
Vol.:(0123456789)1 3

Granular Matter (2021) 23:5 
https://doi.org/10.1007/s10035-020-01066-2

ORIGINAL PAPER

Identification of jamming transition: a critical appraisal

Mingze Xu1,2 · Zixin Zhang1,2 · Xin Huang1,2 

Received: 6 March 2020 / Accepted: 1 October 2020 / Published online: 26 November 2020 
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
A variety of approaches have been proposed to determine the onset of jamming (unjamming) transition for granular medium. 
However, these approaches all have their own limitations. In this study, the applicability of the existing approaches in iden-
tifying the jamming (unjamming) transition instant is evaluated based on the discrete element method simulations on both 
frictionless and frictional specimens subjected to different loading protocols which lead to isotropic jamming, shear jamming 
and shear unjamming. A new approach based on Hill’s criterion of failure is proposed, which defines the transition of second 
order work from positive to negative as the onset of jamming (unjamming) transition. The jamming (unjamming) transition 
instant determined from the new approach is compared with those determined from some classic approaches. It is found that 
the second order work-based approach not only locates the critical solid fraction in the jamming diagram consistent with 
other approaches, but is also able to identify the onset of jamming (unjamming) transition for loading protocols that are dif-
ficult to be assessed by the existing approaches. This more robust approach is useful for the study of jamming phenomena 
under a broader types of loading protocols, and can be further employed to derive the jamming diagram of real materials.

Keywords Jamming transition · Critical solid fraction · Second order work

1 Introduction

Jamming is defined as a state that a particulate system can 
sustain external forces without deforming irreversibly [1]. 
When subject to infinitesimal external perturbations, such as 
temperature change or shear, a particulate system may flow 
like liquid in the unjamming state but will behave closely 
to solid once the jamming (unjamming) transition state has 
been reached. It is non-trivial to macroscopically ascertain 
whether a particulate system is jammed; therefore, the jam-
ming state is deemed to be reached when the number of 
mechanical equilibrium constraints reaches the number of 
degrees of freedom, i.e., the system becomes isostatic [1]. 
Necessary conditions characterizing a jammed state include 

non-zero mean stress, shear stress and ability to sustain 
small incremental stress. The transition from the unjammed 
state to the jammed state is generally referred to as jam-
ming (unjamming) transition. It is a characteristic state dis-
tinguishing a solid phase from a liquid phase.

Jamming (unjamming) transition has been extensively 
investigated by previous researchers due to its importance 
in the powder related industry and understanding of the 
physics underlying behaviors of granular medium. In order 
to describe this transition and link to its influential factors, 
a jamming diagram was proposed by Liu and Nagel [2], 
in which they defined the jamming and unjamming zone 
based on three quantities, i.e., temperature, solid faction and 
shear stress. The original jamming diagram was improved 
by successive researchers. For example, Ciamarra et al. [3] 
introduced friction as an additional coordinate axis in the 
jamming diagram to consider the frictional properties of dif-
ferent materials. Bi et al. [1] further identified a shear jam-
ming zone and a fragile zone between the original jamming 
and unjamming zones.

A premise of a rational analysis on the jamming phenom-
ena and establishment of the jamming diagram is the correct 
identification of jamming (unjamming) transition point. For 
systems which are athermal and experience no shear stress, 
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a number of well-defined approaches have been developed 
to determine the critical solid fraction ( �J ). In such cases, a 
granular system is in a jammed state when its solid fraction 
is above �J , while it is in an unjammed state when its solid 
fraction is below �J . Göncü et al. [4] discussed the �J values 
obtained from different approaches considering the influ-
ences of the number of particles, polydispersity and loading 
rate. Nonetheless, when the systems are subjected to more 
realistic complex loading protocols with different forms of 
shear stress variation, the identification of jamming (unjam-
ming) transition is nontrivial, particularly for frictional sys-
tems. Since frictionless materials are rarely encountered in 
the real world and the loading conditions that a real material 
may experience are more complex than isotropic loading, 
it is necessary to establish a more robust approach that can 
identify the jamming transition phenomena of real materi-
als subject to realistic loading scenarios. This is the major 
motivation of the current study.

In this study, a brief summary of the existing approaches 
for identifying the jamming (unjamming) transition is firstly 
provided. A series of DEM simulations on both friction-
less and frictional systems are conducted considering dif-
ferent loading protocols including isotropic compression, 
constant-volume triaxial compression, and constant-volume 
cyclic triaxial compression. A new approach of identifying 
jamming-unjamming transition is proposed based on the 
second order work principle. The applicability of different 
approaches in identifying the jamming (unjamming) transi-
tion under various loading scenarios is evaluated, based on 
which the robustness and reliability of the new approach 
are demonstrated. The limitations of the newly proposed 
approach are also discussed.

2  A brief review of existing approaches 
for identifying jamming (unjamming) 
transition

In order to determine the onset of jamming (unjamming) 
transition, different approaches have been developed. The 
most prevailing ones are summarized below:

2.1  Coordination number‑based approach

This is the most widely used criterion. Theoretically, for a 
frictionless particulate system, it is mechanically stable (iso-
static or hyperstatic) only when the coordination number Cr, 
which is defined as Cr = M/N, reaches 6 for 3D system and 
4 for 2D system, where N is the total number of particles and 
M is twice the total number of contacts. But for frictional 
systems, it is difficult to find a precise threshold value for the 
coordination number at the isostatic state. Researchers can 
only give a minimum value for mechanical stability [5, 6] or 

use the so-called isostatic coordination number (Ziso) [7, 8]. 
Theoretically, the isostatic coordination number lies between 
d + 1 and 2d depending on the frictional coefficient [5], in 
which d denotes the dimension of the system which is 2 for 
a 2D system and 3 for a 3D system. Different definitions of 
Cr have been proposed in order to exclude the influence of 
rattlers. For example, Imole et al. [9] proposed using the 
corrected coordination number C* which is defined as 
C* = M4/N4, in which M4 is the total number of contacts 
owned by the N4 mechanically stable particles with at least 
4 contacts. Thornton [10] defined a mechanical coordination 
number Zm to be Zm = 2

(

Nc − N1
p

)

∕
(

Np − N1
p
− N0

p

)

 , where 
Nc is the total number of contacts, Np is the total number of 
particles, N1

p
 and N0

p
 are the number of particles with one 

contact and zero contact, respectively. For the frictionless 
particles, this coordination number criterion (either modified 
or not) has a solid theoretical foundation and has been used 
extensively [5, 9, 11–14].

2.2  Yield stress‑based approach

Apart from the coordination number criterion, inspired by 
the definition of jamming, the onset of yield stress is used as 
a criterion by several researchers [15–18]. The yield stress 
is the applied stress that must be exceeded in order to make 
a structured fluid flow [19]. Similar to shear modulus, the 
shear yield stress is a material property that distinguishes 
solids from liquids [16]. Heussinger and Barrat [20] gave 
an example of identifying yield stress during shearing under 
the constant volume condition, as can be seen in Fig. 1, in 
which the green line corresponds to the sample with a solid 
fraction � larger than the critical value (�c) and the blue line 
corresponds to the sample with � slightly smaller than �c . 
In their simulations, if the volume fraction is larger than �c , 
the yield stress can be observed (the green line) but when the 
volume fraction is slightly smaller than �c , the system shows 
a coexistence of the yield-stress and zero-stress states (the 
blue line). If the volume fraction is small enough, the sys-
tem will flow at zero stress state. For clarity, when no shear 
stress is imposed on the sample, the critical solid fraction is 
marked as �J which is consistent with the jamming diagram 
proposed by Bi et al. [1] and when shear stress exists, the 
critical solid fraction is denoted as �C . Similarly, Otsuki 
and Hayakawa [21] treated the onset of shear stress in the 
extremely low shear rate ( 𝛾→̇0 ) as the onset of jamming 
(unjamming) transition and they also observed the existence 
of yield stress for densely packed systems. This approach 
was also used by Ciamarra et al. [3]. However, this approach 
only applies for shear jamming scenarios under the constant 
volume condition because it is difficult to directly observe 
the onset of apparent yield stress due to the fluctuation of 
stress in other kinds of shearing simulations or experiments. 
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Therefore, this method is more appropriate to be used to 
justify whether the system is in a jammed state rather than 
to identify the onset of jamming (unjamming) transition.

2.3  Pressure‑based approach

Similar to the yield stress-based approach, the pressure-
based approach can be seen as a supplement to the yield 
stress-based approach. During the decompression of a par-
ticulate system, the static pressure drops to zero when it 
transforms from the jammed state to the unjammed state 
because of the loss of the particle contacts. Here, the static 
pressure p is the 1/3 trace of the averaged micromechanical 
stress, which is defined as �̄�ij =

1

V

∑

c∈V f
c
i
lc
j
 , where V is the 

total volume of the particulate system, f c
i
 is the force of 

contact c and lc
j
 is the corresponding branch vector. In order 

to reduce the influence of stress fluctuation, the relationship 
P

Cr�
= Pref log

(

�

�c

)

 was used by Göncü et  al. [4], where 
P = pr0∕kn is the normalized pressure, r0 is the averaged 
radius, kn is the normal contact stiffness and Pref  is a fitting 
parameter.

2.4  Rattler‑based approach

In 3D simulations, the rattler is normally defined as a parti-
cle with fewer than 4 contacts [4, 9]. The number of rattlers 
surges up abruptly when the system transforms from the 
jammed state to the unjammed state, and vice versa. This 
method has been used to identify the critical solid fraction 
in the isotropic compression simulation [4, 22]. It is more 
common to use the non-rattler fraction (fNR) to determine the 
onset of jamming (unjamming) transition. The non-rattler 
fraction fNR is defined as fNR = N4∕N , where N4 is the num-
ber of particles with at least 4 contacts and N is the number 
of particles in the particulate system. Bi et al. [1] observed 
in their 2D photo-elastic experiments that when a system 
reached the jammed state, fNR = 0.83 ± 0.02 under pure 
shear condition. This was confirmed later by Kumar et al. 

[11] in their 3D pure shear DEM simulations. However, this 
approach is not universally applicable, i.e., the jump of the 
number of rattlers is more obvious during decompression 
than under compression. Furthermore, the threshold value of 
fNR has no theoretical explanations, and whether it is applica-
ble for loading conditions other than pure shear is unknown.

2.5  Energy‑based approach

The values of the jamming density �J can also be obtained 
based on the ratio between the kinetic energy (Ekin) and 
potential energy (Epot) of the system, which is expressed by 
e = Ekin∕Epot [23]. The jammed state is defined as the point 
where the compression branch of the e-� curve crosses its 
decompression branch [4]. However, the accuracy of this 
method strongly depends on the spacing of the data points 
around the jamming (unjamming) transition point. Fur-
thermore, there is also no theoretical explanation for this 
intersection.

2.6  Percolation analysis‑based approach

Bi et al. [1] proposed using percolation analysis on the force 
transmission network to determine the shear jamming-
unjamming (unjamming) transition in their photo-elastic 
experiments. As can be seen in Fig. 2, the jammed state is 
reached when the granular system comes to a percolated 
state in all dimensions, i.e., �x∕Lx = �y∕Ly = �z∕Lz = 1 (3D), 
where �i is the length of the largest force transmission net-
work and Li is the sample dimension in the ith direction. 
Here, the largest force transmission network is comprised of 
strong contacts which bear contact forces larger than a char-
acteristic value that is several times of the average contact 
force, i.e., f ≥ kfavg , where k is a magnification factor. How-
ever, the determination of k is rather empirical and may be 
affected by many factors including the problem dimension 
(2D or 3D), disparity of particle size and loading conditions, 
etc. Bi et al. [1] used k = 1 for 2D disks and other researchers 
used k = 2.2 for 3D spheres [11, 24, 25]. The other limitation 

Fig. 1  Illustration of yield stress 
(Heussinger and Barrat [20])
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of this approach is that for most of real materials, it is dif-
ficult to obtain the contact information required for perco-
lation analysis. Therefore, the applicability of percolation 
analysis-based approach is restricted to idealized simulations 
or photo-elastic experiments.

2.7  Perturbation length‑based approach

Some researchers used perturbation length to determine 
whether or not the sample reaches the isostatic state [26–29]. 
In this method, a probe particle driven by a constant force is 
forced to travel from one boundary side of the system to the 
opposite side, during which the number of disturbed parti-
cles is recorded (Fig. 3). The perturbation length is defined 

as the ratio between the number of disturbed particles and 
the total number of particles. When the perturbation length 
is large enough, the system is in a jammed state; otherwise it 
is in an unjammed state. This method seems to be practical 
but the threshold value of the perturbation length is totally 
empirical, which makes it difficult to determine the jamming 
(unjamming) transition point precisely. Furthermore, when 
this method is applied, a state that is close to the jamming 
(unjamming) transition point needs to be estimated before-
hand so that loading can be stopped at this point to conduct 
the perturbation probe, which unavoidably will disturb the 
original structure of the system.

Overall, different approaches have been proposed to iden-
tify the jamming (unjamming) transition point of granular 

Fig. 2  2D Sketch map of perco-
lation analysis

Fig. 3  Sketch map of pertur-
bation length-based method 
(Reichhardt et al. [29])
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medium. As summarized in Table 1, each approach has its 
own merits but also limitations. In general, the coordination 
number-based approach is difficult to apply for frictional 
systems, while determinations of the threshold value are 
empirical for other approaches. Furthermore, most of the 
existing approaches require micro-scale information regard-
ing the interaction between particles, which is difficult to be 
obtained for real materials.

3  A new method of determining jamming 
(unjamming) transition

Since the current approaches determining the jamming 
(unjamming) transition all have some limitations, a more 
robust approach which can be applicable for both frictionless 
and frictional systems subject to various types of loading 
conditions is needed. In geomechanics, the Hill’s criterion 
is widely used to examine the stability of soils. Based on this 
criterion, a macroscopic expression of second order work 
was used to check the stability of soil [30, 31],

in which �V is the volumetric strain, p is the mean stress, �q 
and q are the deviatoric strain and the deviatoric stress, V is 
the volume of the particulate system, respectively. Subject to 
a specific loading condition, when W2 is strictly larger than 
0, the soil is in a stable state; otherwise, instabilities occur 
[34]. The relationship between the second order work and 
entropy source has been proved to be equivalent, and Hill’s 
condition is consistent with the second law of thermodynam-
ics [31]. The second order work could also be expressed 

(1)W2 = (d�Vdp + d�qdq) ∗ V

using microscopic variables accounting for the microstruc-
ture of the particulate system [32]:

The first term in Eq. 2 is related to the contact force net-
work, in which lc

i
 is the branch vector and f c

i
 is the contact 

force of the ith contact between the contacting particles p 
and q, while the second term is related to the incremen-
tal unbalanced force and incremental change in position 
of particle, where xp

i
 is the position and f p

i
 is the resultant 

force of particle p along the ith direction. The vanishing 
second-order work marks the bifurcation of soil behavior 
from quasi-static regime to dynamic regime, which is char-
acterized by the coincidence between the onset of instability 
and the outburst of kinetic energy [33]. This was later nicely 
proved analytically by Nicot et al. [34, 35]. The second order 
work (either macroscopic or microscopic) criterion, which 
has a solid theoretical basis, has been shown to effectively 
distinguish between the stable and unstable states [30–32, 
36]. Unstable state in soil mechanics is usually defined as 
a state when infinitesimal perturbations will lead to finite 
changes of the system’s state [37]. It is a broader concept 
encompassing unjamming as the former does not imply a 
zero-stress state while the latter does. Therefore, although it 
has been pointed out by Nova [38] and Buscarnera et al. [39] 
that the Hill’s condition is insufficient to determine the state 
of the soil since the material stability is not only an intrinsic 
characteristic but also relates to the control parameters in 
soil mechanics, it is still reasonable to use it as a criterion 
to identify the onset of jamming because the stable state 
(jamming state) used in this paper is different from that in 
the classical soil mechanics and the jamming transition is 

(2)W
�

2
=
∑

p,q

�f c
i
�lc

i
+
∑

p∈V

�f
p

i
�x

p

i
.

Table 1  Overview of current criteria of determining jamming (unjamming) transition

Approaches Merits Limitations

Coordination number-based approach 1. A precise threshold value for frictionless parti-
cle systems

2. A solid theoretical foundation

No precise threshold value for frictional particle 
systems

Yield stress-based approach Inspired by the jamming definition and has a solid 
theoretical foundation

1. Only suitable for shearing condition
2. Hard to observe in the simulations or experiments

Stress-based approach A precise value can be provided Can only be used under isotropic decompression
Rattler-based approach – The number of rattler method is more suitable for 

isotropic decompression condition
Threshold fNR has only been validated under pure 

shear condition
Energy-based approach – The accuracy strongly depends on the spacing of the 

data points
Percolation analysis-based approach Easy to implement in both the simulations and 

photo-elastic experiments
Selection of k value is empirical

Perturbation length-based approach Easy to implement in both the simulations and 
photo-elastic experiments

Threshold value is empirical and the probe trial will 
disturb the sample
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more similar to the bifurcation of soil behavior. Besides, as 
pointed out by Hadda et al. [36] and Nicot et al. [34], the 
second order work criterion can effectively detect the failure 
induced by the incremental loading in one particular direc-
tion and can be further linked with the use of directional 
analysis. The vanishing of the second-order work is adopted 
herein as a new approach to identify the jamming (unjam-
ming) transition state of granular medium under different 
loading conditions. In comparison to previous approaches, 
the second-order work approach has the following merits:

(a) the criterion of identifying jamming (unjamming) tran-
sition, i.e., W2 or W�

2
 = 0, is independent of problem 

dimension, friction property, disparity of particle size 
and loading conditions

(b) the quantities involved in calculation can be easily 
obtained both experimentally and numerically.

Apart from the merits, the limitations of the second order 
work criterion also need to be acknowledged. Firstly, micro-
scale formulation of the second order work is only reliable 
in the quasi-static condition. Secondly, there are also some 
scenarios at which an instability (peak) state appears before 
the unjamming state, e.g., for very loose specimen with the 
solid fraction slightly above the critical value, when it is 
subjected to constant volume shearing we will see an insta-
bility state (peak) occurs before the flow liquefaction state 
(unjamming) [40]. The specimen is in a jammed state when 
evolving from the instability state to the flow liquefaction 
state. Despite of these limitations, we will show below that 
the Hill’s criterion is a more robust approach which is appli-
cable for jamming-unjamming transition identification under 
a wide range of realistic loading conditions in comparison 
with existing approaches.

Since the main objective of this research is to prove that 
the second order work criterion is more robust in determining 
the onset of jamming (unjamming) transition for a particu-
late system, it should be proved that the second-order work 
approach can effectively identify the jamming (unjamming) 
transition point under different loading conditions for both 
frictionless and frictional systems. It has to be firstly proved 
for scenarios in which the jamming (unjamming) transi-
tion point can be derived theoretically, i.e., the frictionless 
systems; then it will be extended to more general frictional 
systems. The results of second-order work approach should 
also be compared with the results derived by other methods 
whose applicability has been well-recognized under certain 
conditions. In particular, the percolation analysis is used as a 
major counterpart since it seems to be applicable for all types 
of loading conditions. The shearing condition is not exam-
ined for the frictionless system because it cannot maintain 
a stable state as all the related quantities oscillate severely 
during shearing. Note that as pointed out by Nicot et al. [34, 

35], the macro and micro expressions of second-order work 
may not be exactly identical, especially when approaching 
the instability state. This may be attributed to inertia effects 
which is a possible missing link between micro and macro 
second-order work in granular media. Therefore, the micro 
formulation (Eq. 2) is selected in the present paper.

4  Model setup and simulation procedures

The simulations are conducted using a modified version of 
the open-source LAMMPS code (Plimpton, 1995). A uni-
form strain rate field (affine deformation) is imposed on the 
particles in a periodic cubic cell. The polydisperse particle 
size distribution follows that of Toyoura sand (Fig. 4) which 
has a size ratio between the largest and the smallest parti-
cles of 3.55. The particle density was 2650 kg/m3 without 
consideration of gravity. A linear elastic model was adopted 
with a normal contact stiffness (kn) of 1 × 108 N/m and a 
tangential contact stiffness (ks) of 6.67 × 107 N/m. 20,186 
non-contacting spherical particles were generated within a 
cubic periodic cell at an initial solid fraction ( �0 ) of 0.5. 
The damping coefficient is set to be 0.1 in order to reduce 
the dynamic influence. The simulations were divided into 
five groups with different frictional and loading conditions:

Group I: A frictionless sample was firstly compressed 
until the solid fraction � reaches 0.63, which was close 
to the jamming point. It was then relaxed until a nearly 
non-contacting condition was reached, after which the 
sample was compressed again at the selected compres-
sion rates until the jamming state was reached. Then, the 
decompression process was conducted at the same veloc-
ity. This loading process is similar to that used in Kumar 
et al. [11].

Fig. 4  Comparing the particle size distributions of the DEM samples 
and real Toyoura sand
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Group II: A sample composed of particles with an inter-
particle friction of 0.25 was directly compressed to reach 
a jammed state and then decompressed to an unjammed 

state. The isotropic compression velocity was 0.025 m/s 
for Groups I and II which can ensure the loading process 
was consistently quasi-static.
Group III: The third group conducted constant-volume 
triaxial compression on a frictional system. An unjam-
ming sample with a solid fraction � of 0.6164 was 
selected from the second group, which was subjected to 
pure shear under a constant-volume condition. The axial 
compression strain rate is 0.85 s−1.
Group IV: The fourth group performed constant-volume 
cyclic triaxial loading on a frictional system. Isotropic 
jammed samples at different p levels were prepared. The 
samples were then subjected to constant-volume sinusoi-
dal cyclic triaxial shearing following the stress path given 
below:

where qcyc denotes the cyclic deviatoric stress amplitude, 
ω is the angular loading frequency equaling 10π rad/s, 
and t is the running time. This loading protocol is widely 
used by the geotechnical community to assess the lique-
faction potential of sands [7, 41, 42].

(3)q = qcyc sin (�t)

Table 2  Simulation details ID Solid fraction,�
0

Initial confining 
pressure, σ3,0 (kPa)

μ during loading Loading type qcyc (kPa)

GI 0.5 0 0 Monotonic –
GII 0.25
GIII 0.6164 0 0.25 Monotonic –
GIV-1 0.6327 100 0.25 Cyclic 10
GIV-2 0.6327 100 0.25 5
GV 0.5913 500 0.5 Monotonic –

Fig. 5  p–� curve during isotropic compression and decompression 
for a frictionless system

(a) k=1.0 (b) k=2.2

Fig. 6  Percolation analysis with different k values during isotropic decompression for a frictionless system
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Group V: The last group conducted constant-volume 
triaxial compression on an initially jammed frictional 
sample. A specimen with an initial confining pres-
sure = 500 kPa was generated, which was then subjected 
to triaxial shearing under constant volume condition. The 
axial compressive strain rate is 0.5 s−1. More simulation 
details are given in Table 2.

5  Results and discussion

5.1  Isotropic decompression on a frictionless 
system

For the Group I simulations, the relationship between p and 
� during isotropic compression and decompression is shown 

in Fig. 5. During the compression process, p remains approx-
imately zero until � approaches 0.64, after which it surges 
up in a power-law manner. In the decompression process, p 
decreases as � drops and approaches zero when � is below 
0.6531. Percolation analysis is performed to investigate the 
growth and interconnection of the major force transmission 
network. Only decompression results are listed here since 
the dynamic influence can be effectively reduced during 
decompression [22] and only in this occasion can percola-
tion analysis be reliable. As shown in Fig. 6a, when k = 1.0 
[1], an abrupt transition from the unpercolated to percolated 
states is apparent (marked by dashed line), while if k = 2.2 
[11] is used to define the strong contacts, some oscillations 
in the percolation indices, �i∕Li , can be observed at the initial 

Fig. 7  Variation of the ratio of kinetic energy to potential energy dur-
ing isotropic compression and decompression of a frictionless system

Fig. 8  Evolution of potential energy during isotropic compression 
and decompression for a frictionless system

Fig. 9  Comparison between isostatic states determined using the 
C*= 6 criterion and the W�

2
= 0 criterion for a frictionless system

Fig. 10  p–� curve during isotropic compression and decompression 
of a frictional system
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stage of decompression. The oscillations soon disappear in 
the successive decompression process. The same transition 
point identified by k = 1.0 and 2.2 indicates that the k values 
of 1.0 and 2.2 adopted by previous researchers [1, 11, 24, 
25] are applicable to distinguish the unpercolated/unjammed 
and percolated/jammed states for frictionless systems during 
decompression coincidentally. Figure 7 shows the evolution 
of the ratio of kinetic energy to potential energy, Ek∕Ep , 
during the compression and decompression process. The 
first crossing point of the compression and decompression 
curves which marks the transition point in [4] is observed at 
� = 0.6531 in this simulation. Besides, the drop of the poten-
tial energy to approximately zero (Fig. 8) does occur at the 
same solid fraction in this simulation, which also marks the 
jamming (unjamming) transition according to [4, 43]. For 

the frictionless system, C* = 6 is a well-recognized criterion 
marking the isostatic state. It is used here as a contrastive 
criterion. As can be seen in Fig. 9, the coordination num-
ber decreases gradually during decompression, and it drops 
sharply below 6 when � decreases to 0.6531. The second 
order work W�

2
 also decreases during the decompression pro-

cess and the W�

2
 = 0 condition is realized almost at the same 

time as C* drops to below 6.

5.2  Isotropic decompression on a frictional system

The relationship between p and � for the frictional system 
under isotropic compression and decompression (Group II) 
is illustrated in Fig. 10. The overall trend is similar to the 
frictionless system as shown in Fig. 5 except that transi-
tion occurs at a different solid fraction, and there are less 

(a) k=1.0 (b) k=2.2

Fig. 11  Percolation analysis with different k during isotropic decompression for a frictional system

Fig. 12  The ratio of kinetic and potential energy during isotropic 
compression and decompression for a frictional system Fig. 13  Potential energy during isotropic compression and decom-

pression for a frictional system
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noticeable stress oscillations during the compression pro-
cess. As shown in Fig. 11, percolation analysis based on the 
k = 1.0 force network clearly shows a critical instant separat-
ing the unpercolated and percolated states. The percolation 
indices remain steadily around 1 until � is reduced to 0.6213, 
at which all the three percolation indices drop to zero. How-
ever, if k is set to be 2.2, the percolation indices of the identi-
fied force network fluctuate severely during decompression. 
If the fluctuation is ignored, there is also an abrupt drop 
in the percolation indices and the identified �J = 0.6213 is 
consistent with that obtained for the k = 1.0 force network. 
If the energy-based approach is applied for this frictional 
system, the first intersection point between the compression 
and decompression data can be derived at � = 0.6223 (see 
Fig. 12). As Fig. 13 shows, a transition point can also be 
identified at � = 0.6213 when the potential energy drops to 
zero which is close to the state derived in Fig. 12. Due to 
the additional constraints provided at the frictional contact-
ing surface, the C* = 6 criterion does no more correspond 
to the isostatic state for a frictional system. Huang et al. [7] 
proposed the following formula to calculate the isostatic 
coordination number, Ziso, for 3D frictional systems:

in which fs is the fraction of sliding contacts. Ziso is reduced 
to 4 for rigid contacts with fs = 0, while it equals to 6 when 
fs = 1, which is analogous to the frictionless condition. 
The proposition of Ziso extends the applicability of coor-
dination number-based approach to frictional systems, in 
which the jamming (unjamming) transition point is defined 
as the intersection of the Ziso curve and Zm curve. Obvi-
ously, the accuracy of this method depends on the spacing 
of the data points around the jamming point. As shown in 
Fig. 14, Zm decreases gradually during decompression, while 
Ziso increases gradually during decompression due to the 
increase of fs. Zm is consistently larger than Ziso until the solid 
fraction ϕ decreases to 0.6213, i.e., jamming (unjamming) 
transition occurs. Ziso swaps between 4 and 6 after jamming 
(unjamming) transition and Zm drops to 0. The isostatic state 
determined by the W�

2
 = 0 criterion exactly matches the one 

determined from the intersection of Zm and Ziso.

5.3  Monotonic shearing on a frictional system 
(shear jamming)

Figure 15 shows the stress–strain relationships during con-
stant-volume shearing of an initially unjammed frictional 
system with � = 0.6164 (Group III). The mean effective 
stress p and the deviatoric stress q remain almost zero 
at the initial state and then start to increase simultane-
ously when the axial strain �a exceeds 5.783%, showing 
a typical shear jamming scenario. As can be seen from 

(4)Ziso = 12∕
(

3 − fS
)

,

Fig. 16, similar to Group II simulations shown in Fig. 11, 
a clear jamming transition point can be derived based on 
the k = 1.0 force network when �a exceeds 7.932%. For the 
k = 2.2 force network, the z-direction (compressive direc-
tion) percolation index (yellow dots) becomes consistently 
close to 1 when �a exceeds 10.54%, while the percolation 
indices in the other two directions oscillate. Therefore, it 
is difficult to evaluate whether or not the specimen is in 
a jammed state. As can be seen in Fig. 17, the initially 
zero Zm starts to increase when �a reaches 5.911%, while 
despite some scatters, Ziso remains consistently around 4. 
Zm is smaller than Ziso until �a exceeds 8.393%, i.e., jam-
ming transition occurs. The transition point derived from 
the isostatic coordination number-based approach does not 
coincide with that determined from the stress–strain curve. 

Fig. 14  Comparison between isostatic states derived based on the 
isostatic coordination number-based approach and the second order 
work-based approach for frictional particles

Fig. 15  Stress strain curves during constant volume monotonic shear-
ing for a frictional system
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Nonetheless, as can be seen in Fig. 18, the W�

2
 = 0 criterion 

indeed gives the same transition point at �a = 5.783%. In 
this shear jamming scenario, the particulate system trans-
forms from the unjammed state to the jammed state which 
means that the system has entered from the dynamic region 
to the quasi-static region. It is noteworthy that although 
the Eqs. 1 and 2 do not hold in the dynamic region, the 
W

�

2
 = 0 criterion is still the most effective approach to 

determine the jamming (unjamming) transition compared 
with other methods.

5.4  Cyclic liquefaction of a frictional system (shear 
unjamming)

Shear could not only lead an unjammed system to jam, 
but may also make an initially jammed system become 
unjammed. Figure 19 shows the stress–strain curves of two 
frictional samples subjected to constant-volume cyclic triax-
ial shearing. The samples are initially in a jammed state with 
ϕ = 0.6327 sustaining the same amount of initial mean stress 
pini= 100 kPa. They were subjected to cyclic sinusoidal load-
ing with different amplitudes of q i.e., qcyc. After a certain 
number of loading cycles following Eq. 3, both systems can 
no more maintain a stable state and flow like a liquid, which 
is characterized by abrupt drops of p to nearly zero and an 

(a) k=1.0 (b) k=2.2 

Fig. 16  Percolation analysis with different k values during constant volume monotonic shearing of a frictional system

Fig. 17  Comparison between isostatic states identified from the iso-
static coordination number-based criterion and from the second order 
work-based criterion for a frictional system subjected to constant vol-
ume monotonic shearing

Fig. 18  Comparison between isostatic states identified from the sec-
ond order work-based criterion and from the stress–strain curve for 
a frictional system subjected to constant volume monotonic shearing



 M. Xu et al.

1 3

5 Page 12 of 17

uncontrollable run-out axial deformation. As can be seen in 
Fig. 20, for both cases presented in Fig. 19, a clear jamming 
(unjamming) transition instant can also be identified for the 
k = 1.0 force network. However, the data become much more 
scattered for the k = 2.2 force network. In particular, it is 
difficult to derive an apparent jamming (unjamming) tran-
sition instant from k = 2.2 force network for qcyc = 10 kPa 
simulations. Figure 21 shows the evolution of Zm and Ziso 
as well as the second order work during the cyclic loading 
process. Zm decreases during loading and recovers during 
unloading, showing an overall decreasing trend. In contrast, 
Ziso increases during loading and decreases during unloading 
with an overall increasing trend. The two intersect at around 
the 1.6705th and 6.1656th loading cycles for qcyc = 10 kPa 
and qcyc = 5 kPa cases, respectively. A higher qcyc leads to 
a faster transition from jamming to unjamming. The sec-
ond order work increases during loading and decreases dur-
ing unloading, which suddenly drops below zero at around 
2.71th and 7.135th loading cycles for the qcyc = 10 kPa and 
qcyc = 5 kPa cases, respectively, indicating that jamming 
(unjamming) transition occurs at these instants. Again, the 
jamming (unjamming) transition states identified by the two 
approaches coincide with each other.

5.5  Monotonic shearing on a frictional system 
(shear unjamming)

As stated in Sect. 3, the second order work-based criterion 
fails to identify the jamming (unjamming) transition point 
in some cases when failure happens progressively. Such an 
example is given below. Figure 22 gives the stress–strain 
curve during constant-volume static shearing of an initially 
jammed frictional system (GV). The mean effective stress 

p decreases with the increase of axial strain but the devia-
toric stress q increases at the initial state and then starts to 
decrease when the axial strain �a exceeds 1.718%, showing 
a typical static liquefaction phenomenon. As can be seen 
from Fig. 23, a clear jamming transition point can be iden-
tified based on the k = 1.0 force network when �a reaches 
0.4807% but no transition point can be obtained when the 
k = 2.2 force network is considered. Clearly, the percolation 
analysis fails to capture the unjamming transition point. 
When the second order work-based criterion is applied in 
this example, the identified unjamming transition point is at 
�a = 0.0285% which is also different from that derived based 
on the stress–strain curve (Fig. 24). However, when the 
coordination number-based criterion is used, the identified 
unjamming transition point is consistent with that derived 
by the stress–strain curve (Fig. 25).

5.6  Discussion

Table 3 lists the jamming (unjamming) transition state 
identified based on different approaches for different load-
ing scenarios. The C*= 6 criterion can be considered as a 
special case of the Zm = Ziso criterion, where Ziso = 6. The 
well-recognized Zm= Ziso criterion fails to predict the shear 
jamming instant. Similarly, the instant when the k = 1.0 force 
network percolates in all three directions coincides with the 
jamming (unjamming) transition point at most scenarios 
except for the monotonic shear jamming and shear unjam-
ming situation. As for energy-based approach, it can only 
predict the jamming (unjamming) transition state for the iso-
tropic compression condition. Besides, although the second 
order work-based criterion succeeds in GI- GIV, it fails to 

(a) pini=100 kPa, qcyc=10 kPa, =0.6327             (b) pini=100 kPa, qcyc=5 kPa, =0.6327 

Fig. 19  Stress–strain curves of two frictional systems subjected to constant-volume cyclic loading
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predict the monotonic shear unjamming instant. Despite the 
progressive failure case (GV), the second order work-based 
criterion seems to be a more robust approach for identifying 
jamming (unjamming) transition, which yields results identi-
cal to that inferred from the nil stress condition.

6  Conclusion

This paper conducted a critical appraisal on the effective-
ness of different approaches in identifying the jamming 
(unjamming) transition behavior of granular medium by 
performing DEM simulations on both frictionless and fric-
tional systems subject to different types of loading protocols 
that represented isotropic jamming (unjamming) transition, 

shear jammed and shear unjammed phenomena. A new sec-
ond order work-based approach following Hill’s condition 
of initiation of instability was proposed as an alternative. 
The jamming (unjamming) transition states identified using 
different approaches were compared and the limitations of 
different approaches were discussed. It was found that the 
isostatic coordination number-based approach is applicable 
to various scenarios except for the shear jamming (unjam-
ming) condition given that a correct isostatic coordina-
tion number can be derived. Similarly, when the f ≥ favg 
force network is examined the percolation analysis-based 
approach is effective for most loading protocols but fails to 
predict the correct jamming (unjamming) transition point for 
shear jamming and shear unjamming scenarios. Compared 
with the existing methods, the newly proposed second order 

(a) k=1.0, qcyc=10 kPa (b) k=2.2, qcyc=10 kPa

(c) k=1.0, qcyc=5 kPa (d) k=2.2, qcyc=5 kPa

Fig. 20  Percolation analysis with different k values during constant volume cyclic loading of frictional systems (pini= 100 kPa, � = 0.6327)
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work-based approach is robust. Since it has been proved that 
the evolution trend of micro-scale and macro-scale second-
order works are identical, the current study indicates that 
the second-order work approach is reliable when the micro-
scale information is inaccessible. Therefore, it can be used 
to quantify the jamming diagram and analyze the jamming 
(unjamming) transition behavior of real materials other than 
the ideal photo-elastic materials.

It should also be noted that the instability underlined by 
the zero second-order work in soil mechanics is not always 
coincident with the unjamming state in physics. Nonethe-
less, the current study found that the Hill’s criterion did 
coincide with the jamming transition instants for isotropic 
compression, shear jamming and cyclic shear unjamming 
when liquefaction occurs instantaneously. However, it 
should be acknowledged that the Hill’s condition fails to 
interpret a correct jamming (unjamming) transition instant 
when there is a marginal duration for the granular materials 
to evolve from instability state to flow state. Notwithstand-
ing, the Hill’s condition is more robust in comparison with 
existing approaches. It should also be acknowledged that in 
reality the stress paths of real materials may be more com-
plex than the ones considered in this study. The applicability 
of the proposed approach needs to be further assessed in 
the future.

(a) qcyc=10 kPa (b) qcyc=5 kPa 

Fig. 21  Comparison between jamming (unjamming) transition states identified from the isostatic coordination number-based criterion and from 
the second order work-based criterion for frictional systems subjected to constant volume cyclic shearing (pini= 100 kPa, � = 0.6327)

Fig. 22  Stress strain curves during constant volume monotonic shear-
ing for a frictional system
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(a) k=1.0                                          (b) k=2.2 

Fig. 23  Percolation analysis with different k values during constant volume monotonic shearing of a frictional system

Fig. 24  Comparison between isostatic states identified from the sec-
ond order work-based criterion and from the stress–strain curve for 
a frictional system subjected to constant volume monotonic shearing

Fig. 25  Comparison between isostatic states identified from the coor-
dination number-based criterion and from the stress–strain curve for 
a frictional system subjected to constant volume monotonic shearing
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