton 
[19]. The authors concentrated on the advective segrega-
tion process without diffusion. An extension including the 
diffusive remixing term was introduced by Gray and Chugu-
nov [18]. Further extensions were introduced later on con-
cerning multi-component segregation by Gray and Ancey 
[16], asymmetric flux modelling by Gajjar and Gray [10], 
or combined particle-size and particle-density segregation 
by Tunuguntla et al. [38] as well as Gray and Ancey [17]. 
Extensions concerning density segregation as well as multi-
component segregation were already presented in the work 
of Marks et al. [29]. Other models for gravity-driven segre-
gation mechanisms were presented by Larcher and Jenkins 
[25, 26] or Hill and Fan [20]. An extensive summary about 

(1)�t� + �x(�u) + �z(q�(1 − �)�) = �z
(
D�z�

)
,

segregation in experiment and the mathematical models is 
given by Gray [15].

In this work, the focus lies on dry granular shear flows of 
systems of small and large particles, like they often appear 
in industrial and geological applications. In the upcoming 
section, a modified version of the hydrodynamic granular 
flow model of Latz and Schmidt [27] is introduced. The 
presented model additionally includes changes that consider 
the difference in particle size. Afterwards, a segregation 
equation is derived by means of mixture theory, similar to 
the aforementioned models. In contrast to the already men-
tioned models, a general direction of segregation is intro-
duced. This aspect is relevant in order to make the segrega-
tion process invariant to the choice of the coordinate system. 
For this direction an expression is given, from which the 
segregation direction can be calculated for shear flows on 
the basis of the local flow field, and it does not have to be 
specified globally for the entire domain. In particular, this is 
done in three-dimensional space. Additionally, the segrega-
tion equation considers the compressibility of the granular 
flow model. The flux function of the segregation equation 
depends explicitly on variables of the granular flow equa-
tions. In Sect. 3, a numerical procedure is presented which 
considers the mentioned dependences of the flux function 
and prevents the system from reaching unphysical states. 
Further, the derived segregation equation reduces to the 
original model of Gray and Thornton [19] in case of paral-
lel shear flows of an incompressible granular material. In the 
last Section, a first quantitative example is presented to show 
the interplay of the segregation equation and the modified 
granular flow model.

2 � Mathematical model

The physical system of interest is given by a granular mate-
rial of particles of different sizes and a passive air phase 
surrounding the material and filling the void spaces between 
the particles. Using the terms of the theory of mixtures, the 
whole system S consists of three constituents, the small par-
ticles Ss , the large particles Sl , and the air phase Sa . It is 
assumed that the small and large particles of the granular 
material have equal material densities �s∗ = �l∗ = const . The 
volume fraction occupied by a constituent � ∈ {s, l, a} is 
denoted by �� and it holds

Consequently, the volume occupied by granular material is 
given by

(2)�s + �l + �a = 1.

(3)�s + �l = �.
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In literature, it is often assumed that, e.g. in a granular ava-
lanche, the volume of air �a is constant. With the additional 
assumption of a passive air phase, it is argued that the air 
phase can be incorporated into the particle phases [16, 18, 
19, 37, 39]. In such a case the mixture can be approximated 
by the particle phases which yields

Nevertheless, in this work, it is assumed that the volume 
fraction of the air phase can vary locally. This is consistent 
with the compressible granular flow model which will be 
presented. For fulfilling (2), the air volume �a must change 
according to the granular volume fraction � . Certainly, the 
volume fraction of a particle phase relative to the granular 
material can be defined analogously to �� by

Classically, equations are formulated in terms of partial den-
sities �� . These are linked to intrinsic densities ��∗ , defining 
the quantity per unit volume of the pure phase. The linear 
volume fraction scaling is given by

which equally holds for the granular mixture

To avoid further variable changes, all equations are 
directly given in terms of the respective volume frac-
tions, as all upcoming terms are linear in the density and 
�∗ = �s∗ = �l∗ = const.

The final model is given by a set of Navier–Stokes like 
equations for the granular mixture and additionally, an equa-
tion for the behaviour of the small particles as the large par-
ticle phase is given through the saturation condition (3).

2.1 � The granular flow model

The model of choice to describe the behaviour of granular 
materials is a version of the Latz–Schmidt model [27], 
which originally describes a mono-disperse system of 
spherical particles. There are mainly two regimes that 
need to be taken into account when dealing with granular 
materials. First, the fast dilute flow regime which is domi-
nated by binary particle collisions. The second regime is 
often called the static regime, where kinetic theory is no 
longer applicable, since the assumption of binary parti-
cle collisions breaks down for arresting granular flows. 
Therefore, the model is a hybrid combining properties of 
kinetic theory of granular gases, which is well verified in 
the field of dilute granular systems [4] and the framework 
of critical state plasticity which is employed in the field of 

(4)�s + �l = 1.

(5)𝜙̂𝜈 ∶=
𝜙𝜈

𝛷
.

(6)�� = ����∗,

(7)� = ��∗.

soil mechanics [36]. The model of Latz and Schmidt [27] 
has been validated for the case of inelastic, hard spheres 
against various experimental publications. A further exten-
sion to the kinetic theories has been given by Zemerli 
[42] presenting the transition of compacted, very dense 
flow via continuum mechanics of solids. This subsection 
serves as overview of the mentioned model as it has been 
derived and analysed in the already mentioned literature. 
Additionally, the model includes changes that consider the 
difference in particle size. The relevant expressions now 
additionally depend on the relative volume fraction 𝜙̂s.

The general framework of the hydrodynamic model 
consists of three equations. The first Eq. (8) and the sec-
ond Eq.  (9) are the isothermal compressible viscous 
Navier–Stokes equations. They are solved for the granular 
volume fraction � and the momentum �� , where � defines 
the bulk velocity of the granular material.

The force term in the momentum balance (9) is assumed to 
be solely the gravitational force � = �� . Since it is assumed 
that the air phase plays a passive role, the interaction term 
is negligible, i.e. � = � . Further, p defines the pressure and 
𝝈̄ the deviatoric stress tensor. In this model an asymmetric 
stress–strain relation is used, i.e.,

where � is a viscosity. The usage of the asymmetric 
stress–strain relation is a simplification compared to the 
standard NSE. Typically, the symmetric version of the stress 
is used. In an d-dimensional space, it is given by

In Eq. (12), � is the bulk viscosity, and � the identity matrix. 
The symmetric strain rate tensor 𝜿̄s is given by

The choice of the less complex asymmetric stress–strain 
relation is not arbitrary. Asymmetric stresses are already 
used in the works of Mitarai et al. [31] and Campbell [5] to 
model collisional granular flow. Latz and Schmidt explained 
in [27] their decision to choose the non-symmetric tensor. 
For instance, they observed in numerical tests that the mixed 
derivatives in the symmetric tensor cause large unphysical 
spreading of granular jets perpendicular to the flow direc-
tion. Finally, they stated that at least in dense granular 

(8)�t� + ∇ ⋅ (��) = 0,

(9)𝜕t(𝛷�) + ∇ ⋅ (𝛷�⊗ �) = ∇ ⋅ 𝝈̄ − ∇p + � + 𝜷.

(10)𝝈̄ = �𝜿̄,

(11)𝜿̄ = ∇�,

(12)𝝈̄s = 2�𝜿̄s +
((

� −
2

d
�
)
∇ ⋅ �

)
�.

(13)𝜿̄s =
1

2
(∇� + (∇�)T ).
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flow their approximation does not influence the results too 
strongly.

The third and last of the granular flow equations is the 
granular temperature Eq. (14). The concept of a granular 
temperature considers the energy transport due to particle 
movements and collisions. The granular temperature T, 
which is defined by the spatial average of the fluctuating 
part of the velocity, is a measure of the random particle 
motion in the granular system. One obeys the balance law

where � denotes the temperature conductivity. Equation (14) 
is quite similar to the classical heat transfer equation. It has 
a source in the viscous heating term 3

2
�𝜿̄ ∶ 𝜿̄ and a sink in 

the last term, where � is the energy dissipation rate due to 
inelastic particle collisions. Please note, following a rigor-
ous derivation as in [11] the heat flux includes not only a 
temperature but also a gradient in the number density and 
the dissipation term a gradient in the velocity. Here, the sim-
plified approximation of the temperature equation given by 
[27] is used.

To close the system a constitutive relation for the pres-
sure needs to be provided. As previously mentioned, one 
has to distinguish two regimes where the model should be 
applicable. Therefore, it is assumed that the closure for 
the pressure can be split in a purely kinetic and a so-called 
yield part

These parts are subscribed by k and y, respectively. For the 
kinetic regime, Garzó and Dufty [11] derived expressions 
for the kinetic pressure

and for the transport coefficients in the kinetic regime �k, �k , 
and �k . Bocquet et al. [2] showed that there are simpler 
expressions than those derived by Garzó and Dufty [11] 
which produce quantitatively correct results in shearing 
experiments. Furthermore, Schmidt [35] showed that the 
simpler form together with the upcoming extensions is appli-
cable to various regimes of granular flow. The simplified 
kinetic expressions for the transport coefficients are given by

The compressibility factor

(14)
�t(�T) + ∇ ⋅ (�T�) =

3

2
(�𝜿̄ ∶ 𝜿̄ + ∇ ⋅ (�∇T)) − ��T ,

(15)p = pk + py.

(16)pk ∶=𝛷g(𝛷, 𝜙̂s)T

(17)

𝜂k ∶= 𝜂0𝛷
√
Tg(𝛷, 𝜙̂s),

𝜆k ∶= 𝜆0𝛷
√
Tg(𝛷, 𝜙̂s),

𝜀k ∶= 𝜀0

√
Tg(𝛷, 𝜙̂s).

helps to ensure that the granular system stays in a physically 
valid state, i.e. 𝛷 < 𝛷rcp(𝜙̂

s) < 1 . The expression 𝛷rcp(𝜙̂
s) 

gives the upper bound for the volume of the granular sys-
tem, named random close packing value. In contrast to the 
original mono-disperse model presented in [27], the random 
close packing value is not a constant any more, but it is a 
function depending on the local amount of small and large 
particles. An appropriate expression for the random close 
packing needs to be found by fitting experimental or simu-
lation data. With the material parameters �0, �0 , and �0 the 
granular material is characterized.

It needs to be pointed out that the transport coefficients 
generally are a combination of species dependent transport 
coefficients. To keep the model as simple as possible, this 
first extension depends only through the radial distribution 
function on the species volume fraction to achieve non-
constant maximum packing values. Otherwise the amount 
of parameters which needs to be fitted increases or further 
relations need to be added to the model.

In the dense flow regime, the kinetic theory assumption 
of binary particle collisions is not valid any more. Due to 
the appearing long-term contacts, the presented relations 
(16) and (17) need to be modified. Similar as stated in the 
work of Savage [34], the pressure in the yield regime can 
be defined by

The Heaviside step function � ensures that the yield terms 
are only active in the dense flow regime, where the vol-
ume fraction of the material is larger than the cross-over 
volume, i.e. 𝛷 > 𝛷co(𝜙̂

s) . The cross-over volume is smaller 
than the random close packing volume, but it is assumed 
that it behaves the same way depending on the local amount 
of small and large particles. It is close to the random loose 
packing value. The yield parameter T0 is a positive constant, 
it prevents the pressure to vanish for zero granular tempera-
ture. Similar to the pressure, the transport coefficients have 
to be modified in the dense regime. The final terms are 
defined in the work of Schmidt [35]

(18)g(𝛷, 𝜙̂s) ∶=

(
1 −

𝛷

𝛷rcp(𝜙̂
s)

)−1

(19)py ∶=𝛩(𝛷 −𝛷co(𝜙̂
s))T0(𝛷 −𝛷co(𝜙̂

s))g(𝛷, 𝜙̂s).

(20)

� ∶= �k

(
1 +

py

pk

)
,

� ∶= �k

(
1 +

py

pk

)
,

� ∶= �k

(
1 +

py

pk

)
.



Size segregation in compressible granular shear flows of binary particle systems﻿	

1 3

Page 5 of 15  45

Due to definition (20) the transport coefficients increase for 
diminishing granular temperature. This behaviour can be 
observed in experiments [9]. Although the form of the con-
stitutive relations is held relatively simple, the model repro-
duces properties of granular systems like Bagnold scaling, 
frictional properties, and plastic regime as it has been shown 
by Zemerli [42].

The granular material is uniquely characterized by the 
macroscopic parameters �rcp, �co , �0, �0, �0 and T0 . These 
parameters generally have to be validated by experiments, 
but in many cases, some parameters can also be approxi-
mated via further relations. For instance, Latz and Schmidt 
[27] used the relation

to determine one of the coefficients �0 and �0 with the help 
of the internal friction coefficient �.

2.2 � Segregation modelling

To derive a segregation equation that fits the granular flow 
model, the modelling process of Gray and Thornton [19] 
suits as orientation. Based on the assumptions of mixture 
theory, it is assumed that for each phase � a mass and a 
momentum balance are given by 

 The exact form of the several terms in (22) depends on the 
assumptions made for the physical system.

First, it is assumed that the particles in the granular sys-
tem do not amalgamate or break. This implies that the mass 
transfer variable is equal to zero, m� = 0 ∀� ∈ [s, l, a] . 
Consistently, as stated for the granular flow model, the 
body force on each phase is solely the gravitational force, 
�� = � ∀� ∈ [s, l, a] . The stress tensors for the particle 
phases in the segregation process are pressure dominated. 
They are approximated by lithostatic pressure fields, i.e. 
𝝈̄� = −p�� [19]. The assumption of a passive air phase 
implies that the amount of stress in the mixture coming from 
air is negligibly small, i.e. 𝝈̄a = � , and also the interaction 
force �a = � . Hence, one can focus on the particle phases 
and the combined granular system as it is usually done in 
literature.

With the assumptions made so far, the balance laws (22) 
for a particle phase � are given by 

(21)tan(�) =
√
�0�0

(22a)�t�
� + ∇ ⋅ (����) = m� ,

(22b)

𝜕t(𝜙
𝜈�𝜈) + ∇ ⋅ (𝜙𝜈�𝜈 ⊗ �𝜈) =

1

𝜌𝜈∗
∇ ⋅ 𝝈̄𝜈 + 𝜙𝜈�𝜈 + 𝜷𝜈

.

(23a)�t�
� + ∇ ⋅ (����) = 0,

 The assumptions imply that the pressure of the whole mix-
ture is equal to the granular pressure, i.e.

As previously mentioned, there is no interaction force 
between the particle phases and the air phase. Hence,

An equation describing the change of one particle phase � 
can be derived, starting from balance law (23a). Introducing 
the relative velocity between phase � and the bulk

the mass balance can be rewritten in the form

In this form, the left-hand side of Eq. (27) describes the 
transport of particle phase � with the bulk velocity � . The 
right-hand side represents the segregation. It is a motion 
relative to the bulk with velocity �̃𝜈 . Segregation is a result 
of the interaction between the small and the large particles. 
This interaction is given in the momentum balance due to 
the interaction force �� . Hence, an expression for the relative 
velocity can be obtained from the momentum balance (23b). 
With the assumption that the partial densities and momenta 
become quasi-steady even before the segregation starts, like 
in [39], the momentum balance (23b) reduces to

Summing (28) over all constituents � implies that the pres-
sure field is lithostatic,

The key idea to derive an expression for the relative velocity 
is to introduce a pressure scaling that differs from the stand-
ard volume fraction scaling as it is used for the densities. 
The scaling, where the partial pressure depends linearly on 
the bulk pressure

was formulated by Gray and Thornton [19]. The idea arises 
from the assumption that small particles carry less of the 
overburden pressure than the large particles while they per-
colate to the ground of the mixture. The factor f � determines 
the proportion of the load carried by phase � . Equation (30) 
automatically implies that

(23b)𝜕t(𝜙
𝜈�𝜈) + ∇ ⋅ (𝜙𝜈�𝜈 ⊗ �𝜈) = −

1

𝜌𝜈∗
∇p𝜈 + 𝜙𝜈� + �𝜈

.

(24)p = ps + pl.

(25)�s + � l = 0.

(26)�̃𝜈 ∶= �𝜈 − �,

(27)𝜕t𝜙
𝜈 + ∇ ⋅ (𝜙𝜈�) = −∇ ⋅ (𝜙𝜈 �̃𝜈).

(28)0 = −
1

��∗
∇p� + ��� + ��

.

(29)∇p = ��.

(30)p� = f �p � ∈ {s, l},
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If solely one of the particle phases is present, it has to carry 
all of the granular load. Hence, the proportionality factor f � 
must fulfil condition

Similar to [19] the expressions for each proportionality fac-
tor are chosen in such a way that they satisfy the conditions 
(31) and (32), i.e. 

 The expressions in (33) are not unique. In this work, this 
simple form is used, where B is a non-dimensional mag-
nitude. It should be mentioned, that Gajjar and Gray [10] 
discussed different expressions in their work, where they 
modelled asymmetric flux functions.

Furthermore, an expression for the interaction force �� is 
required. This expression is modelled by

which satisfies the summation condition (25). The last term 
of expression (34) is a Darcy term, where c is the coefficient 
of inter-particle drag. Its nature is poorly understood, thus 
it has been chosen to be constant in the first works model-
ling segregation in that way [18, 19]. The Darcy term was 
already introduced by Morland [32] after observations that 
the segregation process of particles shows an analogy to the 
percolation of fluids through porous solids. The first term 
ensures that the percolation is driven by intrinsic than partial 
pressure gradients as in Darcy’s law [19]. The segregation 
depends on the shear rate 𝛾̇ . It is inversely proportional to 
the drag term as an increase in the shear rate decreases the 
friction between the particle layers. The first time it appeared 
in a gravity-driven segregation model, was in the work of 
Marks et al. [29]. It is allowed to vary in this work depend-
ing on the flow field. The expression for the interaction term 
(34) is the established form in literature when dealing with 
gravity-driven segregation models [10, 16, 19, 38].

With the definition of the interaction term (34) and the 
pressure scaling (30), Eq. (28) is given by

In the most works (e.g. [3, 6, 8, 16, 18, 19, 25]) a segregation 
equation is derived for avalanches flowing down inclined 
planes with a constant angle. Further, it is assumed that the 

(31)
∑

�

f � = 1.

(32)f � = 1 if �� = 1 ∀�.

(33a)f l = 𝜙̂l + B𝜙̂s𝜙̂l,

(33b)f s = 𝜙̂s − B𝜙̂s𝜙̂l.

(34)�𝜈 =
p

𝜌𝜈∗
∇f 𝜈 −

𝜙𝜈c

𝛾̇
(�𝜈 − �)
���

�̃𝜈

𝜈 ∈ {s, l},

(35)0 = −
1

𝜌𝜈∗
f 𝜈∇p + 𝜙𝜈� −

𝜙𝜈c

𝛾̇
�̃𝜈 .

avalanche is incompressible with a constant height. In these 
gravity-driven shear flows, shear bands appear that are par-
allel to the inclined plane. In such a case, the coordinate 
system can be rotated such that the avalanche flows in the 
positive x-direction and the segregation solely takes place in 
the z-direction. Especially, this means that the segregation 
direction will not change, neither over time nor locally in the 
spatial domain. To model the segregation process in such a 
case, one can focus solely on the z-direction as it has been 
done in the already mentioned literature.

In this work, the segregation equation should be coupled 
to the granular flow model where arbitrary flow directions 
are possible. Therefore, the modelling done here should be 
more general. Assume that the segregation direction at a point 
in space is given by the vector �s . This vector spans a one-
dimensional subspace of ℝd , denoted by D . To focus on this 
subspace one can define the projection � ∶ ℝ

d
→ D by

To be more precise, the direction of the segregation is per-
pendicular to the shear layer which depends on the velocity 
field.

Applying the projection on Eq. (35) gives

due to the linearity of � . As the pressure field is lithostatic 
(29), Eq. (37) rearranges to

Note that the relative velocity �̃𝜈 is the segregation velocity. 
It lies in the image of the projection function � and therefore 
per definition it holds

Finally, using the expressions for the proportionality factors 
(33) the relative velocities for the small and large particle 
phases are given by 

 With the expressions for the relative velocities (40), the 
balance law (27) modifies to 

(36)�� ∶= (� ⋅ �s)�s.

(37)0 = −
f 𝜈

𝜌𝜈∗
�∇p + 𝜌𝜈�� −

𝜌𝜈c

𝛾̇
��̃𝜈 ,

(38)
c

𝛾̇
𝜙𝜈 �̃𝜈 = (𝜙𝜈 −𝛷f 𝜈)��.

(39)��̃𝜈 = �̃𝜈 .

(40a)�̃s =

(
B𝛾̇

c𝛷
��

)
𝜙l,

(40b)�̃l = −

(
B𝛾̇

c𝛷
��

)
𝜙s.

(41a)�t�
s + ∇ ⋅ (�s�) = ∇ ⋅

(
�sl�s�

l

�

)
,
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 respectively. The expression

has the dimension of a velocity and gives a measure for the 
segregation speed of small particles in the system. It holds 
�ls = −�sl.

As previously mentioned, the shear rate is assumed to be 
non-constant in this work. It should depend on the state of 
the granular flow model. This can be done using the granular 
temperature. The shear rate can be defined by

With definition (43), the viscous heating term in the granu-
lar temperature equation (14) is simply given by 3

2
𝜂𝛾̇2 . The 

shear rate in the granular system can be approximated by 
the granular temperature. In a stationary uniform state, the 
equation for the granular temperature (14) can be written as

Here, it is assumed that the heat flux term is small compared 
to the viscous heating and dissipation. Then, the tempera-
ture equation is in the equilibrium between viscous heating 
and dissipation [42]. With the expressions given in (17) and 
(20), the shear rate is proportional to the square root of the 
granular temperature

With the derived expression (45), the segregation velocity 
can be rewritten as

where the segregation rate Ssl
0
 is constant. In general, the 

segregation rate depends on the properties of the respec-
tive granular material. Therefore, the segregation rate needs 
to be fitted to the real granular system. Furthermore, Ssl

0
 is 

expected to be positive. Finally, the segregation equation for 
the small particle phase takes the form

(41b)�t�
l + ∇ ⋅ (�l�) = ∇ ⋅

(
�ls�l�

s

�

)
,

(42)�sl ∶= −
B𝛾̇

c
��,

(43)𝛾̇ ∶=
√
𝜿̄ ∶ 𝜿̄.

(44)
3

2
𝜂𝛾̇2 = 𝜀𝛷T .

(45)𝛾̇ =

√
2

3

𝜀0

𝜂0
T .

(46)
�sl = −

B

c

�
2

3

�0

�0
⏟⏞⏞⏟⏞⏞⏟

Ssl
0

√
T�� = −Ssl

0

√
T��,

(47)�t�
s + ∇ ⋅ (�s�) = ∇ ⋅

(
�sl�s (� − �s)

�

)
.

The structure of the derived segregation equation (47) is 
similar to the models mentioned in Sect. 1. The main dif-
ferences are the non-constant granular volume fraction � 
and the dependence on the granular temperature T, which 
is non-constant as well. Not least, this will change the way 
the equation has to be handled numerically. For simplicity, 
the superscript of the volume fraction of the small particle 
phase is dropped � = �s , since only this phase is used in 
the following. One should note, assuming constant granular 
temperature and constant granular volume fraction in the 
granular system the model reduces to the original model 
of Gray and Thornton [19]. For the sake of completeness, 
it should be pointed out that the dependence of segregation 
on granular temperature has already been discussed in the 
work of Fan and Hill [8]. The dependence arises from the 
assumption that segregation is driven by kinetic stress in the 
definition of the interaction term of the momentum balance.

2.3 � The segregation direction

For the modelling of the segregation equation, it has been 
assumed that a vector �s is given that spans a subspace of 
ℝ

d in which the segregation takes place. To solve the seg-
regation equation such a vector needs to be found. It is well 
known that for gravity-driven shear flows, the segregation 
happens in the direction perpendicular to the local shear 
layer [3, 19, 26]. The shear depends on the velocity field of 
the granular system � or more precisely on the gradient of 
the velocity ∇� , such that �s = �s(∇�).

To find the segregation direction in granular shear flows, 
a concept from the field of mechanics is adapted. Assume 
a mechanical body under some stress. This stress state is 
given by a symmetric stress tensor �̄ with principle stresses

and corresponding normalized eigenvectors �1, �2 , and �3 , 
which are mutually orthogonal. As described, for example, 
in the work of Wu [41], planes of the principle shear stresses 
�ij of the body are orientated as depicted in Fig. 1. The plane 
of maximal shear stress is defined by the eigenvectors cor-
responding to the smallest and largest eigenvalue. Under 
assumption (48) the maximal shear stress �max = �13 acts in 
the sectional plane depicted in Fig. 1c.

Adapting this procedure to the framework of granular 
flows, the segregation direction can be computed by using 
the symmetric versions of the stress and the strain as given 
in (12) and (13). From the stress–strain relation, it can be 
deduced that the eigenvectors of stress and strain are equal. 
The corresponding eigenvalues might be different but have 
the same order in size. Hence, the planes of principal shear 
stress and principal shear strain coincide. As solely the ori-
entation of the shear planes is of interest, it is enough to 

(48)t1 ≥ t2 ≥ t3
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look at the symmetrized velocity gradient of the bulk flow 
given in (13) by

Unfortunately, normalized eigenvectors are not unique with 
respect to the algebraic sign. Hence, the planes depicted in 
Fig. 1 are not unique.

For mechanical bodies, the forces acting in the defined 
planes between, for example, all combinations of ± �1 and 
± �2 are equal (see Fig. 2). This is not the case for the granu-
lar system as it is not one solid body. Hence, it is assumed 
that the shear plane is the one which is mostly parallel to the 
velocity field. Hence, the following procedure can be stated 
to compute the segregation direction in granular shear flows: 

1.	 Compute the eigenvalue �max and �min of 𝜿̄s =
1

2

(
∇� + (∇�)T

) .
2.	 Compute the corresponding eigenvectors �max and �min.
3.	 Define �s = �max ± �min depending which is mostly 

orthogonal to �.

3 � Numerical treatment

The computation procedure for the previously presented set 
of equations can be done in the following way. From some 
initial state of the granular system the local values for the 
random close packing 𝛷rcp(𝜙̂) and the cross-over volume 

𝜿̄s =
1

2

(
∇� + (∇�)T

)
.

𝛷co(𝜙̂) can be computed. Then, the granular flow equations 
are solved to gain the granular velocity � and the scalar fields 
for granular volume fraction � and granular temperature T. 
With these data the segregation equation is solved to update 
the distribution of the small particles in the granular sys-
tem. This process can be repeated for each time step start-
ing again with updating the new local values of 𝛷rcp(𝜙̂) and 
𝛷co(𝜙̂) from the computed �-field.

The granular flow model can be solved using a finite vol-
ume approach as described in [35]. Due to the compress-
ibility of the granular system one needs to be more cautious 
solving the segregation equation. Whereas the transport 
with the granular bulk material should be solved similar to 
the mass balance of the granular flow system, the explicit 
dependence of the flux function on the granular volume frac-
tion � needs to be treated in a special way. Since � ∈ [0,�] 
and � = �(z) is varying locally, a suitable numerical scheme 
needs to be chosen to prevent the system from reaching 
unphysical states, where � overshoots � . One has to tackle 
the problem of a spatially dependent flux function.

3.1 � Spatially dependent flux functions

Since the segregation flux is the point of interest deriving 
a suitable numerical scheme, the segregation equation (47) 
is reduced to the relevant parts given by a one-dimensional 
equation of the form

For now, it is assumed that the z-direction is the direction 
of segregation. Hence, the bulk flow can be neglected as it 
is assumed to be perpendicular to the segregation. For sim-
plicity, the granular temperature is assumed to be constant. 
The spatial dependence is given only due to the granular 
volume fraction.

As stated by LeVeque [28], the spatially dependent flux 
function can be discretized and one obtains a flux function 

(49)
�t� + �z

(
S�

� −�

�

)

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
f (�,�(z))

= 0.

t1

t2

t3

(a) t1

t2

t3

(b) t1

t2

t3

(c)

Fig. 1   Orientation of the sectional planes of the principal shear stresses a �12 , b �23 , and c �13 . The normal vector to the sectional plane of the 
shear stress �ij is the angle bisector of the eigenvectors �i and �j

t2
−t2

t1

t1

Fig. 2   For solid mechanical bodies, the principal stress forces acting 
in the depicted planes are equal
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fi(�) associated with the i-th grid cell which yields a Rie-
mann problem at zi−1∕2 with states �n

i−1
 and �n

i
 by

Solving such a Riemann problem generally consists of find-
ing a state 𝜙̌L that can be connected with left going waves 
to �n

i−1
 and a state 𝜙̌R that can be connected with right going 

waves to �n
i
 , such that additionally

One or both of the states 𝜙̌L and 𝜙̌R do not have to coincide 
with the states �n

i−1
 and �n

i
 . A flux approximation obtained 

from a classical scheme (e.g. Upwind) of the directly dis-
cretized flux fails in this case, because the chosen states do 
not fulfil condition (51).

3.2 � A computational method from Riemann 
solutions

To find a numerical scheme fulfilling (51) can be done by 
finding the solutions of the appearing Riemann problems. 
As presented by Jin and Zhang [23] solving a problem in 
the field of traffic flow, one can extend Eq. (49) to a non-
linear resonant system of equations, as defined in [21], 
by introducing an additional balance law for the spatially 
dependent variable of the flux term. 

 Since bulk transport and segregation act orthogonally to 
each other, Eq. (52b) is a suitable approximation of the mass 
balance in the spatial z-direction.

The linearised version of the upper system

is explicitly given by

The eigenvalues of the Jacobian �� are

and the corresponding right eigenvectors are

(50)
𝜕t𝜙 + 𝜕zfi−1(𝜙) = 0 if z < zi−1∕2,

𝜕t𝜙 + 𝜕zfi(𝜙) = 0 if z > zi−1∕2.

(51)fi−1(𝜙̌L) = fi(𝜙̌R).

(52a)�t� + �z

(
S�

� −�

�

)
= 0

(52b)�t� = 0

(53)�t� + ��(�)�z� = 0

(54)�t

(
�

�

)
+

(
S(2

�

�
− 1) − S

�2

�2

0 0

)
�z

(
�

�

)
= 0.

(55)�0 = 0, �1 = S

(
2
�

�
− 1

)

From the eigenvalues, it follows that the system is non-
strictly hyperbolic since, for several states in the system, 
it holds

A state �∗ = (�∗,�∗)T is called critical if

In the �-space, all critical points form a smooth curve. This 
curve is called transition curve and is defined by

A Riemann problem is given by Eq. (52) and the initial 
condition

Associated with each eigenvalue, one basic wave solution 
exists, travelling with speed �0 and �1 , respectively.

The integral curves, the solutions travel along, can be 
constructed from the eigenvectors. For the given problem, 
they are given by all states where f (�) = const for the stand-
ing wave (contact discontinuity) with speed �0 = 0 and all 
states where � = const for a wave travelling with speed �1 . 
The respective integral curves passing through a critical 
state �∗ and the transition line �  are depicted in Fig. 3.

Isaacson and Temple [21] found that resonant systems, as 
derived above, can be uniquely solved by introducing a new 

(56)�0 =

(
�2

�2

2
�

�
− 1

)
, �1 =

(
1

0

)
.

(57)�0 = �1.

(58)�1(�
∗) = 0 = �0.

(59)
� = {�|�1(�) = 0}

= {(�,�)T |� = 2�}.

(60)�(z, t = 0) =

{
�L if z < 0,

�R if z > 0.

0 φ-axis

Φ
-a
xi
s 0-

cu
rv
e:

f
(φ

, Φ
)
=

co
n
st

1-curve: Φ = Φ

Γ
:
λ
1
(φ

,
Φ
)
=

0

Q = (φ , Φ )∗

∗

∗∗

Fig. 3   Plot of the integral curves passing through a critical point 
�∗ = (�∗,�∗)T and the transition line �  in state space
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entropy condition, which states that standing waves must not 
cross the transition line (59) in state space.

Similar to [23] and depending on the location of the left 
Riemann state �L in relation to the transition line, one can 
find ten different combinations of waves to connect �L to a 
state �R . Hence, there are ten different regions A–J in the 
state space for the position of �R that lead to one of the ten 
wave combinations. In Fig. 4, these regions are plotted. Six 
regions if �L is located left of the transition line �  and four 
if �L is located right of � .

Since the volume fraction of a particle phase must not 
be larger than the granular volume fraction � , all states in 
the state space where 𝜙 > 𝛷 are forbidden. All solutions 
are a combination of two or three different waves, where 
each wave is either a shock wave S , a rarefaction wave R , 
or a contact discontinuity C . An example of a solution, 
consisting of three waves, where �L is located left of the 
transition line and �R in region � is shown in Fig. 5. The 

correct flux approximation, fulfilling (51), for each of the 
ten different cases is given in Table 1. One can see that 
the resulting boundary flux is equal to one of four quanti-
ties. Defining fL(�) ∶= f (�,�L) and fR(�) ∶= f (�,�R) , the 
fluxes in the cases 1, 2 , and 7 can be written by the down-
stream flow rate f (�R) = fR(�R) and in the cases 8 and 9 
by the upstream flow rate f (�L) = fL(�L) . The remaining 
cases are different. The averaged boundary flux coincides 
with one of the extrema of the flux functions fL(�) and 
fR(�) . In the cases 3 and 4, it is given by f min

L
= fL(�

min
L

) , 
where �min

L
=

�L

2
 is the point where fL takes its minimum 

and in the cases 5, 6 , and 10, it is given by f min
R

= fR(�
min
R

) , 
where �min

R
=

�R

2
 is the point where fR takes its minimum. 

From the given results, a formula can be deduced which 
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Fig. 4   a Different regions for �R depending on �L which yield dif-
ferent Riemann solutions for the segregation flux. Six regions if �L is 
located left of the transition line �  and b four regions if �L is located 
right of �  . The lower right part defines an unphysical area, as 𝜙 > 𝛷
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=
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=
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Fig. 5   a Example showing the wave solution in state space. �L 
is located left of the transition line �  and �R in region � shown 
in Fig.  4, where f (�R) < f (�∗) < f (�L) . The solution con-
sists of three basic waves, a rarefaction wave (�L,�

∗) with char-
acteristic speed 𝜆1(𝜙,𝛷L) < 0 , a standing wave (�∗, �̌R) , 
and a shock wave (�̌R,�R) with positive speed, given by 
s = (f (�R) − f (�̌R)∕(𝜙R − 𝜙̌R) > 0 . b Furthermore, the flux func-
tion for a left and a right state is plotted. The wave solution is high-
lighted. The flux curves are connected by the contact discontinuity. 
The resulting average boundary flux is given by F̄ = f min

L
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yields the right boundary flux under the respective condi-
tions. Defining the upstream supply by

and the corresponding downstream supply by

the average boundary flux is directly given by

which corresponds to a modified version of the well-known 
Godunov flux. In case of constant granular volume fraction 
� , the expressions (61)–(63) will reduce to the classical ver-
sion of the Godunov flux. The Riemann solutions in Table 1 
and the flux function (63) are comparable with those given in 
[23] but for a convex not a concave flux function. Therefore, 
the notation of [23] has been adapted.

As derived in Sect. 2.2, the spatial dependence of the 
segregation equation is not only given due to the granu-
lar volume fraction � but also due to the granular tem-
perature T. Solving the equation numerically, this addi-
tional dependence makes no big difference. Analogously 
to the statements previously done, the numerical scheme 
can be used almost in the same way including the granu-
lar temperature [14]. Hence, the explicit description of 
the flux function can be written in the exact same way 
as in the constant temperature case, where this time 
fL(�) = f (�,�L, TL) and fR(�) = f (�,�R, TR) , respectively.

Finally, the multidimensional version of the segrega-
tion equation can be solved as series of one-dimensional 
equations using Godunov type dimensional splitting. Con-
structing a regular mesh of finite volumes, the discretized 

(61)f up =

{
fL(𝜙L) if 𝜙L > 𝜙min

L

f min
L

if 𝜙L ≤ 𝜙min
L

,

(62)f down =

{
fR(𝜙R) if 𝜙R < 𝜙min

R
,

f min
R

if 𝜙R ≥ 𝜙min
R

,

(63)F̄G = max{f up, f down},

volume fraction in cell i at time step n is given by �n
i
 . 

Hence, the flux differencing formula is given by

The flux functions are given by

where for the cell boundary evaluation of F̄bulk , the same 
scheme as for the bulk transport in the mass balance of the 
granular flow systems should be used and F̄G as defined in 
(63).

4 � Computational examples

The previously derived method is used to simulate the mix-
ing of a granular material in a rotating tumbler, but first 
of all one simple one-dimensional configuration serves as 
test case to show the advantage of the previously derived 
numerical scheme.

4.1 � Gaining physical solutions by the modified 
Godunov method

Assume the simplified version of the segregation equa-
tion (49) with non-constant granular volume fraction � and 
also with non-constant granular temperature T given by

The spatial domain used, is the unit interval [0, 1] in z-direc-
tion, which is assumed to be the direction of the segrega-
tion process. For the simulation, a spatial grid of 50 cells 

(64)𝜙n+1
i

= 𝜙n
i
−

𝛥t

𝛥z
(F̄n

i+1∕2
− F̄n

i−1∕2
),

(65)F̄ = F̄bulk + F̄G,

(66)�t� + �z

�
S
√
T�

� −�

�

�
= 0.

Table 1   Conditions and the 
resulting solutions for the 
boundary fluxes of the Riemann 
problem

Case Region Left state Position of right state F̄

1 � 𝜙L <
𝛷L

2
𝜙R <

𝛷R

2
 , f (�R) > f (�L)

f (�R)

2 � 𝜙L <
𝛷L

2
𝜙R <

𝛷R

2
 , f (�∗) ≤ f (�R) < f (�L)

f (�R)

3 � 𝜙L <
𝛷L

2

f (�R) < f (�∗) < f (�L) f min
L

4 � 𝜙L <
𝛷L

2
𝜙R >

𝛷R

2
 , 𝛷R > 𝛷∗ = 𝛷L , f (�R) > f (�∗) f min

L

5 � 𝜙L <
𝛷L

2
𝜙R >

𝛷R

2
 , 𝛷̃ < 𝛷R < 𝛷∗ = 𝛷L , f (�R) > f (�∗) f min

R

6 � 𝜙L <
𝛷L

2
𝜙R >

𝛷R

2
 , 𝛷R < 𝛷̃ , f (�R) > f (�L) f min

R

7 � 𝜙L >
𝛷L

2
𝜙R <

𝛷R

2
 , f (�R) > f (�L)

f (�R)

8 � 𝜙L >
𝛷L

2

f (�R) < f (�L) f (�L)

9 � 𝜙L >
𝛷L

2
𝜙R >

𝛷R

2
 , 𝛷R > 𝛷̃ , f (�R) > f (�L)

f (�L)

10 � 𝜙L >
𝛷L

2
𝜙R >

𝛷R

2
 , 𝛷R < 𝛷̃ , f (�R) > f (�L) f min

R
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is used and the time step satisfies the Courant-Friedrichs-
Lewy (CFL) condition. The segregation rate is chosen to be 
S = 1 . The simulation result after 2 s is shown in Fig. 6. The 
granular volume fraction and the distribution of the granular 
temperature are chosen arbitrary, depicted by a dashed and 
a dotted line, respectively. Initially, the system is in a per-
fectly mixed state where � =

�

2
 . One can see that the classic 

Godunov or Upwind scheme, where simply the exact value 
for � and T at the cell interfaces is used for the flux evalu-
ation, produces unphysical states, because relation (51) is 
not fulfilled. In [14], it has been shown that the overshooting 
error for the classical schemes decreases for decreasing grid 
size, but never vanishes. In contrary, the modified Godunov 
scheme always holds the system in a physical state, where 
� ≤ �.

In a close up view the relevant part at the presented time 
is depicted again.

4.2 � The three‑dimensional rotating tumbler

The chosen case to test the performance of the whole model 
is a thin, plain rotating tumbler with diameter 0.1 m. It is 
discretized with 100 finite volumes per diameter and peri-
odic boundary conditions at the end walls. This guarantees a 
large granular bed and lower computational costs compared 
to simulating a tumbler of extended thickness. For the granu-
lar material, glass particles are used similar as in [33]. The 
used parameters to characterize the granular material are 
given in Table 2.

For the functional parameters of random close packing 
�rcp and the cross-over volume �co a polynomial fit is used, 
based on the data presented in [24] and the segregation rate 
is set to Ssl

0
= 1.

Initially, the system is perfectly mixed and the tumbler is 
filled to 75 % as shown in Fig. 7a. To simulate the rotation 

of the tumbler the whole set of equations is solved in the 
rotating reference frame. For the illustration, the whole grid 
is simply transformed back to the inertial system. The rota-
tion speed is set to 0.1 revolutions per second (rps). The 
segregation direction for each cell is computed directly 
from the velocity field, as presented in Sect. 2.3. Figure 7b 
shows the result for the computed directions in a close up 
view of the surface region of the granular system. Coloured 
arrows depict the velocity field and black ones the computed 
segregation direction. As expected for avalanche-like shear 
flows, the segregation directions are orthogonal to the veloc-
ity field.

The general behaviour of the granular material in such a 
tumbler is already well-known, since it is used in industrial 
processes and therefore, a thoroughly investigated case in 
literature. Furthermore, the granular material shows differ-
ent regimes during the rotation of the tumbler. There are 
flowing regimes where segregation takes place as well as 
static regimes.
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Fig. 6   a Simulation result of the one-dimensional segregation process 
in z-direction for the small particle phase, given by Eq. (66) at time t 
= 0.75. The black dashed line depicts the granular volume fraction � , 
which is an upper bound for the small particle phase. The distribution 
of the granular temperature is shown by a dotted line and the segrega-
tion rate is chosen to be S = 1. Initially, the system is perfectly mixed, 
which is depicted by a light grey line. Over time, the small particles 
concentrate at the left. Only the modified Godunov scheme prevents 
the particle phase from overshooting � . b A close-up view shows the 
problematic region

Table 2   Parameters for the 
granular flow equations as used 
for simulating glass beads in 
[33]

Symbol Value Unit

�0 1.3e−04 (m)
�0 3.4e−04 (m)
�0 1477.15 (1

m
)

T0 1.8 (
m2

s2
)

Fig. 7   Simulation of a rotating tumbler filled to a height of 75% with 
a rotation speed of 0.1  rps. a Initial configuration showing the rela-
tive volume fraction 𝜙̂ of the small particle phase. b Close-up view of 
the surface region showing the velocity field and the computed segre-
gation direction. c Segregation pattern after 25 s. d Granular volume 
fraction � after 25 s
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The behaviour of the granular material in a rotating tum-
bler depends not only on the material properties but also 
on the rotation speed and the filling height. Mellmann [30] 
gives an extensive overview of the different conditions and 
regimes.

For the chosen test case a ring-like formation of small 
particles, large particles near the outer walls, and a mainly 
untouched core of the granular bed are expected. Figure 7c 
depicts the simulation result after 25 s of rotation, showing 
the expected segregation pattern.

Due to the modification of the random close packing 
𝛷rcp(𝜙̂

s) and the cross over volume 𝛷co(𝜙̂
s) compared to the 

original model in [27], the formation of the segregation pat-
tern also influences the volume fraction profile of the granu-
lar bed. For a mono-disperse particle system, as assumed 
in the original version, the volume fraction increases from 
the surface to the bottom of the granular system. Hence, the 
volume fraction distribution is similar to a lithostatic pres-
sure profile. In case of a binary particle system, now this 
lithostatic profile is superimposed by a profile that is similar 
to the segregation pattern. One can see in Fig. 7d that the 
volume fraction is much higher in regions where the system 
is partially mixed than in regions where solely one particle 
phase is present.

The presented results in Fig. 7 can only serve as quali-
tative test to show the general behaviour of the combined 
model. For a detailed comparison with experimental data, 
more effort has to be put in the investigation of the char-
acterization of the granular model. As shown in [14], the 
computed fields of the granular flow model have a strong 
influence on the segregation equation, specifically the distri-
bution of the granular temperature. Therefore, it is important 
to find a suitable parameter set for the granular flow model, 
that accurately characterizes the real granular material.

5 � Conclusion

This paper investigates the simulation of granular material 
flows with segregation. The presented model extends a set 
of Navier–Stokes-like equations with a non-Newtonian and 
non-linear rheology model, to incorporate the segregation 
process of binary granular systems with small and large 
particles in up to three space dimensions. The segrega-
tion equation has been derived for shear flow applications 
using mixture theory. The segregation process is regulated 
due to the dependence on the granular temperature. The 
model, as derived in this paper, depends explicitly on the 
local value of the granular volume fraction. The volume 
fraction is non-constant over the whole domain, since the 
granular flow equations are compressible. This entails that 
special care needs to be taken in its numerical treatment. 
Therefore, a modified version of Godunov’s method has 

been formulated for solving the segregation equation, pre-
venting the system from leaving a physical state. To make 
the model applicable to a wide field of applications, where 
the flow direction might change, a local segregation direc-
tion vector has been introduced in the three-dimensional 
space. This segregation direction is computed based solely 
on the granular flow field, which also makes the segre-
gation process invariant to the choice of the coordinate 
system. An advantage is that the segregation process does 
not have to act in a single direction in the whole domain. 
First simulations with the combined model were done with 
the test case of a rotating tumbler. The segregation pat-
tern observed and the volume fraction profile for the case 
of a binary particle system are consistent and fulfil the 
expectations.

In this elaboration, the model is held as simple as pos-
sible for the first qualitative tests. The starting point is an 
solely advective equation, which is limited to the topic of 
size segregation. The authors are aware of the fact that 
more progress has already been made concerning diffusion 
terms, more complex flux functions, or the dependence on 
shear rate and granular temperature. However, extending 
the model by a diffusive term or a combination of size and 
density segregation, as already done in literature (e.g. [17, 
18, 38]), should be possible. Instead, this work focused on 
the topics compressibility, the segregation direction, and 
the numerics for physical solutions in the field of granular 
shear flows.

Note that for applications in a kinetic regime, sev-
eral terms, like the transport coefficients in the granular 
flow equations need further modifications. These can be 
found by Enskog theory for polydisperse mixtures, as pre-
sented by Garzó et al. [12, 13]. The same holds true for 
the segregation equation. Leaving the dense shear flow 
regime, modifications in the segregation terms seem to 
be necessary.

Furthermore, in the dense regime, the set of granular 
flow equations already has a handful of parameters which 
characterize the granular material. Hence, a detailed analy-
sis of the model and comparison with experiments in fur-
ther case studies will be relevant for a better understanding 
of the interplay of segregation and granular flow equa-
tions. This is planed in a connecting elaboration.
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