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Abstract 
The behaviour of granular materials is known to be strongly affected by the granular temperature, which is a measure of the 
intensity of particle vibration. However, no experimental technique exists to measure the granular temperature and its vari-
ation inside arbitrary media during deformation. Here, we present a new experimental technique for measurement of this 
granular temperature field by tracking tracer particles over time, using X-ray radiography with two simultaneous orthogonal 
source/detector pairs. We show that errors in particle tracking lead to systematic measurement biases. The main sources of 
these biases are identified and methods for their quantification are developed so that unbiased results can be calculated. The 
new granular thermometry technique is validated against discrete element simulations. Finally, an experimental example 
is shown for the case of a vibro-fluidised system, where we find that the granular temperature is highest at the free surface.

Keywords Granular matter · Granular temperature · X-ray radiography

1 Introduction

Flowing granular materials are poorly understood despite 
their ubiquity in nature and industrial processes. There is 
growing evidence that we may need an additional state 
variable that would assist in describing the rich phenom-
ena observed in granular flows, such as segregation [1, 2], 
non-locality [3–5], phase transitions [6], and instabilities [7]. 
This aforementioned state variable is typically described as 
being dependent on the velocity fluctuations of the grains 
and has been variously identified as the granular temperature 
[6], fluidity [3], kinetic pressure [2], or granular diffusivity 
[4]. The concept of velocity fluctuation is well known in the 
fields of colloid rheology [8], metallurgy [9], soft matter 
chemistry [10], and turbulent fluid dynamics [11].

Experimental measurements of granular materials are 
often coarse and only provide global properties of the whole 
sample. Local measurements can also be made, but due to 
the opaque nature of granular materials, are usually lim-
ited to quasi-two-dimensional systems or to the boundaries 
of three-dimensional systems. Internal behaviour is typi-
cally inferred via numerical simulations (e.g. using discrete 

element method simulations), although advances in experi-
mental techniques now allow the evolving internal structure 
to be probed.

A variety of technologies exist to obtain information 
about the internal kinematics of a granular medium, such as 
X-ray or neutron tomography [12, 13], Positron Emission 
Particle Tracking (PEPT) [14], Refractive Index Matched 
Scanning (RIMS) [15], Magnetic Resonance Imaging (MRI) 
[16], Magnetic Particle Tracking (MPT) [17], Three Dimen-
sional Particle Tracking Velocimetry (3D PTV) [18], and 
X-ray rheography [19], as well as combinations of these 
techniques [20]. Several of these techniques require motion 
to be suspended during imaging (e.g. tomography), whilst 
others require specialised materials (MRI, RIMS). Two 
promising technologies, PEPT and radiography, overcome 
these limitations and can be used to calculate the granular 
temperature in arbitrary media. Here, we use X-ray radiog-
raphy as our measurement technique, due to its ease of use, 
well defined measurement errors, and availability.

Dynamic X-ray radiography is an unobtrusive method 
that can be used to reliably describe the internal kinematics 
of granular flows over a wide range of temporal and spa-
tial scales. Recently, correlation-based methods have been 
employed with dynamic X-ray radiography to successfully 
measure macroscopic velocity fields in three-dimensional 
systems, both in a 2D beam-averaged sense [21, 22] and 
fully 3D measurements [19].
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Building on these advances in dynamic X-ray technology, 
this paper introduces and verifies a measurement technique 
for characterising velocity fluctuations in granular media. 
The technique relies on locating tracer particles in a series 
of paired X-ray radiographs, and triangulating the tracer’s 
three-dimensional location, and consequently velocity. We 
verify the technique by applying it to sets of artificial radio-
graphs produced by discrete element simulations. Addition-
ally, we present a careful error analysis of the technique, 
which shows how to quantify and correct for systematic 
biases in the resulting granular temperature measurements. 
Finally, we conclude with experimental measurements of the 
granular temperature in a vibro-fluidised convective granular 
system.

2  Granular thermometry

The canonical definition of granular temperature, in direct 
analogy with conventional temperature, is the expected 
value of the square of the fluctuating instantaneous particle 
velocities [23, 24]. When defined in this way the granular 
temperature is a purely kinematic variable that describes the 
fluctuations of translational kinetic energy only when local 
and particle densities are homogeneous across the domain, 
ignoring kinetic energy of other degrees of freedom such as 
rotational ones. The analogy with conventional temperature 
holds when grains are of similar size, made of the same 
material, and when local density gradients are small or non 
existent. In addition, this definition ignores any energy fluc-
tuation in the grains themselves, which could arise from 
elastic potential change or heat transfer for example.

There is as yet no universally accepted approach to take 
into account the contribution of the density to the fluctuat-
ing kinetic energy, although several models exist, e.g. [6, 
25, 26].

In general, these definitions depend on functions of the 
range of local density measurements of the bulk particles. 
While it may be possible to measure the coarse grained local 
density, this measurement introduces additional uncertainty 
into the result. For flowing near-spherical glass beads, the 
range of densities is quite narrow, and the experimental 
uncertainty on the density would dominate any measure-
ment of the temperature.

To avoid confusion, and for the sake of consistency, we 
therefore adopt the following definition of Tg [23, 24] that is 
based solely on particle velocity measurements. Assuming 
the instantaneous velocity of a given grain is denoted v , we 
can define the fluctuating component v′ as

(1)v
� = v − �[v],

where � denotes the expected value, representing an ensem-
ble average at the current location of the grain in space 
and time. For steady-state systems, or systems that evolve 
slowly compared to the measurement duration, this ensem-
ble average can be replaced by temporal averaging over a 
time window. Similarly, ensemble averaging in spatially 
homogeneous systems, or with weak spatial gradients, can 
be approximated by averaging observations at different spa-
tial positions.

Assuming a well-defined averaging window exists, and 
following [27], we can then define the true granular tem-
perature Tg as

where D = 3 is the dimensionality of the system and ||v′|| 
represents the standard Euclidean norm. In contrast to the 
conventional microscopic definition of temperature, granular 
systems cannot be maintained at a non-zero granular temper-
ature, Tg , whilst also being in equilibrium, as without exter-
nal excitation the granular temperature always decays to zero 
[6, 24]. This means that a priori we cannot build a granular 
thermometer which can measure the granular temperature 
at equilibrium. One way of overcoming this limitation is to 
directly measure the instantaneous fluctuation velocities of 
individual particles from (1), and to calculate Tg from these 
measurements using (2) for steady-state systems (which is 
the focus of this paper).

Previous measurements of the granular temperature have 
been performed using a variety of experimental methods. 
Direct measurement of particle locations over time have 
been performed optically (e.g. Particle Image Velocime-
try, both in 2D [28–32] and in 3D [33, 34], or via PEPT 
[35–37]). The granular temperature has also been indirectly 
measured via MRI [38], acoustic shot measurement [39], 
diffusing wave spectroscopy [40], laser Doppler velocime-
try [41], speckle visibility spectroscopy [42], or acoustic 
energy measurement [43]. Most of these techniques measure 
a single bulk temperature value for all of the particles, or 
are limited to two-dimensional systems or the boundaries 
of three dimensional systems. PEPT and X-ray radiography, 
however, are two of the most promising methods for making 
full three-dimensional measurements.

Here, the proposed granular thermometer tracks the three-
dimensional locations of one or more individual particles 
from a series of radiographs. From these reconstructed tra-
jectories, it is then possible to calculate the velocities of the 
particles between frames and consequently the velocity fluc-
tuations of tracked particles in steady-state systems. Finally, 
the variance of all of the velocity fluctuations measured in 
the trajectories crossing a given region of space is com-
puted, leading to the first three-dimensional experimental 

(2)Tg =
1

D
�
[
||v�||2

]
,
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measurement of the field of granular temperature Tg in dense 
granular flows.

This method bears similarities with a traditional ther-
mometer. To measure the temperature of a gas or liquid, we 
typically immerse our thermometer in that medium, let it 
reach equilibrium, and then with knowledge of the calibra-
tion of our thermometer, one can infer the temperature of 
the medium of interest. In this case, we shall measure the 

temperature of tracer particles, which will need to be care-
fully calibrated to infer the temperature of the bulk particles.

3  Methodology

3.1  Radiograph acquisition

The X-ray data acquisition apparatus is shown in Fig. 1. It 
consists of two X-ray sources and two Varex Imaging PaxS-
can 2520DX detectors. The sources generate polychromatic 
X-rays with voltage of 130 kVp and current of 3.6 mA in 
the shorter direction, and 7.4 mA in the longer direction. 
The detector panels can record at up to 30 Hz at a spatial 
resolution of 968 × 760 pixels. The depicted layout allows 
for simultaneous recording of the experiment from two 
orthogonal directions. Each direction is used to deduce the 
two in-plane positions of the tracer particles, and combin-
ing them makes it possible to reconstruct three-dimensional 
trajectories, and consequently granular temperature fields.

The procedure for tracking tracer particles is shown in 
Fig. 2. This process relies on finding particles that are sys-
tematically distinguishable from the other particles, and so 
in this work we use glass beads as the bulk particles, and 
steel particles as the tracer particles we aim to track. Because 
of the higher X-ray attenuation coefficient of steel relative 
to glass, it is possible to identify steel particles systemati-
cally, showing up as lower intensity, or darker, regions of the 
X-ray radiograph. A visual summary of this methodology is 
also provided in SI Video 1. We expect the steel tracers to 
have different velocities and Tg fields to the bulk particles 
[1, 44] caused by significant difference in density from the 

Fig. 1  Schematic representation of the experimental setup. Two 
orthogonal X-ray tube/detector pairs produce orthogonal radiographs 
of the granular medium. The granular medium (shown in blue) is 
being vibrated from below by a vibration stage attached to a cylindri-
cal piston. A hollow cylindrical, fixed (non-vibrating) wall surrounds 
the grains, separated from the piston by a ∼ 0.5mm gap and one 
tracer particle of higher attenuation is shown in black. Stream lines 
of the flowing material are shown in yellow. Note that dimensions are 
not to scale. The aluminium frame that holds the cylinder is omitted 
from the sketch for clarity. Inset: Schematic cross section of the cylin-
drical container with glass beads (blue), tracer particle (black) and 
stream lines (red) depicted (color figure online)

(a)

(b)

(c)

(e)

(d)

Fig. 2  Tracer tracking procedure. a Time averaged radiograph, b 
radiograph of experiment with four tracer particles, and c normalised 
radiograph. The brightness and contrast have been adjusted for clar-
ity. Normalisation enhances the contrast between the tracers and bulk, 
reduces intensity gradients across the width and eliminates the back-

ground. d Patch with visible tracer. A convolution kernel is applied 
across the whole patch and the e convolution map is populated. The 
minimum in the convolution map is defined as the center of the tracer 
particle
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bulk particles. We will present in “Appendix 1” a method for 
making the connection between the bulk and tracers granular 
temperatures.

As shown in Fig. 2a–c, we normalize the raw radiographs 
by dividing them by the time average of each pixel across 
the whole experiment. In this way, the value at each pixel 
represents whether the current location has a higher or lower 
attenuation than average. This removes intensity gradients 
across the width of radiographs, mostly visible at its verti-
cal edges, that are caused by the differing X-ray path length 
through the medium, and from X-ray scattering.

3.2  Tracer tracking algorithm

In each normalized radiograph we search for any tracer 
particles based on their higher X-ray absorption. We define 
the tracer’s position as its centroid, since the tracer is a 
sphere, and attempt to find the location of this centroid in 
each radiograph. As the tracer particle is projected onto the 
radiograph by a conical X-ray beam, the projection is in 
general an ellipse. However, given our geometry (Fig. 1), 
the projection can be closely approximated by a circle. We 
therefore define the tracer as a circular disk whose intensity 
is the lowest of all possible circular disks in the radiograph.

To achieve sub-pixel accuracy of measurements, the nor-
malized image is bilinearly interpolated onto a grid 10 times 
finer, so that the positions are measured to 0.1 pixel preci-
sion. To find the darkest circular disk we sum the values of 
the normalized pixel intensities within a circular patch of 
known diameter dint . The value of dint is calculated from the 
geometry of the experiment, since the sizes of the tracer and 
detector are known. We repeat this process for all possible 
locations of the circular patch within the image. The loca-
tion where the sum of all pixels is the lowest is the darkest 
disk in the radiograph and therefore represents our tracer 
location (Fig. 2e).

3.3  Reconstruction of trajectories

At each recording time t, two radiographs are produced, one 
from each source/detector pair. By applying the algorithm 
developed above, we can measure the particle’s in-plane 
location in each of these two radiographs. In general, the 
three-dimensional particle location in the laboratory refer-
ence frame is the intersection of the two lines which pass 
between the sources and the particle locations on the cor-
responding detector panels.

Note that due to the orthogonality of the source/detector 
pairs in this system, we have two measures of the particle 
height (the z direction, as shown in Fig. 7), which is use-
ful for a consistency check and calibration purposes. After 
triangulation, we can recover the measured coordinates of 

the tracer in the laboratory frame of reference, denoted as 
x̃(t) = (̃x(t), ỹ(t), z̃(t)).

3.4  Particle velocities

Using these measured trajectories, we can apply a forward 
difference scheme to approximate a particle’s velocity along 
this trajectory as

where Δx̃ is the measured movement of the grain between 
recorded locations, Δt is the time step and x̃(tk) is the meas-
ured position of the particle at time tk (the time of the kth 
recorded frame , where k is an ordinal number representing 
the order of the recorded radiographs). A central difference 
or other finite difference scheme could also be used for this 
calculation, but similar results are obtained..

We refer to the velocity calculated in this way (denoted ṽ ) 
as the ‘measured velocity’ to distinguish it from the true 
instantaneous velocity v . The accuracy of ṽ as an approxi-
mation to v depends on the accuracy of the finite difference 
approximation (a function of the finite Δt ) as well as the 
accuracy of the measured positions x̃(tk) compared to the 
true particle positions x(tk).

3.5  Measuring granular temperature

The discrete set of measured particle velocities, say ṽk , is 
used to estimate the granular temperature of the system, 
which requires approximations of both the mean and instan-
taneous velocity fields of the bulk. For spatially homogene-
ous systems at steady-state, the most straightforward way 
to achieve this is to approximate the mean by the average 
of N particle velocity measurements. This can be written 
�[v] ≈ �̃ , where

The granular temperature can then be approximated by 
Tg ≈ T̃g , where

However, in most situations we anticipate that the mean 
velocity, as well as the granular temperature field itself, 
will depend on spatial position. To produce fields which 
are compatible with the equations of continuum mechan-
ics, we therefore coarse-grain (e.g. [27, 45]) our particle 

(3)ṽ

(
x̃

(
tk
)
, tk

)
=

Δx̃

Δt
=

x̃

(
tk+1

)
− x̃

(
tk
)

tk+1 − tk
,

(4)�̃ =
1

N

N∑

k=1

ṽk.

(5)T̃g =
1

3N

N∑

k=1

||̃vk − �̃||2.
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measurements to produce approximations to the mean veloc-
ity field, �̃ ≈ �[v] , as well as �̃2 ≈ �[v2] . Using the equiva-
lent definition of variance, the granular temperature approxi-
mation is then given by

Further details of the coarse-graining procedure are given 
in “Appendix 1”.

Both ensemble averaging and coarse-graining produce 
granular temperature measurements that are an approxima-
tion to the true underlying value. Furthermore, because they 
use particle velocities measured over finite sampling win-
dows, ṽ , rather than instantaneous velocities v , we expect the 
measured temperature T̃g to differ from the true Tg . Never-
theless, it is anticipated that T̃g → Tg as Δt → 0 , and this is 
investigated more closely in subsequent Sections.

4  Measurement verification

4.1  DEM simulations

To verify and validate the procedure described above, and 
the subsequent error analysis detailed in Sect. 5, we perform 
discrete element method (DEM) simulations (see Fig. 3) 
using MercuryDPM [46]. These simulations give us access 
to a large volume of data, including in particular, the instan-
taneous position and velocity of each particle at arbitrarily 
small time increments. We can use this information to make 
artificial radiographs and apply our tracking algorithm to 
these images, allowing systematic exploration of the accu-
racy of the method by comparing the obtained measurements 
with the true values from DEM simulations.

(6)T̃g =
1

3
||�̃2 − (�̃)2||.

Simple shear simulations were performed with Lees-
Edwards boundary conditions on boundaries with normals 
in the x and y directions, and periodic boundaries in the 
z direction. The length and height of the simulations (in 
the x and y directions) were set to 2 cm and the depth (in 
the z direction) to 10 cm. Particles were sheared in the 
x direction with a shear rate |�̇�| of 0.51∕s . The packing 
density was set to 0.6, which yields 1690 particles, and 
the particle density taken to be 2478 kg/m3 , representa-
tive of glass. The particle diameter was set to 3mm ± 20% 
to prevent crystallization. Collisions were modelled by a 
linear spring and viscous damper both in the normal and 
tangential direction, with a collision time of tc = 10−3s and 
restitution coefficient of 0.95 calculated for typical col-
lision velocities. The sliding friction coefficient was set 
to 0.5, and simulation time step to td = tc∕10 . The total 
duration of the simulation is 15 s starting from the point 
of steady-state conditions (where the pressure and kinetic 
energy were relatively constant over time) and to ensure 
saturation of the granular temperature value.

4.2  Artificial radiographs

We generate artificial radiographs from this DEM data using 
the Beer-Lambert law as described in the Supplementary 
Material of [19]. The algorithm does not take into account 
the random noise of the X-ray beams, their polychromatic-
ity, nor their scattering. Additionally, a parallel X-ray beam 
is modelled. We reconstruct artificial radiographs with the 
following resolutions: 333.5, 266.5, 200, 133.5, 66.5 and 
33.5 px/cm. In these radiographs, the intensity of the inci-
dent beam is normalised to 1.0 and the ratio of the mass 
attenuation coefficients of steel and glass is taken to be 7.0 
[47].

4.3  Verification of tracking algorithm

To ensure that the tracking algorithm successfully finds 
tracer particles, we compare their true in-plane locations 
obtained from DEM simulation with their measured posi-
tions from applying our tracking algorithm to the artificial 
radiographs (Fig. 4). These artificial radiographs are pro-
duced with a fictional parallel beam that points along the z 
axis. The measured particle positions give the x and y coor-
dinates of the tracers, and we choose here to restrict our 
verification to the x direction.

When comparing the measured x coordinate of the tracer 
particle from the tracking algorithm with the true value from 
DEM data, we find the root mean square error between the 
true and measured coordinates to be less than 0.5 pixels, and 
also less than 1% of a particle diameter.

Fig. 3  Sketch of 3D DEM simple shear setup with boundary condi-
tions and parameters used in the simulation. The system is sheared 
in the x direction and is periodic in all directions. The length of the 
system into the page (the z direction) is 10 cm
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4.4  Granular temperature measurements

To verify the final step of the granular thermometry proce-
dure we use the particle-level information to calculate the 
granular temperature of the system, both from DEM instan-
taneous velocity data directly and from the reconstructed 
particle trajectories. For the subsequent calculations it is 
assumed that the granular temperature is homogeneous 
across the whole domain. The steady-state velocity field is 
spatially dependent and given by a simple linear profile con-
trolled by the shear rate. The granular temperature is there-
fore calculated by using this linear profile in the ensemble 
average (5).

Despite the ability of our method to accurately measure 
the position of tracer particles over time, additional errors 
are introduced when using the position measurements to cal-
culate the granular temperature of flowing granular material. 
These typical errors, and the associated bias on the resulting 

temperature measurements, are discussed in more detail in 
Sect. 5 below.

5  Measurement uncertainty and bias

We have identified six sources of error that potentially affect 
the granular temperature measurement. All of these are 
either minimised or explicitly quantified and corrected for. 
The sources of error are: 

1. Missed collisions caused by the finite sampling rate of 
the detectors, which limits the temporal resolution of 
measurements, measuring a lower Tg than the true value 
(by effectively assuming a constant velocity between 
successive frames), see Sects. 5.1 and “Appendix1”.

2. The finite pixel size on the detector panels, which lim-
its the spatial resolution of the position measurements, 
artificially increasing the measured temperature, see 
Sects. 5.2 and “Appendix 1”.

3. Particle tracking errors due to the heterogeneity of 
granular materials. These errors are significant when 
the granular medium is deformed significantly between 
measurements, and this effect is quantified in detail in 
“Appendix 1”.

4. Sampling error due to the finite number of samples 
used to calculate the granular temperature. This can 
be neglected when using a sufficiently large number of 
samples, as outlined in “Appendix 1”.

5. Noise in the radiographs caused by source and detector 
imperfections and X-ray scattering. Calibration experi-
ments have shown that the tracking algorithm is not 
measurably affected by this noise, and therefore this 
error can be neglected.

6. Misalignment of the experimental equipment can intro-
duce a systematic bias in our position measurements. 
In the geometry proposed in Fig. 1, these effects are 
minimised by precise measurement and the relatively 
long distances between sources and detectors, as well 
as ensuring orthogonal X-ray paths.

In the configuration described in Sect. 6.1, the first two 
sources of experimental error are dominant, and we account 
for them explicitly in the results produced below. The other 
four sources of error have been quantified where possible, 
and we show here and in the Supporting Information how 
such quantification can be done and under which circum-
stances they could be significant.

5.1  Missed collisions

By only sampling tracer locations at finite time intervals, we 
inevitably miss collisions between particles. Since each of 

Fig. 4  Comparison between tracer particle locations from exact DEM 
data (red) and radiograph tracking (black), at different spatial resolu-
tions a 333.5 px/cm, b 266.5 px/cm, c 200 px/cm, d 133.5 px/cm, e 
66.5 px/cm, and f 33.5 px/cm. xsim denotes the intruder x coordinate 
in meters, whereas xrad = xsim∕p is the equivalent value in pixels, with 
p the pixel size in meters. In all cases the radiograph tracking method 
accurately predicts the true position to within 0.1 pixels. The sam-
pling rate is 0.001 s (color figure online)
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these missed collisions involves a change of direction, the 
net result is a reduction in the measured T̃g compared to the 
true Tg . This should be accounted for when sampling times 
are slow relative to the collision time, which is extremely 
common in X-ray radiography and optical imaging. The 
reduction in temperature is modelled by assuming

where the non-dimensional factor 𝛼 > 1 is given by

where ti = d
√
�∕P is the inertial time, d the grain size, � 

the particle density, P the typical pressure and a1 is a non-
dimensional fitting parameter. See “Appendix 1” for the full 
derivation. To validate this model, we fit (8) to the measure-
ments of granular temperature from the DEM simulations, 
where each measurement of T̃g is calculated from the exact 
particle positions and finite difference velocity approxima-
tions at different Δt , and the exact Tg uses instantaneous 
particle velocities. Figure 5 shows the model fit to different 
measurements of T̃g where the best fit of the constant a1 is 
found to be 0.31.

As can be seen in Fig. 5, when the frame rate Δt < 0.1ti , 
the measured value is approximately equal to the true value 
( � = 1 ). This range of sampling times is referred to as the 
ballistic regime [4]. If particles are sampled fast enough to 
be in this regime, as in [35], this source of uncertainty can 
be neglected. At slower frame rates, higher velocities are less 
likely to be captured, thus the measured values of granular 
temperature become smaller and the value of � increases.

(7)T̃g =
1

�
Tg,

(8)� =

√
9a1

4

Δt

ti
+ 1,

5.2  Finite pixel size

The finite pixel size of the detectors introduces an uncer-
tainty in the measurement of the particle positions. It has 
been shown previously [48] how this uncertainty propagates 
to become a systematic bias in the measured granular tem-
perature. From this effect, the measured T̃g is actually larger 
than the the true value Tg , specifically

where p is the length in meters of the pixels and 1∕Δt 
is the frame rate. In the experiments reported here, 
p = 1.1 × 10−2 mm∕px . A full derivation is shown in 
“Appendix 1”.

5.3  Error correction

Having modelled the effect of finite pixel size and missed 
collisions on the granular temperature measurements, we 
can combine Eqs. (7) and (9), and potentially any additive 
bias ΔT i

g
 , to express the corrected granular temperature, Tcor

g
 , 

as

Figure 6 shows a histogram of these corrected measure-
ments (in orange) at different time steps and resolutions, as 
well as the raw uncorrected measurements (blue) and the 
true granular temperature (green). We see that the corrected 

(9)T̃g = Tg + ΔT res
g
, where ΔT res

g
=

1

6

( p

Δt

)2

,

(10)

Tcor
g

= �
(
T̃g −

∑
ΔT i

g

)
= �

(
T̃g − ΔT res

g

)

=

√
9a1

4

Δt

ti
+ 1

(
T̃g −

1

6

( p

Δt

)2
)
.

Fig. 5  Missed collisions model (8) fit to DEM data as a function of 
non-dimensional time step. Inertial number I = 1.3 × 10−3 , shear rate 
|�̇�| = 0.51∕s , and inertial time ti = 2.6 × 10−3s . a Main figure on log-
log scale, b �2 − 1 against non-dimensional time

Fig. 6  Histograms of measured granular temperatures before (blue) 
and after (orange) corrections in accordance with (10). Each meas-
ured T̃g is calculated for different resolution (p)/time step ( Δt ) pairs. 
True value of granular temperature calculated from instantaneous 
velocities is in green. Corrections are made for missed collisions and 
finite pixel size, omitting the negligible errors from other sources
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values represent a good approximation to the true tempera-
ture, and a major improvement on the uncorrected values. 
In particular, the mean of the corrected values is 7.93 × 10−6 
m2∕s2 , compared to the true value of 8.29 × 10−6 m2∕s2 . The 
standard deviation of the corrected values around the true 
temperature is 1.39 × 10−6 m2∕s2 , or approximately 17% of 
the true temperature. The residual errors after error correc-
tion are therefore minimal.

Inspecting the results more closely, we find that the 
temperature correction (10) works well for values of 
p

Δt
= 0.006 m/s and smaller, but underestimates Tg at larger 

values. This drop is caused by high values of ΔT res
g

 , sug-
gesting that the model for errors caused by finite resolu-
tion overestimates the bias for extremely high frame rates 
and extremely low resolutions. In the case of our experi-
mental apparatus, given we have sub-pixel resolution to 
the level of 1/10th of an original pixel, the approximate 
value of p

Δt
 is 7.62 × 10−4 m/s and hence the correction 

should work well.
Finally, note that our granular thermometry procedure, 

and subsequent error corrections, give the granular tem-
perature of the intruder particle. This may not, in gen-
eral, be the same as the temperature of the bulk particles, 
due to differences in at least size, shape, stiffness and 
density. If desired, an additional correction factor can 
be applied to infer the granular temperature of the bulk 
particles from the corrected measurement of the tracer 
particles. This is detailed in “Appendix 1”, where we use 
DEM simulation to determine that the corrected values 
should be scaled down by an additional factor of 1.5 for 
our particular system.

6  Vibro‑fluidised bed

6.1  Experimental setup

Here we show the application of the granular thermometer to a 
vibro-fluidised granular bed experiment, which is shown sche-
matically in Fig. 1. The experiment consists of a base piston 
attached to a vibrating stage, with an immobile hollow cylinder 
mounted on a static frame. The hollow cylinder has an internal 
diameter of 100 mm and is filled with 710 g of 3mm ± 10% 
silicate glass beads to a height of approximately 60 mm and 
four steel tracer beads of the same size. In this experimen-
tal geometry, and with the dimensions indicated in Fig. 1, 
the artificially enhanced spatial resolution is approximately 
1.1 × 10−2mm∕px which is 273 pixels per intruder’s diameter. 
The vibrating stage is driven by a Syntron V-50 electromag-
netic vibrator at the bottom of the top plate. The vibrator is 
an impact vibrator with a 50 Hz stroke frequency and power 
usage up to 530 W, which is large enough that the vibrating 
stage is not measurably affected by the weight of grains sitting 
on top of it. The vibrating stage piston is in direct contact with 
the grains, but not in contact with the hollow cylinder, so that 
vibrations of the walls are minimised.

6.2  Results

The observed trajectory for a single tracer particle over 167 
seconds is shown in Fig. 7. In total, four tracers are tracked for 
a cumulative 11,163 seconds. This 3D location information 
is then coarse-grained [45, 49] onto the 2D rz half-plane, as 
the system is axially symmetric, as seen in Fig. 7b. Details of 
this transformation and the related coarse-graining functions 
are shown in “Appendix 1”. This allows extraction of the tem-
perature T̃g as outlined in Sect. 3, which is then corrected fol-
lowing (10) using the values in Table  1. In Fig. 8 we show the 
occupancy (the probability of finding the intruder at a given 
location), steady-state velocity, shear rate, and predicted true 
granular temperature fields.

The system is excited only at the base, yet the Tg field is 
not largest at this location. In fact the granular temperature 
starts high at the bottom, lowers in the middle and then rises 
to its maximum value at the free surface. Similar results were 
reported for vibrated granular gases by [36]. In the radial direc-
tion, the granular temperature is low at the central axis and 
grows until it reaches its maximum at the vertical boundaries. 

Fig. 7  Trajectory reconstruction for experimental data over 167  s. 
a Trajectory of intruder particle in 3D with orientation of Cartesian 
and cylindrical axes. b Representation of intruder’s trajectory in the 
rz half-plane with coarse-graining grid. Domain of the experiment is 
depicted in blue

Table 1  Experimental values used for error correction

Parameter 1∕Δt (Hz) p (m) t
i
 (s) d (mm)

Value 30 1.1 × 10
−5

4.65 × 10
−3 3
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This trend bears similarity with the shear rate, which is also 
maximal at the vertical boundaries and free surface.

7  Conclusion

Here we have presented a technique for the reconstruction 
of tracer trajectories in dense granular flows. The technique 
relies on dynamic X-ray radiography, which is able to pen-
etrate beyond the boundaries of the material and can be 
used to observe the behaviour of the interior. Trajectories 
obtained in this way were used to calculate steady-state kin-
ematic properties of the flow—steady-state velocity fields, 
their fluctuations and the granular temperature field.

We have presented a rigorous assessment of the effects 
of tracking errors on the measurement of the granular tem-
perature field, and have quantified the systematic biases that 
affect this measurement. Additionally, using DEM simula-
tions, we have proposed a method to identify and correct 
for these biases. After error correction, the residual errors 
were typically small in magnitude compared to the magni-
tude of the true temperature, especially at the timescales and 
resolutions of radiographic acquisition equipment. This sub-
stantiates the new technique as being suitable for observing 
and quantifying flow kinematics in laboratory experiments. 
Finally, we demonstrate this tracking algorithm and bias cor-
rection on a vibro-fluidised bed experiment.

Yet, there are questions remaining to be answered. First, 
from the experimental point of view, is whether we can 
reliably use this thermometer to infer the temperature of 
bulk particles from the temperature of denser tracer. Start-
ing point would be development of novel segregation mod-
els that can be calibrated using combination of our experi-
mental technique and DEM simulations, accompanied with 
cross calibration of our method with experimental methods 
that can measure kinematics of tracers with the same prop-
erties as the bulk, such as PEPT. Another approach would 
be to limit the calibration to two dimensional systems for 
which high speed cameras can be effectively used. Second 
question is related to the nature and definition of granu-
lar temperature and significance of velocity fluctuations 
and other fluctuations in dense granular flows. Granular 
temperature, as a measure of the energy at the granular 
scale, includes the contribution from fluctuations from 
both the kinetic energy and elastic potential. In dense 
flow regime, those two contributions are presumably of 
the same order of magnitude, and such system exhibits two 
modes of velocity fluctuations—one where particles are 
in free flight mode and velocity fluctuations are quadratic, 
and the second one where particles resemble network of 
harmonic oscillators caused by enduring contacts between 
themselves where the quadratic dependence on the veloc-
ity fluctuations will turn into a linear one. Thus, further 
research is needed in direction of defining the concept of 
granular temperature in sense of physically measurable 
quantities alongside with classification and measurements 
of fluctuation contributions in granular packings coming 
either from fluctuating density, velocity, elastic potential, 
or something yet not discovered.

This granular thermometer is an excellent tool for stud-
ying the dynamics of granular materials experimentally. 
As analytical and numerical evidence of the importance 
of the granular temperature mounts, there is a growing 
need for experimental validation of these concepts, and 
this technique provides a robust method for the quantifi-
cation of the flow kinematics for systems with arbitrary 
geometry and grains.

Supporting information appendix (SI)

Appendix 1: Coarse‑graining in cylindrical 
coordinates

Coarse-graining is an established technique for convert-
ing discrete particle measurements to continuum fields 
(see e.g.[45, 49, 50]). However, it is usually employed in 
Cartesian coordinate systems, whereas the experimental 
configuration of this paper is better suited to cylindrical 
coordinates r = (r, �, z) , as shown in Fig. 7. We therefore 

Fig. 8  Coarse-grained fields in the rz half plane, obtained from exper-
imental measurement of intruder positions. a Occupancy profile, b 
steady-state velocity, c shear rate and d corrected granular tempera-
ture
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outline below the coarse-graining process and the result-
ing granular temperature measurements in cylindrical 
coordinates.

The calculation is based on the mathematical formula-
tion in [45, 49, 50]. We first introduce the coarse-graining 
function W,

where �r and �z are the coarse-graining widths in the radial 
and vertical directions, respectively. Note the lack of � 
dependence in (11), because we are interested in temperature 
fields only in the (r, z) half plane (and also independent of 
time). The normalisation is chosen to ensure that the coarse-
graining function integrates to 1, i.e.

It is then possible to define the coarse-grained solid volume 
V(r) as

where ri(tk) represents the position of particle i at time tk , 
and di is the diameter of particle i. The sum i ∈ S represents 
summing over all particles, and k = 1 to n summing over n 
time steps.

We can then use this coarse-grained volume to obtain the 
steady-state average velocity field in the rz half-plane. For 
the radial component, the velocity vr(r) is given by

where vr,i(tk) is particle i radial velocity at time tk . This is 
calculated by converting the Cartesian positions from the 
tracking algorithm to cylindrical coordinates and then cal-
culating the corresponding velocities. In a similar fashion, 
we can calculate an approximation of the square of the radial 
velocity as

By definition, the granular temperature Tg is the trace of the 
velocity variance tensor, in which the diagonal components 
are the variances of the average velocity of each component. 
Tg =

1

3
(Tg,r + Tg,� + Tg,z) =

1

3
(Var(vr) + Var(v�) + Var(vz)) . 

Because the granular temperature of each component is 
the variance of the velocity field, we can define the coarse-
grained granular temperature in the radial direction as

(11)W(�) =
1

2��r�z
exp

(
−

r2

2�2
r

−
z2

2�2
z

)
,

(12)∭V

W(�)r dr dz d� = 1.

(13)V(�) =

n∑

k=1

∑

i∈S

�

6
d3
i
W(� − �i(tk)),

(14)vr(�) =
1

V(r)

n∑

k=1

∑

i∈S

�

6
d3
i
W(� − �i(tk))vr,i

(
tk
)
,

(15)vsq
r
(�) =

1

V(r)

n∑

k=1

∑

i∈S

�

6
d3
i
W(� − �i(tk))v

2
r,i
(tk).

Analogously, components Tg,� and Tg,z are calculated by sub-
stituting the relevant velocity terms.

Appendix 2: Missed collisions

Sampling particle locations at discrete times necessarily means 
that not all collisions are observed. To account for this, we 
begin by considering the definition of the diffusivity, D, where 
if there is no net movement of the material, we have

where �[Δx2] is the mean square displacement of a large 
number of grains after a time Δt . For the case of uniform 
shear in the x direction, it has been shown [51] that the effect 
of the shear is to change this relationship to

The constant of proportionality must therefore have the units 
of square root of time. For convenience, we assume that this 
time scales with the shear time, |�̇�|−1 , so that we can write

where a1 is a non-dimensional fitting parameter. Recalling 
(6), we can define the measured granular temperature as

Substituting (19) in (20) gives

Additionally, we can include some recent micromechanical 
measurements of Tg [52] and D [4, 53], which give at steady 
state

where d is the particle diameter, P the pressure, � the particle 
density and I = �̇�d

√
𝜌∕P is the inertial number. From these, 

we can deduce that

(16)Tg,r(�) = vsq
r
(�) − (vr(�))

2.

(17)D =
�[Δx2]

2Δt
,

(18)D ∝
�[Δx2]

2Δt3∕2
.

(19)D =
√
a1

�[Δx2]

2Δt3∕2
√
��̇��

,

(20)T̃g =
1

3
�[||v�||2] = 1

3

�[Δx2]

Δt2
.

(21)�Tg =
2D

3
√
a1Δt∕��̇��

.

(22)Tg ∝ d��̇��
√
P∕𝜌,

(23)D ∝ d2��̇��∕
√
I,

(24)
Tg

D
∝

��̇��
√
I
.
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Substituting this relationship in (21) gives

where ti = d
√
�∕P is the inertial time. We choose to replace 

the proportionality with an equality by assuming a transla-
tion of the curve in Δt for the amount of t0 , rather than a 
strict proportionality, such that

When Δt = 0 we must have that T̃g = Tg , which yields t0 , and 
so by substituting t0 this scaling becomes

In Fig. 5 we show a best fit of the parameter a1 for the DEM 
data described in Sect. 4.

Appendix 3: Finite pixel size

Due to the finite size of the pixels on the detector panels, tracer 
positions cannot, even in principle, be measured perfectly, and 
thus every measured tracer position bears some randomness. 
The mathematical treatment of this randomness was developed 
in [48], and is reproduced here for clarity. The measured loca-
tion of the particle centroid along the x axis, x̃ , differs from 
the true particle centroid x by a factor

where p is the pixel size in meters, with p = 0 representing 
perfect resolution, and � is a random variable uniformly dis-
tributed in the domain [−1, 1] . The measured component of 
the tracer’s velocity in the x direction between two frames 
labelled 0 and 1 is then

where vx is the finite difference to the actual velocity and 
distribution of �1 − �0 can be calculated by using the equa-
tion for compound probability density functions, as shown in 
[48]. Using this distribution the bias in the measured average 
velocity �[̃vx] is

since the expectation value of �1 − �0 is 0, and hence no 
bias is introduced to the measurement of the average veloc-
ity. Nevertheless, �1 − �0 introduces an uncertainty on the 

(25)
Tg

T̃g

∝
3

2

√
a1

Δt

ti
,

(26)
Tg

T̃g

=
3

2

√
a1(Δt + t0)

ti
.

(27)
Tg

T̃g

= � =

√
a1

9

4

Δt

ti
+ 1,

(28)x̃ = x +
1

2
p�,

(29)ṽx =
x̃1 − x̃0

Δt
=

x1 − x0

Δt
+

p(�1 − �0)

2Δt
,

(30)�[̃vx] = �[vx] +
p

2Δt
�[�1 − �0] = �[vx],

average velocity which is equal to one standard deviation 
of its distribution function, ��1−�0 . Therefore the measured 
average velocity can be expressed as

The resulting error in the measured granular temperature 
component T̃g in the x direction is

which, in the case that �1 and �0 are independent, simplifies 
to

Because this bias is isotropic, we can additionally state that 
the overall granular temperature term can be expressed as

Appendix 4: Absorption heterogeneity

The nature of granular materials is that they are generally 
heterogeneous at the particle scale. Because of this, radio-
graphs of granular materials at this scale typically show 
heterogeneous absorption patterns, allowing us to observe 
the internal packing structure. This heterogeneity, how-
ever, introduces uncertainties in our measure of the particle 
centroids, as our definition of the tracer particle being the 
darkest disk in the image is only true for a homogeneous 
background.

In a dense granular packing, the effect of the heterogene-
ity on the accuracy of the tracer tracking algorithm depends 
on; (a) the particle size, (b) the number of bulk particles 
along the ray path, (c) the granular packing, and (d) the rela-
tive attenuation coefficient of the two materials. Here, we 
limit ourselves to tracers of the same size as the bulk parti-
cles, and to a single relative attenuation coefficient typical 
of a steel tracer in a glass medium. In this case, to approxi-
mate the error associated with the heterogeneity we have 
generated a series of high resolution (400 px/mm, chosen to 
eliminate detector resolution dependence from this analy-
sis) artificial radiographs from DEM simulation data. Each 
radiograph represents a different thickness of glass beads 
along the path of the X-ray beam, and a single identical steel 
tracer is placed in front of each configuration. An example of 

(31)�[̃vx] = �[vx] ±
p

2Δt

√
2

3
− Cov

(
�1, �0

)
.

(32)

T̃gxx = Tgxx +
( p

2Δt

)2(
Var(�1) + Var(�0) − Cov

(
�1, �0

))
,

(33)T̃gxx = Tgxx +
1

6

( p

Δt

)2

.

(34)T̃g = Tg + ΔT res
g
,

(35)ΔT res
g

=
1

6

( p

Δt

)2

.
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these radiographs is shown in Fig. 9, with the tracer particle 
at the centre of the image.

For 25 different thicknesses, ranging from n = H∕d = 1 to 
80 particle diameters deep, a tracer particle was placed at a 
known location and then the tracking algorithm was used to 
search for the particle location. This was repeated for 10,000 
tracer locations uniformly distributed on a 100 × 100 grid in 
each radiograph, and the error between the true location and 
the measured location was fitted with a zero mean Laplace 
distribution with non-dimensional width b (non-dimension-
alised by the particle diameter). The Laplace probability 
density function (PDF) as a function of the fraction of the 
intruder diameter is given by

where � is the normalized distance in the horizontal direc-
tion measured from the tracer’s center, and b is the non-
dimensional width of the Laplace distribution calculated 
as a fitting parameter for each depth of bulk material. The 
dependence of this width on the packing depth is shown in 
Fig. 10 and can be well fitted by

with coefficients a2 = 0.0048 and a3 = 6.8 × 10−5 . The width 
of the distribution and consequently the bias in the granular 
temperature asymptotically progresses towards a stable value 
with increasing bulk particle depth. This suggests that, in 

(36)f (�) =
1

2b
e
−

|�|
b ,

(37)b(n) = a2(1 − e
−a3

H

d ),

an ideal scenario, intruders are always visible even for a 
very large number of particles in front of them. In reality, 
however, with increasing depth of bulk particles it becomes 
more difficult to find the intruder due to the finite dynamic 
range of the detector panels, which prevent the detection of 
slight differences in the intensity of pixels.

To calculate the error caused by this heterogeneity we fol-
low a similar logic to that in SI 1. The measured coordinate 
of the tracer can be expressed as the sum of the true value 
and a discrete random variable � multiplied by the diameter 
of intruder d, as

where � is distributed as in (36). It follows that the tracer’s 
x velocity component is given by

The compound distribution function of the difference of 
�1 and �0 is symmetric around its zero mean, and does not 
introduce bias to the measured average velocity field, but 
introduces the uncertainty

The expression for the x component of the measured granu-
lar temperature is

(38)x̃ = x + d� ,

(39)

ṽx =
x̃1 − x̃0

Δt
=

x1 − x0

Δt
+ d

(�1 − �0)

Δt
= vx +

d

Δt
(�1 − �0),

(40)�[̃vx] = �[vx] ±
d

Δt

√
(Var(�1 − �0) − 2Cov(�1,�0)).

(41)T̃xx = Txx + ΔThet
xx

Fig. 9  Example of a tracer in an artificial radiograph. The tracer 
is located at the centre of the image, and due to its high attenuation 
coefficient is the darkest region in the image. The heterogeneous 
background within intruder’s boundary causes skewing of intruder’s 
center towards the darker regions; right of intruder’s true centre in 
this case. The bulk particles are 15 cm (50 diameters) deep

Fig. 10  Estimating the effect of heterogeneity. Width of Laplace 
distribution b, in terms of intruder diameter fraction, plotted against 
number of particle layers in front of the tracer particle. Insets—his-
togram of error in measurement of position and line of fitted Laplace 
distribution for different bulk particle depths a H∕d = 10∕3 and b 
H∕d = 250∕3
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The effect of this term on the measured temperature field 
is therefore strongly dependent on the independence of �0 
and �1 . In the case where they are independent (i.e. long 
sampling times relative to the particle displacement), the 
covariance approaches zero resulting in the maximum value 
of bias.

For short sampling times relative to the particle displace-
ment, where the covariance of the two terms can be assumed 
to be close to the value of the variance, the bias caused by 
heterogeneity tends towards zero. In the cases reported here, 
we have assumed that the covariance and variance terms 
are equal in magnitude due to the short sampling times and 
similar background conditions in subsequent radiographs 
and have therefore ignored this error term.

Appendix 5: Finite sample size

Here we investigate the effect of using the finite sums (4) and 
(5) to approximate the true mean and variance (equivalently 
granular temperature) of the velocity field. For complete-
ness, we redefine these estimators below

where it is now assumed that the true velocity measurements 
vk are used, so that we can study the finite sample size errors 
in isolation. Assuming these measurements are independent, 
it is straightforward to show that

and

Hence the estimator for Tg will, on average, underestimate 
the true granular temperature by (1∕N)Tg.

Since the number of observations is typically large for the 
DEM simulation ( N > 1000 ), this bias can safely be neglected, 
although may start to become significant when fewer measure-
ments are available.

Appendix 6: Measuring bulk temperature

Equipartition of energy is known to break down in agitated 
granular materials [54]. This means that we do not expect our 

(42)ΔThet
xx

=
(
d

Δt

)2

(Var(�1 − �0) − 2Cov(�1,�0))

(43)�̃ =
1

N

N∑

k=1

vk,

(44)T̃g =
1

N

N∑

k=1

(vk − �̃)2,

(45)�[�̃] = �[v],

(46)�[T̃g] =
N − 1

N

(
�[v2] − (�[v])2

)
= Tg −

1

N
Tg.

tracer particle to have the same kinetic energy as the materials 
surrounding it. The kinetic energy in these systems is primar-
ily dissipated through the contacts between grains. Any tracer 
particle which changes the local contact network may therefore 
affect the local temperature and bias any measurement. As a 
result, we do not expect the granular temperature of any tracer 
particles to be a true measure of the granular medium that 
would exist in the absence of the tracer particle. Whilst the 
relationship between the intruder and bulk temperatures are 
not known, and are the subject of intense research activity [1, 
44, 55, 56], we here use DEM simulations to calculate the cor-
rection required for a system under simple shear, and use this 
value to correct our experimental data. In general, we expect 
this relationship to depend on at least the size, stiffness, density 
and friction ratios between the bulk and intruder particles.

The DEM simulation performed here is composed of a 3D 
Lees-Edwards boundary, of dimension 15 × 15 × 15 mean 
bulk particle diameters, and sheared at constant volume within 
a 20% margin of the same bulk nominal values as in Table 1. 
For this case, we require that the contacts between grains are 
accounted for with realistic accuracy, and so choose to use a 
Hertz-Mindlin contact law [57, 58], with reduced glass bead 
and steel elastic modulii of 10 MPa and 30 MPa, particle 
densities of each material 2500 and 8000 kg/m3 , restitution 
coefficient of 0.95 and friction coefficient 0.5. The domain is 
filled with bulk particles of diameter 3 ± 0.3 mm , with a single 
tracer particle, such that the total solid fraction is 0.596, which 
is chosen to achieve the target pressure. For this case, we find 
that the steel tracer particle has a lower temperature than the 
bulk particles by a factor of 1.5, and so the values reported in 
this paper could be divided by this value to recover the granu-
lar temperature of the glass beads.

Video 1

Caption: An overview of how X-ray radiography is used to 
measure the granular temperature for a vibro-fluidised bed.
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