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Abstract
It is well known that heterogeneous granular flows exhibit collisional, dense and creep regimes that can coexist in space. 
How to correctly predict and control such complex phenomena has many applications in both mitigation of natural hazards 
and optimization of industrial processes. However, it still remains a challenge to establish a predictive granular rheology 
model due to the lack of understanding of the internal structure variation across different regimes and its interaction with 
the boundary. In this work, we use DEM simulations to investigate the internal structure of heterogeneous granular flow 
developed at the center of rotating drum systems. By systematically varying the side wall conditions, we are able to gener-
ate various heterogeneous flow fields under different levels of boundary effects. Our extensive simulation results reveal a 
highly relevant micro-structural quantity �� = |�c − �f | , where �c and �f  are the preferred direction of inter-particle contacts 
and the preferred direction of inter-particle force transmissions, respectively. We show that �� can characterize the internal 
structure of granular flow in collisional, dense and creep regimes, and its variation can identify the transition between them. 
In particular, in dense and collisional regimes, the classical rheological relation between bulk friction � and inertia number 
I holds, while in the creep regime, such relation breaks down and � instead depends on �� . Our findings hold for all investi-
gated flow fields regardless of the level of boundary effect imposed, and regardless of the amount of shear experienced. �� 
thus provides a unified micro-structural characterization for heterogeneous granular flow in different regimes, and lays the 
foundation of establishing microstructure-informed granular rheology models.
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1 Introduction

Granular materials, collections of solid frictional grains with 
size greater than one micrometer, are ubiquitous on earth. 
The existence of static friction, negligible thermal effect and 
inelastic particle collision lead to their distinct ability of 
behaving like solids, liquids or gases [1]. In particular, when 
behaving like liquids, it has been observed that, both experi-
mentally and numerically in various geometries [2–6], they 
often depart from homogeneous flow and exhibit co-existing 
regimes [7] that range from collisional to dense to creep 
flow. How to model and further control such feature of co-
existing regimes has been of major research interest over the 
past decades because it would benefit not only the mitigation 

of natural hazards such as snow avalanches, but the optimi-
zation of industrial processes such as silo discharge.

Based on the seminal �(I) constitutive relation [8–10], 
and the observations of granular cluster formation [5, 
11–14], several models have been proposed that could cap-
ture experimental observations by incorporating the concept 
of spatial correlation (giving rise to the so-called “non-local” 
rheology models) [15–17]. Here � = �∕P is the bulk friction 
with � the shear stress and P the pressure; I = �̇� d̄

√
𝜌s∕P is 

called the inertial number with �̇� the shear rate, d̄ the (mean) 
particle diameter and �s the material density (see [9, 10] for 
details). Despite these theoretical advances, however, non-
local effects are furnished into the �(I) rheology by invok-
ing phenomenological arguments that are still under debate 
[18–20]. The challenge lies in resolving the following three 
issues. First, in order to be valid, these models require sta-
tionary flow to further become steady (large amount of shear 
deformation), excluding their applicability to geometries 
containing flowing layers that are only stationary [21], such 
as creep flow in a rotation drum [22], in a silo [6] or over 
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a heap [3, 23]. Second, the effects of boundary conditions 
on non-local phenomena are poorly understood—non-local 
phenomena can happen either with or without the presence 
of boundaries. For example, in “Kolmogorov flow” non-
local phenomena manifest with periodic boundary condi-
tions [20], while in planar shear flow [24] without stress 
gradient, non-local phenomena [25] can be triggered by the 
presence of rigid side walls. Lastly, it still remains unclear 
when and where non-local phenomena become significant. 
Resolving these three issues requires a fundamental under-
standing of (1) the internal structure variation of granular 
flow in collisional, dense and creep regimes, and (2) the 
dependence of internal structure variation on the amount of 
shear experienced and on boundary conditions. Only with 
such an understanding can we move forward to investigate 
the physical mechanism of non-locality, and eventually 
establish granular rheology models with a unified underly-
ing mechanism.

To achieve such an understanding on the internal struc-
ture variation and its dependence on the amount of shear 
experienced and on boundary conditions, one will need 
to carefully choose a geometry that satisfies the following 
three requirements: (1) it should develop flow residing in 
all three regimes allowing non-local phenomena to arise at 
certain locations, (2) in the creep regime it should produce 
flow to be either just stationary or further steady, and (3) 
it should allow flexible control over boundary effects [26, 
27]. In light of this we choose to investigate 3D flow devel-
oped at the center of rotating drums with large enough radius 
( D∕d̄ > 100 [28]): we can produce spatially heterogeneous 
flow with stationary and steady creep flow layers coexisting 
in space, and further we can adjust the levels of imposed 
boundary effects by systematically varying the drum con-
figurations (drum width and side wall friction). In particu-
lar, heterogeneous flow free of boundary effect is achievable 
numerically by using periodic side walls. In this work we for 
now focus our attention on nearly mono-disperse, (quasi)
spherical and rigid particles: we first perform experimental 
measurements on the dynamics of glass beads flowing in a 
rotating drum, we then use these measurements to calibrate 
and validate our DEM model, and we lastly use this DEM 
model to probe various flow fields, by both changing the 
rotating speeds and the drum configurations. Despite hav-
ing only studied one geometry, the obtained flow fields are 
general enough to be comparable to those produced under 
other geometries.

We propose a micro-structural quantity called 
�� = |�c − �f | , which we can define as the overall misalign-
ment between the preferred direction of contacts ( �c ) and 
the main direction of inter-particle force transmissions ( �f  ). 
We show that (1) �� naturally identifies the spatial transi-
tion between collisional, dense and creep regimes, and (2) 
� depends on �� instead of I in the creep regime where the 

one-to-one �(I) relation breaks down. These findings hold 
regardless of the studied rotating speeds and drum configu-
rations (with or without boundary effects), and hold in the 
creep regime regardless of the amount of shear experienced. 
Accordingly, our findings are not only applicable to similar 
geometries (such as heap flows [3, 23]) where shear defor-
mation can be largely absent, but relevant to other geom-
etries (such as planar flows with gravity [29]) where steady 
creep flow occurs and is believed to be triggered by steady 
state non-local effects. Our results suggest that, the misalign-
ment between �c and �f  in the creep regime can be caused by 
either (1) steady-state non-local effects or (2) lack of shear 
deformation. Further investigations to distinguish or to find 
connections between the two will be helpful in establishing 
micro-structure-informed granular rheology models.

2  Experiments

We half-fill a drum with quasi-spherical soda lime glass 
beads with density �s = 2450 kg/m3 , roundness ≥ 95% , 
and particle diameter d = 1−1.25mm . The drum has 
inner diameter D = 277mm ≃ 246d̄  and inner width 
W0 = 25mm ≃ 22d̄ , where d̄ = 1.125mm . The front-side 
of the drum is bounded by a transparent circular glass plate 
allowing for optical measurement, while the rear-side and 
inner-cylinder walls have glass beads glued to them (accord-
ingly the effective drum width is W ≃ 21d̄ ). Different rota-
tion speeds � can be imposed in the experiments, ranging 
from 0.21 to 11.23◦∕s . In this work we consider three differ-
ent rotation speeds: � = 2.59◦∕s, 5.73◦∕s and 11.23◦∕s . For 
each considered rotation speed, after 20 rotations, we take 
images via a high-speed camera (Phantom V310, fps = 1000 
with image size 288 px × 288 px) throughout a time win-
dow of 10 s , and measure the dynamical angle of repose and 
down-stream velocity near the glass plate at the center of the 
drum. For information on how these measurements are per-
formed, see “Appendix 1”. The measured dynamical angle 
of repose and down-stream velocity are used to calibrate and 
validate our numerical model.

3  Discrete‑element‑method (DEM) 
simulations

We use DEM [30] implemented in the open-source code 
LIGGGHTS [31] to perform simulations, approximating 
glass beads by spheres that interact through Hookean contact 
law with Coulomb friction. Initially we consider a drum to 
share the same dimension as the one used in the experi-
ments—the cylindrical wall and rear-side wall are made of 
spheres, and the front-side wall is treated as a flat plane, see 
Fig.  1. Assuming the diameter following a Gaussian 
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distribution d ∼ N(1.125, 0.042) , we sample spheres used as 
walls ( Nrear = 61132,Ncylinder = 20832 ), and as granular 
medium ( Np = 529272 ). We have also tried a uniform dis-
tribution from 1 to 1.25 mm, and we found the results are 
insensitive to the chosen distribution regarding the particle 
diameter range considered in our study. The diameter range 
d = 1−1.25mm is ensured by rejecting over and under-sized 
spheres. We calibrate and validate our model for flows devel-
oped at the drum center based on the aforementioned drum 
experiments (see “Appendix 1” for details). The determined 
value for each model parameter is: the normal stiffness 
kn = 2 × 105m̄g∕d̄ with m̄ the mean particle mass and g the 
gravitational constant, the tangential stiffness kt = 2∕7kn , the 
coefficient of restitution e = 0.82 [accordingly the normal 
damping 𝛾n = −2lne

√
m̄kn∕(𝜋

2 + ln2e) ], the tangential 
damping �t = 0 , and the surface friction coefficient �p = 0.4 
with a rolling friction �r = 0.03 . The friction coefficient 
between spheres and the front-side wall is also 0.4, with no 
rolling friction. The integration time step Δt = tc∕10 [32], 
where tc is the binary collision time. Since the determined 
combination of values for these model parameters may not 
be unique depending on the specific calibration-validation 
procedure [33, 34], we do not rule out the possible existence 
of other combinations.

Based on the validated model, we perform two additional 
simulations with � = 33.69◦∕s and 67.38◦∕s . Taking advan-
tage of this novel asymmetrical side wall setup (one bumpy 
one flat) [10, 35–37], in order to include more flow con-
ditions, we further consider different drum configurations, 
by either varying its width, or varying simultaneously the 
surface friction coefficient associated with the wall spheres 
and the front plane (hereafter we term both as the wall fric-
tion), with no change to the rolling friction. Specifically, 
we consider six different types of drum configurations: in 
four of them the wall friction is varied (first row in Table 1), 
while in the remaining two the effective drum width is 
varied (second and third row in Table 1). For each drum 

configuration we consider five different rotation speeds: 
� = 2.59◦∕s, 5.73◦∕s, 11.23◦∕s, 33.69◦∕s , and 67.38◦∕s . 
Accordingly we consider in total 30 different flow fields 
which have Froude number on the order of 10−5−10−2 . For 
these additionally performed simulations, even though we 
have not directly validated them against experiments, the 
simulated macro-scale flow responses are consistent with 
relevant studies. For instance, stronger side wall effect can 
lead to higher dynamical angle of repose [38, 39]. We use 
these simulation results to investigate both the macro-scale 
rheological responses and the micro-scale internal structure 
variations under different flow conditions.

For each simulation, after the flow becomes stationary, 
we output data for analysis. We choose the reference frame 
to be located at the drum center and to rotate with the drum, 
with the y (z) axis being parallel (perpendicular) to the local 
free surface (Fig. 1). Note that while the local free surface 
remains flat, the whole surface profile can show an “S-shape” 
[39], see “Appendix 2”. We consider flow at the drum center 
where the local surface remains flat for easy data extraction, 
and where the cylindrical wall effect is negligible [28] (we 
have D∕d̄ > 100 ). In particular, as briefly mentioned in the 
introduction section, flow produced at the drum center can 
be essentially free of boundary effects once we set the side 
walls to be periodic. We first create a set of grid points (red 
crosses in Fig. 1) at the drum center ( y = 0 ) that are equally-
spaced by d̄ in both the x and z directions: along the x 

Fig. 1  From left to right: simu-
lation setup in accordance with 
the drum used in the experi-
ments (front plane not shown); 
region at the drum center 
for data extraction; (weakly) 
poly-disperse spheres with 
their computed radical Voronoi 
diagram that is used to compute 
the volume fraction �

Table 1  Considered drum configurations in our simulations

For the periodic case, the cylindrical wall friction remains 0.4. 
Every configuration operates under five different rotation speeds 
� = 2.59◦∕s, 5.73◦∕s, 11.23◦∕s, 33.69◦∕s and 67.38◦∕s

W
0
 (mm) W∕d̄ Wall friction

25 21 0.2, 0.4, 0.6, 0.8
24 ∞ – (periodic)
12 10 0.4
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direction, they span from x = −8d̄ to x = 9d̄ ( W∕d̄ ≃ 21 ) and 
from x = −3d̄ to x = 4d̄ ( W∕d̄ ≃ 10 ); along the z direction 
they cover a depth down to 100d̄ . We then consider a box 
( Ly = 20d̄, Lx = Lz = 2d̄ ) centered at y = 0 , aligned with the 
y direction, surrounding each grid point to extract data. 
Some relevant fields are (1) the velocity vi , (2) the shear rate 
�̇�ij = (vi,j + vj,i)∕2 (neglecting �yvi ), together with the devia-
toric part �̇�d

ij
= �̇�ij − �̇�kk𝛿ij∕3 and |�̇�d| =

√
2�̇�d

ij
�̇�d
ij

 , (3) the 
Cauchy stress �ij =

∑
c f

c
i
�
c
j
∕V  [40] together with 

P = −�kk∕3, sij = �ij + P�ij and � =
√

sijsij∕2 , where V is the 
volume of every box and the summation is taken over all the 
contacts c with contact force f c and branch vector �c con-
necting the centroids of contacting particles, and (4) the 
volume fraction � by computing the radical Voronoi diagram 
using the open-source code Voro++ [41]. We confirm that 
(1) these quantities are insensitive to grid translation (either 
y = −5d or y = 5d ), box size ( Lx = Lz = d̄ or 3d̄ ) and grid 
spacing ( 50% or no overlap between boxes), (2) kinematical 
contribution to the stress tensor is negligible [9, 22, 25, 29] 
and (3) results computed using either �̇� or �̇�d are essentially 
identical and we use �̇�d throughout. Note that the values of 
all fields mentioned hereafter are the temporal average of 
instantaneous ones computed via spatial coarse-graining 
within each box. Lastly, hereafter in all figures, quantities 
are shown as drum-width-averaged values, with error bars 
representing the variation across drum width.

4  Simulation results and discussions

4.1  Rheological response

We first perform macroscopic observations following the 
�(I) rheology [9, 10]: Fig. 2a, b show, respectively, the � − I 
and � − I relationships. The one-to-one relation between � 
and I holds reasonably well, except for cases with W∕d̄ ≃ 10 , 
which can be attributed to stronger wall friction effects 
[42]. For all cases considered, the slow decrease of � as I 
increases suggests the weak compressibility of steady dense 

granular flows [10, 43]. In contrast, a one-to-one relation 
between � and I holds globally, until I decreases to a cer-
tain Ith threshold. For locations with I ≤ Ith , this one-to-one 
relation no longer holds globally but rather depends on both 
drum configuration and rotation speed. The threshold value 
of Ith varies on a case by case basis, but roughly resides in 
the range of 10−3−10−2 , as shown in Fig. 2b. As we shall 
see later, as long as I > Ith , all � − I data can actually be 
described by the � − I frictional law [9, 10]. Additionally, 
we find that more frictional walls and narrower drums, tend 
to break the typically-observed co-directionality between s 
and �̇�d (see “Appendix 2”). Hence, the rheological effect of 
side wall friction can be summarized as (1) when I > Ith , it 
leads to the break down of the co-directionality between s 
and �̇�d (this could explain the deviation of predicted veloc-
ity from experimental measurements reported in [10]), 
and (2) when I ≤ Ith , it not only intensifies the lack of co-
directionality effect, but also signifies the departure from 
the one-to-one � − I relationship. We have tried to explain 
the aforementioned observations using several existing non-
local models [17, 29, 44], but unfortunately have not had 
much success (see “Appendix 2”). Clearly, these observa-
tions necessitate a deeper fundamental understanding of the 
spatial transition marked by Ith.

4.2  Microstructures and spatial transitions

Based on our observations of the rheological response, we 
perform particle-scale investigations to characterize the 
micro-structure of the flow. In principle, we are trying to 
find certain micro-structural quantities whose variations 
against I (1) exhibit a clear transition as crossing Ith and 
identify the location zth corresponding to Ith , and (2) cor-
relate with the macro-scale rheological response: when 
I > Ith the spatial variations are free of drum configuration 
effects and rotation speed effects, while as soon as I ≤ Ith 
they become both drum-configuration-dependent and 
rotation-speed-dependent.

We propose a micro-structural quantity �� = |�c − �f | 
(see Appendix section “Additional results from micro-scale 

Fig. 2  a Effective friction � and 
b volume fraction � as a func-
tion of I 
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analysis” for additional results), where �c and �f  are, respec-
tively, the major principle direction of the “fabric” tensor ( �c ) 
and that of the “force-transmission” tensor ( � f):

where “ ⟨⋅⟩ ” denotes the average over all contacts, nc is the 
contact normal which coincides with the branch vector 
direction for contact between spheres, |f | =

√
f 2
n
+ f 2t  is the 

associated contact force magnitude with fn the normal com-
ponent and ft the tangential (frictional) component. Com-
pared to �c , � f  is a biased average in the sense that each 
contact is weighted by the magnitude of the force it carries. 
Mathematically �� has range [0, 90◦] . Physically, for dense 
particle packings, �c and �f  reflect, respectively, the geo-
metrical configuration of the packing and the direction of 
force chains. For every simulation, we find that the variation 
of �� as a function of depth follows the same trend that can 
be described with four different layers—Fig. 3 showcases 
the variation of �� against normalized depth with 
� = 33.69◦∕s under respectively, W∕d̄ = ∞ with periodic 
side wall condition (lower panel of Fig. 3a), and W∕d̄ ≃ 21 
with wall friction 0.4 (lower panel of Fig. 3b): the first layer, 
from near the free surface until a critical depth z1 , shows a 
decrease in �� . Next, a second layer that goes until a critical 
depth z2 and where �� remains constant. This is followed by 

(1)�c
ij
= ⟨nc

i
nc
j
⟩, �

f

ij
=

1

⟨�f �⟩ ⟨�f �n
c
i
nc
j
⟩,

a third layer extending to a critical depth z3 , where �� 
increases, and finally a fourth layer where �� slowly relaxes. 
As we shall show later, this spatial variation of �� can be 
used to identify different flow regimes. For depths z > z3 , 
where �� ceases to increase but instead slowly relaxes along 
depth, we find the particle motions are highly intermittent 
and therefore can not be considered as stationary. We regard 
these regions as “static” and do not attempt to model them, 
considering particle motions on the basis of the random void 
creation process [3].

Although the values of z1 and z2 differ from case to case, 
we find that z1 corresponds to the universal I ≃ 0.1 (Fig. 4a); 
z2 coincides with zth (Fig. 4b) and �� ≃ 10◦ for z1 ≤ z ≤ z2 
(Fig. 4a, b), where zth is defined as the end point of the 
widely-observed exponential velocity profile [4, 22]. (See 
the upper panel of both Fig. 3a, b where the black solid lines 
indicate exponential fit, also see Appendix section “Deter-
mination of zth based on the drum-width-averaged veloc-
ity profile” for why drum-width-averaged profiles suffice to 
determine zth.)

We first consider the regime where z ≤ z2 . The identi-
fied universal value I ≃ 0.1 [25] at z = z1 is critical since it 
signifies the transition from collisional flow ( z ≤ z1 ), where 
particles interact majorly through short-lived binary colli-
sions, to dense flow ( z1 < z ≤ z2 ), where particles interact 
mostly through percolating contact network. Specifically, we 
observe that in the dense flow region, �� remains constant 

Fig. 3  a Under W∕d̄ = ∞ with periodic side wall condition, the spa-
tial variation of �v�∕

√
gd̄ (data in red at upper panel, with black solid 

lines indicating the exponential fit), of �� (data in blue at lower panel, 
with error bars indicating its typical variation across drum width 

in both dense and creep regime), and of |�̇�d|∕2Ω (data in green at 
lower panel) against normalized depth z∕d̄ . b Same plots but under 
W∕d̄ ≃ 21 with wall friction 0.4. We define a flow thickness ( hf ) start-
ing from the free surface ( zsurf ) to the end point of dense regime ( z2)
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and small everywhere (Fig. 4c), even near the side walls 
regardless of how frictional they are, or whether they are 
bumpy or flat and how wide the drum is. In fact, the observed 
�c and �f  being nearly co-directional has also previously been 
reported in numerical studies of dense homogeneous planar 
flows [25]. Lastly, in this regime the �(I) rheology in its 
invariant form holds (Fig. 5a): we can fit the � − I relation 
by both the linear [9, 45] and the non-linear formulation 
[10], although some deviation is observed for the latter for 
I > 0.1 . On a side note, in all our simulations, within the 
collisional layer the highest inertia number value we are able 
to compute is around 0.3, beyond which, given the size of 

our homogenization box and our sampling frequency, the 
temporal average can not be properly defined since particle 
interactions are largely absent in multiple snapshots. We thus 
define the additional layer on top of the collisional layer as 
belonging to the dilute gas regime (upper panel of Fig. 3a, 
b). We note that this value 0.3 has previously been identified 
as the point to transit into “fully collisional regime”, where 
it has been shown that, the portion of floating particle (par-
ticle with no contact) in the system, goes beyond 0.6 [25]. In 
our study, we have consistent observation—looking at Fig. 
A6(a), the mean coordination number drops to nearly zero 
as approaching the dilute gas regime. Thus in the dilute gas 

Fig. 4  a Variation of �� against inertia number I for all cases from 
z ≤ z3 . b Variation of �� against depth z (normalized by zth and 
d̄ ) from z ≤ z3 . c Spatial variation (along both x and z) of �� for all 
cases under � = 33.69◦∕s ; from left to right: frictional side walls 

( W∕d̄ ≃ 10 ) with wall friction of 0.4, periodic side walls, and fric-
tional side walls ( W∕d̄ ≃ 21 ) with wall friction of respectively 0.2, 
0.4, 0.6 and 0.8
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regime (“fully collisional regime”), the �(I) rheological law 
no longer holds, and kinetic theory [46] becomes applicable.

We then consider the regime where z2 < z ≤ z3 . As soon 
as z goes beyond z2 , �� starts increasing and the � − I rela-
tionship breaks down—it turns out that Ith corresponds to 
the location z = z2 = zth , where the misalignment between 
�c and � f  begins, right at the end point of the exponential 
velocity profile. Thus, we identify this as the creep flow 
regime where � has a one-to-one relation with �� instead of 
I (Fig. 5a): � is inversely proportional to �� . From a micro-
structural perspective, and for weakly poly-disperse sphere 
packings, � can be well-approximated by adding together 
the contact anisotropy (determined from the eigenvalues of 
�c ) and the force anisotropy (determined from the eigen-
values of � f  ) [25, 47]. Meanwhile, for a given packing 
configuration, with known contact anisotropy of direc-
tion �c , the force anisotropy is maximized if �f  equals �c 
[48]: the larger the deviation of �f  from �c , the smaller the 
force anisotropy and accordingly the smaller the � . More 
importantly, we emphasize here that the dependence of 
� on �� , and the increase of �� in the creep regime hold 
regardless of the amount of shear experienced. In order to 
see this, we use the local deformation |�̇�d|∕2Ω to determine 
whether the initial memory is gone (shear deformation is 
large enough). Similar to [21], as the drum is half filled 

and the flow is stationary, we consider the shear deforma-
tion to be sufficient if |�̇�d|∕2Ω > 1 , in other words, parti-
cles have entered the surface avalanche after half a drum 
rotation period and the initial packing memory is erased 
by the fast surface flow. We have observed that for all rota-
tion speeds considered, in the creep regime, the presence 
of layers with local deformation being both greater than 
one (termed as steady creep flow layer) and less than one 
(termed as stationary creep flow layer). As an example, 
as showcased in Fig. 3a, b, under � = 33.69◦∕s for two 
different drum configurations ( W∕d̄ ≃ 21 with wall fric-
tion 0.4 and W∕d̄ = ∞ with periodic side walls), there is a 
layer (with thickness 3d̄−5d̄ ) right after entering the creep 
regime where the local deformation is larger than one. In 
these layers, �� is no longer constant, but rather increases 
with depth, and the one-to-one �(I) relation breaks down. 
Similar steady creep flow layers with large shear deforma-
tion have also been observed in other geometries such as 
annular shear flow [43] and planar shear flow with gravity 
[29], in which the break-down of the one-to-one �(I) rela-
tion is explained by steady-state non-local models. Follow-
ing these steady creep flow layers deeper into the bulk are 
the stationary creep flow layers where the local deforma-
tion |�̇�d|∕2Ω decreases to less than one. In these stationary 
creep flow layers the values of �� continue to increase 

Fig. 5  a One-to-one relation 
between � and I in collisional 
and dense regime, and that 
between � and �� in the creep 
regime. The � − I data can 
be fit by both the linear law 
(black solid line) � = �s + bI 
with �s = 0.4148 ± 0.0017 
and b = 0.8628 ± 0.0216 , 
and the non-linear law 
(black dashed line) 
� = �1 + (�2 − �1)∕(1 + I0∕I) 
with I0 = 0.279 (adapted from 
[10]), �1 = 0.4089 ± 0.0023 and 
�2 = 0.7643 ± 0.0107.Variation 
against rotation speed of b 
flowing thickness hf and (c) Ith 
at z = zth
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with depth, and the values of � keep depending on the 
values of �� . This result suggests that, the misalignment 
of force chain direction and preferred contact direction 
can be caused by either (1) steady-state non-local effect 
for steady creep flow or (2) lack of shear deformation for 
stationary creep flow. Further investigations need to be 
carried out to distinguish or find connections between the 
two. For example, it will be helpful to adopt a Lagrangian 
perspective, where we perform investigations by tracking 
the trajectory of each particle and examining its correla-
tion with the inter-particle force network.

Figure  5b, c show the variation of flow thickness 
hf = z2 − zsurface and Ith against � . We observe that the effec-
tive drum width W has a stronger effect than side wall fric-
tion in changing hf . However its influence seems to decrease 
as � increases. The value of Ith can not be determined by a 
single constant as in [44], but depends on the specific drum 
configuration and rotation speed. In general, weaker bound-
ary effect (larger effective drum width or smaller wall fric-
tion) and smaller rotating speed lead to smaller values of 
Ith , in other words, weaker boundary effect and smaller rota-
tion speed can extend the applicability of the classical �(I) 
rheological relation to flows with smaller values of I. This 
observation is supported by our results from cases with the 
effective drum width W being around 21d̄ under different 
wall friction, and being infinite under periodic side walls. 
One way to rationalize this is to consider steady state non-
local effect, where particles in the creep flow layers may be 
“agitated” by particles in the fast flowing layers near the 
free surface. The faster the particles flow in dense and col-
lisional regime, the larger the force fluctuations can they 
generate to “agitate” particles, presumably via force chains, 
in the underlying creep regime. As the presence of side wall 
friction and larger rotation speed can generate faster sur-
face flow, the transition into creep regime (where the �(I) 
relation breaks down) can happen with a larger value of Ith . 
However, for cases with W∕d̄ ≃ 10 the dependence of Ith on 
drum configuration and rotation speed becomes a bit more 
complicated. At smaller rotation speeds ( � ≤ 5.73◦∕s ) 
we have consistent observations—the values of Ith are at 
least non-decreasing with increasing rotation speeds, and 
are larger than those computed from wider drums due to 
stronger boundary effect. Whereas for larger rotation speeds 
( � ≥ 11.23◦∕s ), values of Ith start to decrease with increas-
ing rotation speeds. Further, at the highest rotation speed 
( � = 67.38◦∕s ) the value of Ith decreases to be even smaller 
than that computed from periodic side wall conditions. We 
attribute this observation to the influence of effective wall 
friction [36] which becomes more pronounced under larger 
rotation speeds, subsequently leading to a faster decay of I 
along depth than those computed from wider drums. As a 
consequence values of I can decrease for an order of mag-
nitude when crossing Ith , giving values of Ith that decrease 

with increasing rotation speeds, and giving values of Ith that 
can become smaller than those computed from wider drums.

5  Concluding remarks

We propose a micro-structural quantity called �� whose 
spatial variation characterizes the internal structure of 
granular flow in different regimes: (1) it recovers the 
universal value I ≃ 0.1 that corresponds to the transi-
tion ( z = z1 ) from collisional regime to dense regime 
[25] and, more importantly, (2) it identifies the boundary 
( z = z2 = zth ) between dense regime and creep regime with 
the value of �� governing the variation of � in the creep 
regime. The universal value I ≃ 0.1 and the both drum-
configuration-dependent and rotation-speed-dependent 
Ith are closely related to the respective underlying par-
ticle interaction mechanisms: spatially uncorrelated and 
short-lived binary collisions for I above 0.1 and spatially 
correlated and enduring contact networks for I below Ith.

These findings hold regardless of studied rotating 
speeds and drum configurations (with or without bound-
ary effects), and hold in the creep regime regardless of the 
amount of experienced shear deformation. Our findings 
are thus not only applicable to similar geometries (such 
as heap flows [3] and silo flows [6]) where shear deforma-
tion can also be largely absent in the creep regime, but 
relevant to other geometries (such as planar flows with 
gravity [29]) where steady creep flow with large enough 
shear occurs and is believed to be triggered by steady state 
non-local effects. �� thus provides a unified interpreta-
tion of the internal structure of granular flow in all three 
regimes. In particular, in the creep regime, it suggests that 
the misalignment between force chain direction and pre-
ferred contact direction can be caused by either (1) steady-
state non-local effect, or (2) lack of shear deformation. 
Further investigations to distinguish or to find connections 
between them, will be helpful in establishing microstruc-
ture-informed granular rheology models with a unified 
underlying mechanism.

In the future, we plan to extend our work to more realistic 
(and more complicated) granular materials by gradually add-
ing ingredients like shape [49–51], deformability [19, 23], 
and polydispersity [52, 53]—these new ingredients may lead 
to different interaction mechanism not only between parti-
cles, but between particles and boundaries [54].
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Appendix 1: Discrete element model 
calibration and validation

In this section we discuss how we determine the model 
parameters used in our simulations. In general, the inter-
action between rigid particles can be modeled by either 
solving a linear-complementarity problem (implicit 
dynamics, the NSCD) [55] or by penalizing the inter-
particle penetration (explicit dynamics, the classical 
DEM). Despite the different underlying principle, they 
give consistent results within the scope of rigid particle 
dynamics [56]. For the classical DEM, there are various 
inter-particle contact laws with different level of sophis-
tication. Following the discussion in [57], we choose the 
linear Hookean contact law and pick kn = 2 × 105m̄g∕d̄ 
(large enough to ensure rigid particle limit for the gravity-
driven surface f lows considered in our study) with 
kt = 2∕7kn , �t = 0 , and 𝛾n = −2lne

√
m̄kn∕(𝜋

2 + ln2e) . We 
are left to determine the coefficient of restitution e, the 
inter-particle friction �p , the particle-wall friction and 
possibly the addition of rolling friction �r.

First stage calibration via column collapse tests

We use the column collapse test to perform preliminary 
model calibration by measuring the angle of repose �r.We 
first glue glass beads to the center area of an aluminum 
sheet ( 300 × 300 mm) and the inner surface of two identi-
cal iron angle bars with height 50 mm, length 25 mm and 
width 16 mm (Fig. 6a). A typical column collapse test can 
be divided into three steps: (1) filling with glass beads the 
hollow rectangular tube formed by the two iron angle bars 
placed over the aluminum sheet center, (2) rapidly removing 
the bars, and (3) taking picture of the formed pile to measure 
�r . We repeat the procedure for 50 times and �r is measured 
to have a mean of 13.87◦ and a standard deviation of 0.576◦.

Via DEM simulations, we then perform numerical col-
umn collapse tests with the same configuration as in the 
experiments. We carry out two sets of simulations: (1) fixing 
�p = 0.4 (a common choice for glass beads) and varying e 
from 0.1 to 0.82, and (2) fixing e = 0.82 [58] and varying �p 
from 0.1 to 0.8. From (1) we find that e has negligible effect 
on �r (Fig. 6c), and from (2) that �r first increases but later 
saturates with the increase of �p (Fig. 6b). In summary the 
above results suggest the necessity to incorporate rolling 
friction �r , a parameter that imposes rotation hinderance 
[59] to model the interaction between non-spherical parti-
cles. Accordingly, we fix e = 0.82,�p = 0.4 and vary �r from 

(a)

(b)

0 0.2 0.4 0.6 0.8
5

10

15
(c)

0 0.2 0.4 0.6 0.8
5

10

15
(d)

0 0.05 0.1 0.15 0.2
8

10

12

14

16

Fig. 6  a Setup of the column collapse test, b variation of �r according to the change of �p with a fixed e = 0.82 , c variation of �r according to the 
change of e with a fixed �p = 0.4 , and c variation of �r according to the change of �r with fixed �p = 0.4, e = 0.82
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0.01 to 0.2. Figure 6d shows the variation of �r against �r . 
The numerical results indicate �r to be around 0.07 which is 
slightly larger than 0.01 in [60] where smooth glass spheres 
were used and slightly smaller than 0.1 in [61] where plastic 
spheres were used.

Second stage calibration and validation via rotating 
drum experiments

In the rotating drum experiments (Fig.  7a), after the 
surface flow becomes stationary under rotation speed 
� = 2.59◦∕s, 5.73◦∕s and 11.23◦∕s , we use a high speed 
camera positioned against the glass plate to take images 
(288 px × 288 px corresponding to a 0.1389 mm/px reso-
lution) for a time period of 10 s with a frame rate of 1000 
fps. Accordingly the images cover an area of about 4 cm 
×4 cm at the drum center (Fig. 7b). From the sequence 
of images, we measure the dynamical angle of repose �d 
and the down-stream velocity vyw(z) near the glass plate. 
In terms of the former, we first binarize each image, then 
identify the pixels that represents the slope surface, and 
lastly use the identified pixels to perform a linear fit whose 
slope gives �d (Fig. 7d); as to the latter, we first use the 
open-source Particle Image Velocimetry (PIV) code [62] 
to compute the 2D velocity field (v1, v2) by correlating 

boxes with dimension 8 px ×8 px (corresponding to 
roughly d̄ × d̄ ), we then compute the velocity field under 
the frame rotating with the drum located at the drum center 
to get (vy, vz) , lastly we compute vyw(z) by averaging vy 
within bands ( Ly = 20d̄, Lz = 2d̄ ) positioned in parallel to 
y (slope surface) over a set of points that are placed every 
d̄ distance along z (perpendicular to the slope surface) with 
y = 0 . Note that |vz| ≪ |vy| as the flow is nearly unidirec-
tional. In the simulations, we generate images located at 
exactly the same location with exactly the same size (and 
resolution) as the ones taken from experiment (Fig. 7c), 
from which we follow the same image analysis procedure 
to find �d . For vyw , under the frame rotating with the drum 
at the drum center, we first pick particles located within 2d̄ 
away from the front-side flat wall, we then compute vyw(z) 
by averaging the particle velocity following the same pro-
cedure used in the experiments. Note that the width 2d̄ is 
picked to best represent the glass beads that are captured 
by the high speed camera.

We use �d and vyw(z) measured with � = 11.23◦∕s for 
model calibration and the rest two for model validation. 
Prior to calibration, according to the column collapse test 
results, we fix �p = 0.4 , and e = 0.82 that best represents 
the property of glass beads, although the latter has neg-
ligible effect for simulating steady granular flow [57]. 
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Fig. 7  a The half-filled rotating drum with rear-side wall and inner-
cylinder wall being glued with glass beads, b an image taken by 
the high speed camera at the drum center, c an image generated by 
numerical simulation with exactly the same location and size (reso-
lution) as (b), d the binarized image of c for �d estimation, e time-
averaged �d data for three different rotating speed � estimated from 
experiments (red) and simulations (blue), f the down-stream velocity 

profile yyw(z) against the depth at the drum center calculated respec-
tively for � = 11.23◦∕s from experiment (red triangle) and simula-
tion (blue triangle), for � = 5.73◦∕s from experiment (red square) and 
simulation (blue square), and for � = 2.59◦∕s from experiment (red 
circle) and simulation (blue circle), and g the corresponding semi-log 
plot of (f). For e–g, the error bars represent the standard deviation 
associated with each time-averaged quantity
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Further, as the front-side plate is also made from glass, 
we fix the associated wall friction to be 0.4. The only left 
parameter to calibrate is the inter-particle rolling friction 
�r . Observing Fig. 6d, we vary �r to be 0, 0.03, 0.05 and 
0.07 and take the particle-wall rolling friction to be zero. 
As the front-side wall is flat, zero wall rolling friction 
is a reasonable choice. By solely using �d we identify 
that �r = 0.03 gives the best estimation ( �r = 0 under-
estimates �d while the rest two lead to overestimation). 
What’s more, when �r = 0.03 , simulation and experiment 
show excellent agreement (Fig. 7f) in terms of vyw(z) . The 
choice of �r = 0.03 is then validated (Fig. 7e–g) by com-
paring both �d and vyw(z) obtained from simulations to 
those measured from experiments under � = 2.59◦∕s and 
� = 5.73◦∕s.

Appendix 2: Additional simulation results

“S‑shape” surface profile

For a direct comparison, Fig. 8 shows the surface shape 
profile for simulations performed under respectively 
periodic boundary condition, frictional side walls with 
W∕d̄ ≃ 21 and wall friction 0.4 and that with W∕d̄ ≃ 10 
and wall friction 0.4. It can be observed that as the effec-
tive drum width is decreased from infinite (periodic 
boundaries) to W∕d̄ ≃ 21 and to W∕d̄ ≃ 21 , the “S-shape” 
profile becomes more obvious under more significant side 
wall friction effect, especially when the rotation speed is 
large such as when � = 67.38◦∕s (Fig. 8j, o) in our case.

Effect of lateral boundary condition 
on the co‑directionality between s and ̇

d

Figure 9 showcases the spatial variation of the misalign-
ment angle � for all considered drum configurations under 
� = 33.69◦∕s , where � is defined as the angle between the 
principle directions of s and those of �̇�d . It can be observed 
that the presence of frictional side wall has a great impact 
on the value of � , and the more frictional the side walls and 
the narrower the drum, the less co-directional are s and �̇�d . � 
is generally large (up to 60◦ ) near the side walls (especially 
on the bumpy side), and beneath z = zth in the creep flow 
region. The green solid line indicates locations with local 
deformation |�̇�d|∕2Ω equalling one [21] where Ω = �∕360◦ ; 
locations above this line has |�̇�d|∕2Ω > 1 while |�̇�d|∕2Ω < 1 
for locations below this line. It thus may be understood that 
the large � in the creep flow region is due to the lack of 
shear. For locations above z = zth , shear deformation is suf-
ficient, and the misalignment � can be attributed to side wall 
perturbation.

Tests of several non‑local models

• The velocity fluctuation model Based on 2D numerical 
simulation results on granular flow in annular shear cells, 
the model proposed in [44] show that an improved rela-
tion between � and I by adding the effect of velocity 
fluctuation is able to capture the failure of the one-to-
one �(I) relation in the creep flow region. The key pre-
requisite of this model is that the variation of � − I and 
that of Δ − I are both not one-to-one and are mutually 
correlated, where Δ = ��v�

√
�s∕P is called the fluctua-

tion number. However, Fig. 10a shows that for all flows 
considered, there is a global collapse between Δ and I. 

Fig. 8  Surface shape pro-
files. Images in first row from 
a–e are those under periodic 
lateral boundaries, in second 
row from f–j represents those 
under frictional side walls with 
W∕d̄ ≃ 21 , and in third row 
from k–o represents those under 
frictional side walls too but with 
W∕d̄ ≃ 10 . Wall friction is 0.4



 L. Li, J. E. Andrade 

1 3

52 Page 12 of 16

It appears that this model does not apply to the 3D flows 
considered in our study.

• The gradient expansion model In the gradient expansion 
model [17], the value of � in the � − I relation is modified 
by considering an additional contribution d̄2∇2I∕Iwhich 
is scaled by a phenomenological constant 𝜈 > 0 , assum-
ing short range correlation between particle motions in 
different locations. Physically, the laplacian term cap-
tures on average, how does the I value at a certain point 
compares to its surrounding area. For instance, if a point 
is surrounded by a more fluid-like area (higher I), the 
laplacian term is positive and leads to the decrease of � at 
that point. Since 𝜈 > 0 , essentially as long as ∇2I ≠ 0 , the 
model will report a modification on � . Figure 10b shows 

the typical drum-width-averaged I and �v�∕
√
gd̄ against 

z with the case under � = 33.69◦∕s,W∕d ≃ 21 and wall 
friction of 0.4. The variation of I against z roughly fol-
lows the same trend as that of �v�∕

√
gd̄ : it linearly decays 

in the collisional region and exponentially decays in the 
dense region. Thus in the collisional region ∇2I = 0 and 
the model reports no modification on � , which is consist-
ent with our observation. However, in the dense region, 
� will be modified according to the model since ∇2I ≠ 0

—this contradicts our computations that confirm the 
applicability of the � − I relation in the dense region. 
Again, it appears that this model does not apply to the 
3D surface flows considered in our study.

Fig. 9  Spatial variation of � 
under � = 33.69◦∕s for all 
drum configuration considered; 
from left to right: W∕d̄ ≃ 10 
with wall friction of 0.4, 
periodic boundary, W∕d̄ ≃ 21 
with wall friction of 0.2, 0.4, 
0.6 and 0.8, respectively. The 
grey solid lines indicate z = zth 
and the green ones represent 
locations with local defor-
mation |�̇�d|∕2Ω = 1 , where 
Ω = 360◦∕�
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Fig. 10  a Δ − I data for all cases considered collapse onto a sin-
gle master curve. Data are shown as the drum-with-average values 
with error bars representing the associated variation. b Variation of 
drum-width-averaged �v�∕

√
gd̄ and I against z with the case under 

� = 33.69◦∕s,W∕d ≃ 21 and wall friction of 0.4. c Relation between 
the normalized fluidity |�̇�d|d̄∕𝜇𝛿v and volume fraction � . Data are 
shown as the drum-with-average values for clarity
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• The fluidity model The fluidity model [16] implicitly 
modifies the value of � in the � − I relation by consider-
ing the nearby region contribution through the Laplacian 
of the fluidity parameter g = �̇�∕𝜇 expressed as �2∇2g , 
where � is defined as the cooperative length that diverges 
as approaching the jamming transition. Although the 
mathematical expression looks similar to that of the gra-
dient expansion model, the assumed underlying physical 
mechanism is different. g is found to obey the following 
microscopic relation [29]: �̇�dd̄∕𝜇 = 𝛿vF(𝜙) . Figure 10c 
shows how the normalized fluidity �̇�dd̄∕(𝜇𝛿v) , varies 
with volume fraction � . It can be observed for all data 
computed from W∕d̄ ≃ 21 with varying side wall fric-
tion, they collapse well onto a single curve who shape 
resembles the one identified in [29]. However, this curve 
is clearly drum-width-dependent, as when the effective 
drum width is respectively infinite (periodic boundary, 
colored in blue) and 10d̄ (colored in yellow), no collapse 
can be observed, even in the dense and collisional region 
where the �(I) rheology in its invariant form holds. 
Memory effect (insufficient shear) observed for I < Ith 
(see Fig. 9) may explain the failure of the model in the 
creep flow region; while its break down in the fast flow 
regime ( I > Ith with sufficient shear deformation) reveals 
the non-trivial effects of side wall friction that have not 
been considered in the granular fluidity model [29]—
indeed, even though investigated in 3D configuration, the 
considered flow fields have shear only in z direction as 
boundaries along both x and y direction are treated as 
periodic.

Additional results from micro‑scale analysis

The micro-structure can be investigated by three kinds of 
quantities that range from lower-order (L) to higher-order 
(H) within each kind: (1) geometry-associated ones range 
from volume fraction � (L), coordination number Z (L) to 
the angular distribution of contact orientation (H) [47, 48]; 

(2) inter-particle-force-associated ones range from normal 
(and tangential) force p.d.f. distribution (L) [47, 48] to 
their angular distributions (H) [47, 48]; and (3) kinemat-
ics-associated ones where the lower order quantity can be 
the velocity fluctuation �v [29, 44]. Inspired by [48, 63], 
we may regard av

�
= (�3 − �1)∕(�3 + �1) as the higher order 

quantity where �3(�1) is the maximum (minimum) eigen-
value of the tensor � = ⟨��v�nv

i
nv
j
⟩∕⟨��v�⟩ . Here “ ⟨⋅⟩ ” 

denotes the average over all particles and nv is the direction 
of velocity fluctuation associated with each particle. 
Accordingly av

�
 has range from 0 to 1 and reflects how 

“cooperative” the particle motions are: a value close to 1 
in the quasi-static flow region implies the formation of 
“granular eddy” [24, 64].

In principle, we are trying to find certain micro-
structural quantities whose variations against I, (R1) 
exhibit a clear transition as passing through z = zth , and 
more importantly, (R2) show consistence with that of � 
against I for rheological considerations: when I > zth they 
are free of drum configuration effect and rotation speed 
effect while they become lateral boundary dependent and 
rotation speed dependent as soon as I ≤ Ith . Many of the 
aforementioned quantities, as we discover, only satisfy 
R1, such as Z and av

�
 . Figure 11a shows the variation of 

Z against the depth z. Z varies case by cases when z ≤ zth 
and remains almost constant when z > z0 . However, on the 
contrary, the stress ratio � shows a global collapse when 
z ≤ zth but varies case by case when z > zth . av� shows a 
slightly different spatial variation (Fig. 11b): it remains 
constant when z ≤ zth in a similar way to that of �� . 
However, av

�
 seems to be boundary condition dependent 

instead. When z > zth , it rapidly increases independently 
with respect to the boundary condition and rotation speed, 
which is inconsistent with the variation of � either. Fol-
lowing the momentum transferring argument, we have also 
investigated the portion of formed granular clusters based 
on either the velocity fluctuation following [5, 64] or the 

Fig. 11  Spatial variation of the 
coordination number Z and av

�
 

against the depth z. The symbol 
shape represents different rota-
tion speed, while the symbol 
color represents different drum 
configurations in terms of drum 
width W and side wall friction. 
Error bars represent the vari-
ation of each shown quantity 
across the drum width
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local volume fraction fluctuation (achievable via the com-
puted Voronoi diagram) following [5, 14]. The variation 
of such portion along the depth show similar trend as that 
of av

�
 that does not satisfy (R2).

Determination of zth based 
on the drum‑width‑averaged velocity profile

Figure 12 shows the velocity magnitude profile against depth 
at the drum center |v|(z) and its variation across the drum 
width, for the same set of simulations considered here. When 
the lateral boundaries are periodic, |v|(z) shows negligible 
differences across the drum width. For the cases with fric-
tional side walls ( W∕d̄ ≃ 21 and 10), |v|(z) varies majorly as 
vertical translation without shape alteration. Therefore with-
out sacrificing much the accuracy we determine zth based on 
the drum-width-averaged |v|(z) profile.
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