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Abstract
The properties of confined granular flows are studied through discrete numerical simulations. Two types of flows with dif-
ferent boundaries are compared: (i) gravity-driven flows topped with a free surface and over a base where erosion balances 
accretion (ii) shear-driven flows with a constant pressure applied at their top and a bumpy bottom moving at constant velocity. 
In both cases we observe shear localization over or/and under a creep zone. We show that, although the different boundaries 
induce different flow properties (e.g. shear localization of transverse velocity profiles), the two types of flow share common 
properties like (i) a power law relation between the granular temperature and the shear rate (whose exponent varies from 
1 for dense flows to 2 for dilute flows) and (ii) a weakening of friction at the sidewalls which gradually decreases with the 
depth within the flow.

Keywords  Granular flows · Confinement · Shear localization

1  Introduction

A lot of examples of confined granular flows can be found 
both in nature and in industry, from geophysical flows con-
fined by a canyon to grain transport in channels.

Such types of flows are complex systems because confine-
ment (e.g. top, bottom or sidewalls) may induce correlations 
as well as non-local effects that possibly have an influence 
over long distances [1]. Also, confined granular flows are 
likely to develop zones without shear and, consequently, 
they can experience erosion and accretion [2], which are 
still the subject of active research [3–6]. Therefore they are 
good systems to test theories dealing with both a solid and 
a fluid granular phases and how to handle the correspond-
ing phase transition [7, 8]. Also, if one of the ultimate goal 

of the physics of granular materials is to obtain a full 3D 
rheological model capturing the behaviour of granular flows, 
this model has to be fed by boundary conditions at sidewalls 
(velocity, granular temperature...). Studying confined flows, 
experimentally and/or numerically, can help to reach this 
goal by providing the aforementioned conditions.

Recently, we have studied steady and fully developed 
(SFD) granular flows in two confined geometries: a later-
ally confined chute flow [2, 9–13] and a constant-pressure 
confined shear cell for which shear is imposed by a moving 
bumpy bottom [14, 15]. In the remainder of the paper we 
will refer to these two types of flows as gravity-driven flows 
and shear-driven flows respectively. As it will be shown 
below, each type of flow displays several zones in which the 
behaviour is specific.

These two geometries have in common the presence of 
confinement, but they also have important differences like 
the presence or absence of a free surface and the type of 
driving force which can be either volumetric –for the for-
mer– of induced by a wall –for the latter–.

In this paper, by using Discrete Element Method simula-
tions (DEM), we will compare the results obtained in the 
two aforementioned geometries and discuss the differences 
and the similarities.

The outline of the paper is the following. In Sect. 2 we 
will first describe the two geometries that have been used. 
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Then, in Sect. 3 we will focus on the flow velocity and the 
shear localization. Section 4 is devoted to the study of granu-
lar temperature, quantity that is very sensitive to non-local 
effects [16]. Sidewall friction and its relation with sliding 
velocity are discussed in Sect. 5. Finally, we will conclude 
and discuss some perspectives of the presented work.

2 � Geometries

In this section we will describe the two configurations 
used in this work to simulate confined flows of spherical 
grains: (i) a chute flow confined between sidewalls leading 
to gravity-driven flows and (ii) a confined shear cell lead-
ing to shear-induced flows. As it will be explained below, 
in both geometries flow is confined between two sidewalls 
but they differ by the way flow is driven as well as by their 
boundary conditions at the top of flow (free surface and a 
bumpy bottom submitted to a constant pressure respectively) 
and at the bottom (bumpy static bottom and moving static 
bottom respectively). The latter configuration leads to sys-
tems which are dense everywhere (see Sect. 2.2). This is not 
the case for gravity-driven flows that are topped by a very 
dilute region. Also the behaviour of dense flows is weakly 
dependant on the elastic properties of grains [17]. For this 
reason, and to save computation time, the grains involved in 
shear-driven flows are perfectly inelastic (i.e. their restitu-
tion coefficient is zero). We also used the Contact-Dynamics 
method [18] which handles easily purely inelastic grains. 
In contrast, for gravity-driven flows, low volume fractions 
are achieved, thus we have used a grain restitution close to 
that used in experiments [19, 20] and soft-sphere molecular 
dynamics method. Note however that the effect of the coef-
ficient of restitution is weak and only measurable close to the 
free surface of the flow in the dilute region. It should also be 
pointed out that the height of the granular system does not 
play a significant role as long as it is large enough to observe 
the creeping region. In both geometries, if it is too small, the 
system is sheared along its whole depth.

2.1 � Laterally confined chute flow

The geometry described in the present section aims to 
model so-called sidewall stabilized heaps (SSH) [2, 9, 10, 
19] which are characterized by the presence of a steep heap 
beneath a flowing layer. It consists in an inclined 3D cell 
(see Fig. 1) similar to those used in [2, 9, 10, 20–23]. The 
angle between the horizontal and the main flow direction 
(x-direction) is called � . It has been shown that, in such type 
of geometries, the angle of the flow is linked to the flow rate 
as long as there are enough grains in the system to ensure the 
presence of a creep zone above which a flow occurs [10, 20]. 
Also such types of flows are influenced by the confinement 

even at very large widths [1]. The size of the cell in the 
x-direction is set to LX ≈ 25d with periodic boundary condi-
tions in this direction. In the z-direction (i.e. normal to the 
free surface of the flow) the size of the cell is set to large 
values and thus considered as infinite. In the y-direction, the 
flow is confined by two flat frictional sidewalls located at 
positions y = −W∕2 and y = W∕2 with W = 10d . The bot-
tom of the cell is made bumpy by pouring under gravity � a 
large number of grains in the cell and by gluing those that 
are in contact with the plane z = 0 and removing the others.

For confined chute flow simulations, we use soft-sphere 
molecular dynamics simulations developed internally [9, 24] 
for which N = 15, 000 grains in contact overlap slightly. The 
interactions between two grains have both a normal and a 
tangential component. The normal force, Fn , is classically 
modelled by a spring and a dashpot: Fn = kn𝛿 − 𝛾n𝛿̇ where 
kn and �n are respectively the stiffness of the spring and the 
viscosity of the dashpot, � the overlap between grains and 
𝛿̇ its derivative with respect to time. The stiffness is set to 
5.6 × 106 mg/d and we choose the value of �n such as the 
normal restitution coefficient is equal to 0.88 [20]. Note that 
the stiffness used is relatively large since a grain located at 
the bottom of simulation cell topped with a column of grains 
whose height is similar to that of the flow (i.e. between 50 
and 100 grain sizes) has a deformation roughly equal to 
10−5d , i.e. much lower than grain size. The tangential force is 

Fig. 1   Typical 3D snapshot for gravity-driven flows: W∕d = 10 and 
N = 15, 000 . The angle of the flow is � = 40◦ , the coefficient of res-
titution en is equal to 0.88, and the grain-grain and grains-sidewall 
friction coefficients (respectively �pp and �pw ) are set to 0.5. Flow is 
directed down the incline along the x-axis. Two sidewalls are parallel 
to the (xz) plane and confine the system
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modelled by a spring, Ft = ktut , where kt = 2kn∕7 . Its defor-
mation ut (i.e. the elastic tangential displacement between 
grains) is bounded to satisfy Coulomb law Ft = �Fn , where 
� is the friction coefficient which, in the remainder of the 
paper, is set to � = �pp = 0.5 for a grain-grain contact. The 
walls are treated like spheres of infinite mass and radius. The 
normal restitution coefficient of the grain-wall interaction 
is the same than that used for the grain-grain interactions. 
In contrast the value of the friction coefficient between the 
grains and the walls, �pw , will be varied to study its effect. 
To avoid any structural ordering the diameter of the grains is 
uniformly distributed between 0.8⟨d⟩ and 1.2⟨d⟩ where ⟨d⟩ is 
the average grain diameter. At the beginning of the simula-
tion the kinetic energy of the system is set to an important 
value [20] such as the SFD state obtained after a transient 
does not show any sign of the initial structure.

2.2 � Shear cell

In the shear cell geometry, simulations are performed by 
using the LMGC90 open source framework [25] which is 
based on the contact dynamics method [18]. The grains are 
characterized by an infinite stiffness and the forces between 
grains are determined through an implicit resolution of both 
the Signorini condition and the Coulomb law at contact. The 
flow configuration, sketched in Fig. 2, is made of a rectan-
gular cuboid (length Lx = 20d , width W = 10d , and variable 
height Lz ) with periodic boundary conditions along the main 
flow direction (x-direction). Two flat but frictional lateral 
sidewalls (normal to the y-direction and located at positions 
y = −W∕2 and y = W∕2 with W = 10d ) and two horizontal 
bumpy walls (at the top and bottom of flow) confine the 
system. The system is submitted to gravity � (along the 
z-direction) and the bottom wall drives the flow by moving 
at a given velocity along the x-direction. The top wall is free 
to move in the z-direction, simply according to the balance 
between its weight and the force exerted by the grains. In 
contrast, it cannot move along both the x and y directions. 
Simulations were carried out with N = 10, 000 slightly poly-
disperse spheres (uniform number distribution in the range 
0.9⟨d⟩ − 1.1⟨d⟩ ) interacting through perfectly inelastic col-
lisions and Coulomb friction ( � = �pp = 0.5 ). As mentioned 
above, the coefficient of restitution is expected to have nearly 
no influence on dense granular flows due to the presence 
of enduring contacts [17]. Consequently we have chosen 
perfectly inelastic grains to maximize dissipation and thus 
optimize computation time. Interactions of particles with the 
flat walls were also perfectly inelastic and frictional (with a 
coefficient of friction �pw ). Note that the grain size distribu-
tion is narrower than that used for gravity-driven flows. Yet, 
the results presented here are insensitive to this parameter 
as long as long range order (obtained for purely monosized 
grains) and segregation (obtained for large size distribution) 

are prevented. Similarly to what has been done for gravity-
driven flows, the initial kinetic energy is set to a very large 
value in order to obtain a SFD state without any visible sign 
of the initial structure of the packing. We carried out several 
simulations varying the following parameters: (i) the veloc-
ity of the bottom wall V, (ii) the weight of the upper wall M, 
and (iii) the particle-wall friction coefficient �pw . The first 
two parameters are made dimensionless respectively by con-
sidering a particle Froude number Ṽ = V∕

√
gd and the ratio 

between the mass of the top wall and the total mass of the 
grains, M̃ = M∕Nm , where m is the average particle mass.

3 � Velocity profiles and shear localization

3.1 � Streamwise velocity

We first focus on the shear localization in the two geom-
etries. Since (i) top boundaries (free for gravity-driven 
flows, bumpy wall submitted to a constant pressure for 
shear-driven flows), (ii) bottom boundaries and (iii) driv-
ing forces are not equivalent in the two geometries, dif-
ferences are expected. To address this point we study the 
vertical profile of the velocity in the main flow direction 
for the two geometries (see Fig. 3). Since we focus on 
steady and fully developed flows, the velocity is averaged 

Fig. 2   Typical 3D snapshot for shear-driven flows. N = 10, 000 
grains flowing in a shear cell made of a bumpy bottom, an bumpy 
top and two sidewalls (length Lz , length Lx ) separated by a gap 
W∕d = 10 . The shear is ensured by the bumpy bottom which moves 
at a constant velocity V along the x-direction. The top of flow is a 
bumpy horizontal wall submitted to a force M�
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over time and along the x-direction. Also, unless specified 
(e.g. for the study of the transverse variations in Sect. 3.2), 
we average over the y-direction. In agreement with previ-
ous studies dealing with gravity-driven flows [9, 26–28] 
several zones can be defined from the velocity profiles 
(see Fig. 3a). First, a very dilute gazeous zone (zone A) 

located atop of the flow. Below zone A is the flow zone 
(zone B) which is characterized by an almost linear veloc-
ity profile. To determine its location, we fit linearly the 
corresponding part of the velocity profile. The upper loca-
tion for which the velocity profile differs significantly from 
linearity corresponds to the upper limit of zone B (and 
thus to the lower limit of zone A). The depth at which 
the linear fit intercepts the vertical axis corresponds to 
the lower limit of the flow zone. Then, below zone B and 
above the bottom of the system, we define a buffer zone 
(zone C) atop a creep zone (zone D) [9]. In the literature, 
it has been shown experimentally that the velocity profile 
in the creep zone exponentially decreases with depth over 
several decades [26, 27].

In the chute flow geometry, the flow is always localized 
at the top whatever the angle � (Fig. 3a) and the sidewall 
friction coefficient (inset of Fig. 3a). This result is expected 
due to the presence of a free surface. Note that, interestingly, 
flow is localized as long as the sidewall friction coefficient is 
not zero. In this case, the system flows over its whole height 
and the creep zone does not exist anymore (inset of Fig. 3a). 
Of course, flow angles lower than those obtained with fric-
tional sidewalls are required to obtain SFD flows. If we focus 
on the size of the flow zone (zone B), we can observe that it 
increases with increasing flow angle and decreasing grain-
sidewall friction coefficient. The same is observed for the 
velocity at a given depth. Discussion on the scaling of the 
velocity with the flow angle can be found in [20].

In the case of shear-driven flows, the situation is differ-
ent. First, it should be pointed out that, for given M̃ and �pw , 
once rescaled by the velocity of the bottom wall, the veloc-
ity profiles collapse on a single master curve at least for the 
studied range [15]. For the range of parameters investigated 
so far three regimes are observed: (i) for high M̃ and/or high 
grain-wall friction coefficient ( �pw ), shear is localized at the 
bottom; (ii) for low M̃ and low �pw , shear is localized near 
the top; and (iii) for low M̃ and intermediate �pw , a central 
plug zone can form with two shear zones near the bumpy 
walls. It should be pointed out that in the third case, the 
shear zone at the top is very small (a few grain size) and can 
probably be interpreted as an apparent slip between the parti-
cles and the top wall. Note also that, in shear zones, velocity 
profiles are characterized by an exponential variation whose 
characteristic length is mainly a function of �pw and M̃ [14]. 
The possibility for the shear to be localized at different loca-
tions within the system was recently reported for a different 
flow configuration [29, 30]. We have explained this shear 
localization by an effective bulk friction heterogeneity [15]. 
In the remainder of the paper we will mainly focus on the 
case for which the shear is localized in the vicinity of the 
bottom, i.e. with a shear zone close to the bottom topped by 
a creep zone. These two zones will be refereed as zone E and 
zone F respectively.

(a)

(b)

Fig. 3   For gravity-driven flows, the vertical profiles of the stream-
wise velocity show that flow is always localized in the vicinity of the 
free surface whatever the flow angle (a) and the friction coefficient 
between grains and sidewalls (inset of (a)). In absence of friction 
between sidewalls and grains, the systems flows over its whole height. 
In contrast, for shear-driven flows (b), the same profiles demonstrate 
that in case of large gain-sidewall friction coefficient ( �pw ), shear is 
localized at the bottom of the cell (i.e. close to the moving bottom). 
In contrast, for low values of �pw shear is observed in the vicinity of 
the top of the cell and the rest of the profile is plug-like
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The question of the boundary between the different 
zones in gravity-driven flows and the shear and creep zones 
in shear-driven flows (i.e. zone E and zone F) is far from 
being settled. To define a clear boundary between the afore-
mentioned zones, we have reported in Fig. 4 the streamwise 
velocities on a semilog scale for both geometries (gravity-
driven flows in Fig. 4a and shear-driven flows in Fig. 4b). In 
agreement with the literature [9, 14, 15, 26, 27], the velocity 
profile in the creep zones (zones D and F) is exponential for 

both geometries. The values of the corresponding character-
istic depths are of the order of a few grain sizes in the case of 
gravity-driven flows and of the order of a few tens of grain 
sizes for shear-driven flows.

The effect of the sidewall-grain friction coefficient on the 
characteristic length of the velocity profile in the creep zone 
(zone D) is weak in the case of gravity-driven flows (inset of 
Fig. 4a). For shear-driven flows, its effect is more important 
(Fig. 4b) and, for a given M̃ , the characteristic length of the 
creeping velocity increases with decreasing �pw . These dif-
ferences suggest that the nature of the creep zone in gravity-
driven flows (zone D) is different from that in shear-driven 
flows (zone F).

As mentioned above, in the case of shear-driven flows 
and shear localization at the bottom of the cell, the velocity 
profile in the shear zone (zone E) is also exponential. Yet, 
the characteristic length is significantly smaller than that in 
the creep zone: a few grains sizes i.e. the same order of mag-
nitude than that of the creep zone for gravity-driven flows. 
On each velocity profile (still for shear-driven flows with 
flow localization close to the bottom of the cell) the differ-
ence between the two exponentials is clearly visible and the 
corresponding transition can be used to define the interface 
between the shear zone and the creep zone.

For gravity driven-flows the buffer zone (zone C) spans 
from the the depth at which the velocity profile significantly 
differs from the exponential behaviour to the depth at which 
the flow zone (zone B) starts [9]. The size of the buffer zone 
increases with the angle of the flow. The exact locations of 
the boundaries between the different zones might appear 
to be arbitrary [20] and a careful investigation of the grain 
properties in the vicinity of the interface between zones is 
probably necessary to quantify them more precisely.

The different zones defined for gravity-driven flows in the 
present section (i.e. zones A, B, C and D) are sketched in 
Fig. 5a and in Fig. 5b on a semilog scale. The same is done 
for shear-induced flows and zones E –shear zone– and F 
–creep zone–(Fig. 5c on a lin-lin scale and Fig. 5d on a semi-
log scale). It should be pointed out here an important differ-
ence between the two geometries. For shear-driven flows, 
the upper boundary of the creep zone is defined thanks to 
the velocity profile on a semilog scale as the point sepa-
rating two exponential velocity profiles differing by their 
characteristic length. In contrast, for gravity-driven flows, 
the profile on a linear-linear scale is mandatory since flow 
zone is defined as the depth range for which the velocity 
profile is linear.

3.2 � Transverse velocity profile

In this section we focus on the influence of confinement 
on the transverse velocity profile. Sidewalls being flat, 
sliding is expected in their vicinity and, consequently, a 

(a)

(b)

Fig. 4   Both gravity-driven flows (a) and shear driven flows (b) dis-
play an exponential velocity profile in the creep zone. Yet, the char-
acteristic lengths are significantly different (a few grains sizes for 
gravity-driven flows and a few tens of grain sizes for shear-induced 
flows). The effect of the grain-sidewall friction seems to be weaker 
for gravity-driven flows (inset of (a) for which the angle of the flow is 
� = 40◦ ) than for shear-driven flows (b)
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transverse plug flow might be observed. We have reported 
the transverse velocity profiles for the two geometries 
(gravity-driven flows in Fig. 6a and shear-driven flows in 
Fig. 6b) at several depths within the flow. The conditions 
are ( �pw = 0.5 ; � = 50◦ ) for the gravity-driven flow and 
( �pw = 0.3 ; M̃ = 0.2 ) for the shear-driven flow. Note that 
using �pw = 0.3 instead of �pw = 0.5 in former geometry 
gives similar results. It should be pointed out that the quan-
tity reported is the relative transverse velocity ( vx(z)∕⟨vx(z)⟩ , 
where ⟨vx(z)⟩ is the streamwise velocity averaged along the 
y-direction for a given depth z), consequently we are focus-
ing on transverse relative variations and not the absolute 
ones. Note that for shear-driven flows, the set of parameters 
used leads to a localization of shear at the bottom of the 
simulation cell.

For the gravity-driven flows, we observe that the varia-
tions of the relative transverse velocity are significant in the 
creep zone (up to 25% ). They decrease when approaching the 
free surface and the transverse profile tends towards a plug 
flow. It should be pointed out that this situation corresponds 
to dilute flows (volume fraction lower that 0.3) that cannot 
be achieved for shear-driven flows due to the presence of the 
bumpy wall which applies a constant confining pressure on 
the top of the granular system.

The relative variations of the transverse velocity profiles 
seem to be similar in the case of shear-driven flows. Yet, in 
contrast to gravity-driven flows, largest variations are found 

for the shear zone (i.e. z∕d = 1, 2, 5 and 10 ), those of the 
creep zone being negligible. This suggests that the nature 
of the creep zones is different in the two geometries and, 
consequently, is strongly influenced by the boundaries. More 
precisely, the important relative variations of the velocity 
observed in the creep zone of gravity-driven flows and in 

(a) (b)

(c)
(d)

Fig. 5   Sketch of the velocity profiles for gravity-driven flows (a) and 
(b) on a semilog scale. Four zones are reported: zone A or gazeous 
layer, zone B or flow zone, zone C for buffer zone and zone D of 
creep zone. The same is reported for shear-induced flows (c) and (d) 
on a semilog scale Two zones are reported: zone E and zone F which 
correspond the shear and creep zones respectively

(a)

(b)

Fig. 6   The transverse profiles of the relative streamwise velocity (i.e. 
vx(z)∕⟨vx(z)⟩ , where ⟨vx(z)⟩ is the streamwise velocity averaged along 
the y-direction for a given depth z) at several depths within a grav-
ity-driven flow (a) show that the variations of the relative transverse 
velocity are significant in the creep zone (i.e. low z/d) and almost 
negligible at the top of the shear band (i.e. high z/d). Here the angle 
of the flow is equal to � = 50◦ and the grain-sidewall friction coef-
ficient is set to 0.5. For shear-driven flows (here M̃ = 2 and �pw = 0.3 , 
shear localization at the bottom) the opposite is observed (b): the rel-
ative transverse velocity are the most important in the shear zone (i.e. 
low z/d)
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the shear zone of shear-driven flows suggest that these two 
zones share common properties.

4 � Granular temperature

Granular temperature is a measure of the velocity fluctua-
tions of the grains. It is a key parameter in many theories 
aiming to capture granular flows behaviour ([16, 31] among 
many other). It is defined as T =

(
Txx + Tyy + Tzz

)
∕3 with 

Tij = ⟨uiuj⟩ − ⟨ui⟩⟨uj⟩ where, ui is the component along the 
i− direction of the grain velocity and ⟨…⟩ stands for average. 
Similarly to what have been done for the velocity we aver-
aged our data over time, along the x-direction and, unless 
specified, along the y− direction.

4.1 � Vertical temperature profiles

Figure 7 depicts the vertical profiles of the granular tem-
perature for gravity-driven flows (Fig. 7a) and shear-driven 
flows (Fig. 7b). For the gravity-driven flows, the temperature 
profiles continuously increase from the bottom of the sys-
tem to the end of the flow zone. This variation is somewhat 
expected since the creep zone is dissipative and thus the 
temperature increases with the distance from this zone. Con-
sequently, the grains are more and more agitated from the 
bottom of the flow zone to its top, the temperature increases 
when approaching to the free surface. As mentioned above, 
in the vicinity of the free surface, very dilute and potentially 
ballistic flows can be observed. Their study is out of the 
scope of this paper. The temperature profile in the buffer 
and creep zones is exponential but the characteristic length 
is larger for the former. Consequently the boundary between 
these two zones appears clearly on the temperature profile. 
This is different from what we have observed in the stream-
wise velocity profile for which the corresponding transition 
was smoother. Interestingly the values of the characteristic 
lengths in the creep zones of gravity-driven flows (zone D) 
is similar to that measured in the flow zones of shear-driven 
flows (zone E) (i.e. a few grains sizes). The fact that the char-
acteristic length of the exponential velocity profile of zone E 
(shear zone of a shear-induced flow) is similar to that of zone 
D (creep zone of a gravity-induced flow) strongly suggests 
that both zones are equivalent. Consequently, what we call 
the creep zone for shear-driven flows (zone F) does not exist 
in gravity-driven flows. Similarly the flow zone and, obvi-
ously, the gazeous layer observed in gravity-induced flows 
have no counterparts in the shear-induced flows.

For shear-driven flows, when the shear is localized at 
the bottom of the cell, the moving bumpy bottom is a dis-
sipative boundary probably because the grains making up 
the wall cannot move on relatively to the other. However, 
the shear induced by the wall acts as a “heat source” in 

its vicinity. For this reason, granular temperature first 
increases with z, then reaches a maximum for a depth cor-
responding to a few grain layer above the bottom wall. 
Far from the latter wall, the granular temperature profile 
reaches a constant value. When the shear is localized at 
the top of the cell, the temperature is constant (and very 
small) in the creep zone which behaves thus like a dissipa-
tive base above which the flow occurs. Consequently, in 

(a)

(b)

Fig. 7   In the gravity-driven flows (a) the temperature profiles con-
tinuously increases from the bottom of the system to the end of the 
flow zone. The creep zone is dissipative and this dissipative charac-
ter slightly depends on the friction coefficient between grains and 
sidewalls (inset of (a) for which the angle of the flow is � = 40◦ ). 
For shear-driven flows  (b), if shear is localized close to the bottom, 
a maximum of temperature is observed in its vicinity (see text). In 
contrast, when shear is localized at the top of the cell, the maximum 
of temperature is localized at the top
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the shear region, the temperature gradually increases until 
the top of the cell.

The vertical profiles of the temperature show that the 
properties of the creep zone depend on the geometry. For 
shear-driven flows, the temperature of the creep zone is 
constant whereas for gravity-driven flows it continuously 
decreases with depth. This confirms the results reported in 
Sect. 3.2. A possible explanation of these differences is the 
following: due to the presence of a confining top wall (and 
thus the absence of a free surface), which is allowed to move 
vertically, shear-driven flows may exhibit non-negligible 
solid-like fluctuations [15] even far from the location of the 
top wall. This points out the necessity of non-local model-
ling of granular flows for which boundary conditions influ-
ence the system over long distances. In contrast, for gravity-
driven flows, such solid-like fluctuations, if they exist, are 
located deep in the creep zone and are thus very weak.

Interestingly, we can observe a correspondence between 
the velocity and the temperature vertical profiles. Each zone 
identified in the velocity profile (i.e. shear, creep, plug...
and even gazeous zones) can also be easily identified in 
the temperature profiles. As an example, for shear-induced 
flows with shear localization close to bottom, the creep zone 
is defined by an exponential velocity profile between the 
bumpy bottom and a given depth. Besides, it is defined by 
a constant temperature between the top wall and the same 
given depth. Similarly, the shear zone is defined by an expo-
nential velocity profile, with a significantly lower charac-
teristic length with respect to that of the creep zone, and a 
non-constant temperature for the same depths.

4.2 � Transverse temperature

Similarly to what has been done for the streamwise veloc-
ity (see Sect. 3.2), we have reported in Fig. 8 the transverse 
profiles of the relative temperature for different depths and 
for the two geometries (gravity-driven flow in Fig. 8a and 
shear-driven flow in Fig. 8b).

The transverse profiles of the granular temperature dem-
onstrate once again the crucial effect of sidewalls on the flow 
properties. In the lowest part of the shear zone (for shear-
driven flows) and in the flow zone (for gravity-driven flows) 
this quantity is greatest at the sidewalls and lowest in the 
centre of the simulation cell. It should be pointed out that, 
for shear-driven flows, what we call lowest of the shear zone 
is probably strongly influenced by the bumpy bottom. It cor-
responds to the part of the vertical profile of the temperature 
for which the temperature increases (see Fig. 7). In contrast, 
for both systems in the creep zone, the granular temperature 
gradually rises from its minimal value at the sidewalls to a 
maximum value at the centre of the cell. The consequences 
of these results are important. Depending on the vertical 
position, sidewalls can be either a granular heat source (in 

the shear zone for shear-driven flows and in the flow zone for 
gravity-driven flows) or a sink (in the creep zone). This dem-
onstrate the complexity of stipulating a sidewall boundary 
condition on the granular temperature for theories aiming 
to capture the properties of granular flows involving both 
creep and shear/flow zones. Yet, this point is crucial since it 
has been recently shown that the temperature can be used to 
describe non-local effects [16]. It is worth noting that despite 

(a)

(b)

Fig. 8   The transverse profiles of the relative streamwise velocity 
(i.e. T(z)∕⟨T(z)⟩ , where ⟨T(z)⟩ is the temperature averaged along the 
y-direction for a given depth z) at several depths within a gravity-
driven flow show that, depending on the depth z, the sidewalls behave 
like a source or a sink of granular temperature. This is true for both 
gravity-driven (a)—here the angle of the flow is equal to � = 50◦ and 
the grain-sidewall friction coefficient is set to 0.5—and shear-driven 
(b) flows—here M̃ = 2 and �pw = 0.3 , shear localization at the bot-
tom
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the difference pointed out in Sect. 4.1 the relative transverse 
variations of the temperature are similar in the two studied 
geometries.

4.3 � Scaling with the shear rate

In the literature, it is common to try to link the granular tem-
perature with the shear rate 𝛾̇(z) = 𝜕⟨vx(z)⟩∕𝜕z [14, 32–35] 
to better understand the relation between velocity fluctua-
tions and the rheology of the system. In the framework of 
kinetic theory, the granular temperature indeed appears in 
the expression of the effective viscosity thus on that of the 
stress. It has been reported a power-law relation between 
the two quantities i.e. T ∝ 𝛾̇𝜅 with the power � ranging 
between approximately 1 in case of slow and dense flows 
and approximately 2 for fast and dilute flows. The work of 
Orpe and Khakhar [34] is particularly clear and explicit on 
that point: they show that, in the case of surface flows in a 
confined rotating drum, the exponent � increases with the 
rotation speed of the drum from � = 1 to � = 2 . For the grav-
ity driven flows (Fig. 9a), we recover the results obtained by 
Orpe and Khakhar: we have T ∝ 𝛾̇ in the creep zone (i.e. for 
low speed) and T ∝ 𝛾̇2 at the top of the flow zone (i.e. for 
important speed). In other words, we can write T ∝ 𝛾̇𝜅 with 
� varying between 1 and 2. Yet, � ≈ 2 for the whole flow 
zone. The aforementioned scalings have been obtained with 
shear-rate and temperature averaged over time and along x- 
and y-directions. Note that we have checked that they still 
hold if the data are not averaged along the y-direction but 
measured at the sidewalls.

The relation between the temperature and the shear rate 
is also valid for granular flows obtained in the shear cell 
(Fig. 9b). However, since the latter flows are slower than 
those driven by gravity, the power � is indeed close to 1 for 
the slowest part of the shear zone but cannot reach the value 
of 2: for the fastest part of the shear zone we have measured 
� ≈ 5∕4 . This confirms that the latter zone does not cor-
respond to the flow zone (zone B) in gravity-driven flows 
but is closer to the creep zone (zone D). For low shear rates 
(i.e. in the creep zone F) T/gd is approximately constant 
consequence of the plateau of constant granular temperature 
observed in Sect. 4.1. This highlights again the importance 
of non-locality in creep flows.

5 � Sidewall friction

In preceding sections we have shown that the presence of 
frictional and flat sidewalls has a strong influence on the 
behaviour of granular flows. Yet, we focused only on the 
kinematic properties. Below we will report sidewall friction 
measurements, discuss the spatial evolution of this quantity 

within the system and the relation with the sliding velocity 
at sidewalls.

5.1 � Friction weakening

To understand confined granular flows, a key observable 
is the effective sidewall friction coefficient. It is defined as 
�� ≡ ||�w||∕||�w

yy
|| , which we compute as the magnitude 

ratio of the surface force �w ≡ �w
yx
e
x
+ �w

yz
e
z
 and normal 

stress �w
yy

 on sidewalls, e
x
 and e

z
 being unit vectors along the 

x- and z-directions, respectively.

(a)

(b)

Fig. 9   For gravity driven flows, the granular temperature, T(z) is 
linked to the shear rate 𝛾̇(z) through a power law T(z) ∝ 𝛾̇(z)𝜅 where 
� varies from 1 (dense flow) to 2 (dilute flow) (a). The latter relation 
is also valid for shear-driven flows (b) but the maximum value of � 
obtained for the fastest part of the flow is � ≈ 5∕4
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For gravity-driven flows the effective friction coefficient 
is close to microscopic particle—wall friction coefficient 
in the flow zone (Fig. 10a and its inset). This is especially 
true for low particle-wall friction coefficients, the Coulomb 
threshold Ft = �pwFn being more easily achieved in this case. 
Deeper in the flow, the effective friction weakens and tends 
towards a constant value ( ≈ 0.17 ) in the creep zone. This 
value is independent of the grain-sidewall friction coefficient 
(see the inset of Fig. 10a). In the creep zone, the Coulomb 
threshold is far from being reached and the corresponding 
ratios tangential force to normal force remains below �pw . 
For shear-driven flows the evolution of the effective friction 
is strongly related to velocity profiles. If shear is localized at 
the top of the cell, far from the shear band, grains move as a 
plug in the x-direction with velocity V and all the grains in 
contact with sidewalls slip. Thus, the effective coefficient of 
friction in the plug zone is equal to �pw . In the shear zone, 
stick-slip events may emerge and a friction lower than �pw 
is observed.

As mentioned above, for both geometries, the effective 
sidewall friction weakens in the creep zone (see Fig. 10) 
where the friction also has a component along the vertical 
direction (see [9, 14]). Note also that this peculiar behaviour 
has been recently observed experimentally [15] for shear-
driven flows. This friction weakening can be explained by 
the fact that, reasonably, stick-slip events become more and 
more probable when we approach the creep zone. Then, 
significant slip events become less frequent deeper in the 
creep zone, thereby increasing the time during which grains 
describe a random oscillatory motion with zero mean dis-
placement [9]. The latter behaviour contributes negligibly 
to the mean resultant wall friction force. This result dem-
onstrates that boundary conditions for dense granular flows 
must support the possibility of non-constant effective fric-
tion coefficient between sidewalls and the system. Note also 
that Yang et al. [36] derived a model describing how the 
weakening of �� can be related to the ratio between rotation-
induced velocity and sliding velocity.

5.2 � Sliding at sidewalls

Theories aiming to describe granular flows require boundary 
conditions. For that purpose several authors have used the 
ratio vx∕

√
Txx in kinetic theories [37, 38] or extended kinetic 

theories [31, 39]. Also, since it has been recently shown that 
the granular fluidity (i.e. the ratio of the pressure to the effec-
tive viscosity) scales with the square root of the granular 
temperature a connection also exists with the nonlocal theo-
ries recently developed [16, 40–42]. Moreover, for these 
theories, the question of the boundary conditions to be used 
is still open. To test these approaches we have reported 
(Fig. 11) for the two configurations the evolution of the 
rescaled effective sidewall friction in the x-direction (i.e.  

(a)

(b)

Fig. 10   The effective friction coefficient on sidewalls, �� , is strongly 
influenced by confinement. For gravity driven flows with an angle 
of the flow � = 40◦ (a), in the vicinity of the free surface, it is close 
to the grain-sidewall friction coefficient, �pw , especially for low val-
ues of the latter. Then, it weakens and, in the creep zone, reaches a 
constant value �� ≈ 0.17 which is independent of the grain-sidewall 
friction coefficient (inset of (a)). For shear-driven flows  (b), when 
the shear is localized at the top of the cell, �� ≈ �pw in the plug-flow 
region and then decrease in the shear band. When shear is localized at 
the bottom of the cell, �� approaches �pw at the end of the shear zone 
(i.e. close to the bottom) and then decreases. In both types of flows a 
significant increase can be observed in the middle of the creep zone
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� = (��,x − �†
�,x
)∕(�pw − �†

�,x
) where ��,x =

|||
|||�

w
yx

|||
|||∕
|||
|||�

w
yy

|||
||| 

and �†
�,x

= ��,x for vx,w∕
√
Txx,w tends towards zero) with the 

following ratio : vx,w∕
√
Txx,w , for which the subscript w 

stands for quantities at sidewalls. Note that for shear-induced 
flows, �†

�,x
≈ 0 and �  can be approximated by ��,x∕�pw . In 

both systems (gravity-driven and shear-driven flows) the 
scaling performs globally well on several orders of magni-
tude. The two master curves obtained are similar: �� 
increases with vx,w∕

√
Txx,w  and a plateau is potentially 

reached when friction is fully mobilized ( �� = �pw ) for high 
values of vx,w∕

√
Txx,w . Yet the variations of ��,w at low val-

ues of vx,w∕
√
Txx,w show that the shape of the master curve 

is clearly geometry-dependent. Sidewall friction coefficient 
indeed tends towards zero at low vx,w∕

√
Txx,w for shear-

driven flows (when shear is localized at the bottom) whereas 
for gravity-driven flows, it reaches a plateau whose value is 
not zero. A striking point should be pointed out. The 
reported curves have an S-shape, indicating that a strong 
increase of ��,x∕�pw is observed for a relatively small varia-
tion of vx,w∕

√
Txx,w . This indicates an important correlation 

between vx,w and 
√
Txx,w during the aforementioned increase. 

It should also be pointed out that some deviations from the 
master curve are observed. In particular the sidewall friction 
coefficient seems to have a visible effect. Also, for shear-
driven flows, slight variations are observed due to the nature 
of the regime (i.e. shear localized at the bottom, at the top 
or both at the bottom and the top of the cell).

This strongly suggests that velocity fluctuations play an 
important role for the boundary conditions and should be a 
key parameter in theoretical description of granular flows. 
This point is consistent with the recent observation that “flu-
idity” and granular temperature are strongly linked [16].

6 � Conclusion

We have studied the properties of two types of confined 
flows. The first case is a flow on a bumpy bottom driven 
by gravity and confined between two flat but frictional 
sidewalls. The second case corresponds to a flow con-
fined between not only two flat and frictional sidewalls 
but also between a bumpy top and a bumpy bottom. It 
is driven by shear induced by the bottom wall moving at 
constant velocity. In addition to the driving of the flow, 
these two situations differ by their boundary conditions 
at their top (i.e. respectively a free surface condition and 
a constant pressure condition) and bottom (respectively 
zero velocity and constant velocity). As a consequence 
the former geometry leads to much looser flows than the 
latter. We have identified in each type of flow different 
zones: gazeous, flow, buffer and creep zones for gravity-
driven flows and shear and creep zones for shear-driven 

(a)

(b)

Fig. 11   The rescaled effective wall friction coefficient in the main 
flow direction, � , is linked to the dimensionless slip parameter 
vx,w∕

√
Txx,w for gravity-driven flows (a) and shear-induced flows 

(b). For gravity-driven flows, since effective friction does not tend 
towards zero when approaching the bottom of the flow, the rescaled 
effective wall friction coefficient is � = (��,x − �†

�,x
)∕(�pw − �†

�,x
) 

where �†
�,x

 is the value of ��,x when vx,w∕
√
Txx,w tends towards zero. 

For shear-induced flows the rescaled effective wall friction coefficient 
is approximated by ��,x∕�pw
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flows with shear localization at the bottom. Our results 
suggest that the shear zone of a shear-induced flow does 
not correspond to the flow zone of a gravity-driven flow 
but to its creep zone.

We have shown that in both conditions, the lateral con-
finement is of great importance. In the case of gravity-
driven flows, flow is localized at the free surface whatever 
the grain-sidewall friction coefficient as long as it has a 
finite value. The case of shear-induced flow is more com-
plex. For low grain-sidewall friction coefficient, shear is 
localized in the vicinity of the bumpy top. In contrast for 
important values of the latter coefficient, it is localized 
close to the moving bumpy bottom which drives the flow. 
Also, the relative transverse variations of the velocity are 
different. For the gravity-driven flows, in the vicinity of 
the top of the flow, the relative transverse variations of 
the velocity is weak, whereas they are close to 25% in the 
creep zone. For shear-induced flows and a shear localiza-
tion at the bottom of the simulation cell, the opposite is 
observed (low relative variations in the creep zone, impor-
tant ones in the shear zone). Also, the vertical profile of 
the granular temperature in the shear cell shows a plateau 
which could be induced by the bumpy top wall. This sug-
gests the presence of long range effects in granular flows 
and demonstrates the necessity to introduce non-local 
effects in their theoretical description.

The two systems share common properties. First, in 
both cases, the transverse profiles of the granular tem-
perature show that sidewall could be either a granular heat 
source or a sink. This demonstrates the difficulty to write a 
simple boundary condition at sidewalls for granular tem-
perature. Second, in both cases the scaling of the granular 
temperature with shear is similar confirming that the latter 
relation can be used to quantify the rheology of the sys-
tem. Finally, in both cases, sidewall effective friction (i) 
weakens in the creep zone, consequence of the intermittent 
motion of the grains [9, 14] and (ii) seems to be linked to 
a slip parameter defined as vx,w∕

√
Txx,w.

Our results demonstrate the importance of studying 
boundaries in granular flows and shed light on the complex-
ity of such a study. They also suggest that a full three-dimen-
sional rheological description of a granular flow is required. 
Yet, the studied geometries, by the complexity of the flows 
they produce and by the importance of the boundaries, are 
well adapted for testing granular rheologies numerically and 
studying boundary conditions. In particular, the presence of 
boundaries highlights the importance of non-local effects on 
flow behaviour [40–43] our systems are thus relevant to test 
the theories taking into account the latter effects.
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