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Abstract
We discuss affine and non-affine components of particle dynamics in the context of energy propagation through dense 
granular matter as a consequence of externally imposed boundary perturbation. Earlier work (Kondic et al. in Phys Rev 
E 79:041304, 2009) has shown that the frequency and the wavenumber of the imposed perturbations strongly influence 
propagation, and in particular that the frequencies and wavenumbers that lead to well-defined propagation are limited from 
above. The present work shows that strong non-affine component of particle dynamics is associated with dispersion and 
loss of coherence.
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1 Introduction

One critical issue in the physics of granular materials is the 
basic physical mechanism of energy and/or stress propaga-
tion. One can roughly distinguish two groups of efforts here. 
The first one concentrates on forces and energy fluctuations 
inherent in granular systems, including force transmission. 
The second one discusses signal (such as sound) propagation 
and is often based on a continuum description. One impor-
tant issue is how to link these approaches. More generally, 
the question is how to connect micro and meso scales, in 
addition to the relevant time scales.

In the first direction, there has been much recent debate 
regarding static force propagation. A substantial range of 
models has been proposed, with dramatically different prop-
erties. Some of these approaches, based on probabilistic 
models for force propagation, predict diffusive (parabolic) 
propagation of forces [5]. Diffusive behavior has been also 
reported in experiments [26], although for very small sys-
tems. Other approaches lead to a response which may be 
either wave-like or elastic [2, 3]. Related conclusions have 

been reached in other works [4, 22]. Assemblies of friction-
less particles are shown to lead to wave-like signal propaga-
tion [27]. Recent experiments, however, seem to be consist-
ent with an elastic response to an applied point force [8, 9, 
23]. It is puzzling that in different experiments and models 
one can observe such a variety of propagation mechanisms. 
One wonders whether different behavior is triggered as the 
parameters of a granular system vary [11, 20].

Continuum models used in engineering literature 
(e.g. [10, 24]) commonly assume elastic or elasto-plastic 
response, which does not seem to be consistent with the 
propagating, hyperbolic (or parabolic) type of response 
often obtained under microscopic picture. There is a ques-
tion whether the models based on elasticity theory can be 
used to explain signal propagation through granular systems 
[21]. Some progress in connecting discrete and continuum 
descriptions has been reached in recent works that show that 
the system’s response may change depending on the scale: 
one can see wave-like response on short (meso) scales, but 
elastic response on larger ones [11, 12]. These works also 
point out that friction and anisotropy can have an important 
effect. Still, there are numerous questions to be answered, 
even regarding relatively simple configuration of a static 
granular material exposed to a localized perturbation.

An issue of signal, such as sound, propagation through 
granular systems is closely connected to force and energy 
propagation although it is often treated differently. Within 
continuum theory, this issue is typically approached via 
effective medium theory [10, 28]. Most of the works explore 
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theoretically and experimentally the response of a granu-
lar system to a spatially independent perturbation which is 
large compared to a particle size, such as piston moving in 
a granular system. It has also been pointed out that force 
chains may be important in sound propagation [1, 13, 19]. 
Some recent papers try to reconcile the apparent differences 
between earlier works [14, 15] by pointing out that the direct 
and strongly scattered signal components should be treated 
separately. However, this issue is still not completely under-
stood, in particular regarding propagation through fragile 
systems close to the rigidity threshold.

Some years back [16], we considered computationally a 
dense granular system exposed to perturbations that were 
space and time dependent. The computations were carried 
out using a discrete element method (DEM) simulations. The 
main finding of that work was that within certain regime, 
the process of energy propagation could be described rea-
sonably well via linear wave equation with an additional 
damping term. Therefore, in [16] we showed that DEM 
simulations could be used to connect to the macro-scale 
and relate to continuum models for energy propagation. 
In the present work, we go back to the particle scale, and 
relate the results presented in [16] to the details of particle 
structure and dynamics, with particular focus on affine and 
non-affine particle motion. We will show that the origins 
of some macroscopic features relevant to energy propaga-
tion may be understood better by considering the details of 
particle dynamics.

2  Methods

The simulation techniques are described in [16] and in more 
detail in [7]; here we just provide a brief summary. We 
choose a relatively simple granular geometry in two spatial 
dimensions with the granular particles constrained between 
two rough walls (up–down) with periodic boundary condi-
tions (left–right). We use constant volume protocol such that 
the volume fraction, � , is prescribed by the walls’ positions; 
constant pressure protocol is discussed in [7]. The particles 
are polydisperse discs, with the radii varying randomly in 
some range r about the mean. For simplicity, we put gravity 
to zero. The particle–particle and particle–wall collisions are 
modeled using linear springs describing the normal forces 
between the particles, and Cundall–Strack model for tangen-
tial forces. The wall particles are typically chosen as strongly 
inelastic and frictional so to reduce the reflection phenom-
ena. The simulations are prepared by very slow compression 
without applied perturbation until the required � is reached. 
After this initial stage, the system is relaxed. The upper 
boundary is fixed and the lower boundary is perturbed. The 
perturbations are of the form z(x) = z0 + A sin(�t) sin(kx) , 

where A, �, k are the amplitude, angular frequency, and the 
wave number, respectively.

Here we list the parameters that are used in the simula-
tions that follow; the choice of parameters has emerged 
through the years from a number of works, such as [6, 17, 
18], involving simulations of photoelastic particles from 
Behringer’s lab. The additional simulations, reported in [7], 
have shown that the qualitative features of the results that 
follow rather weakly depend on the parameters specifying 
the particles and walls. Particle properties: normal spring 
constant is given the value of kn = kf mg∕d , kf = 4 × 103 , 
where g is the acceleration of gravity used here for conveni-
ence, although gravitational effects are not considered in the 
simulations), and m,  d are average mass and diameter of a 
particle. Note that based on kn , one can specify the binary 
particle collision time, �c = 2�

√
d∕(2gkf ) that we will use 

as the time scale. The tangential spring constant, entering 
Cundall–Stark model, is given the same strength as the nor-
mal one, so kt = kn . The dissipation is specified by �n and �t 
which are given the values leading to the coefficient of res-
titution en = 0.5 ; polydispersity is introduced by specifying 
the particles sizes in the range (1 ± r)d with r = 0.1 ; the 
coefficient of friction is � = 0.5 . The wall particles are char-
acterized by en = 0.1 , � = 0.9 , and are monodisperse. System 
properties: the perturbation is applied by perturbing the 
lower wall which defines the x axis; typically 40, 000 parti-
cles are used, with the x dimension of the system being 
250 d. The volume fraction is � = 0.9 . Perturbation proper-
ties: Amplitude A = 0.6 d ; f = 30 Hz, � = 250 d . These 
values are used in all simulations except if specified differ-
ently. The particular numerical values used for the perturba-
tion are chosen so that wave propagation can be clearly 
observed; it should be noted that for (relatively soft) parti-
cles used, rather large volume fractions and perturbation 
amplitudes are needed; some results regarding the influence 
of these and other parameters can be found in [7]. Even for 
rather soft particles considered here, we note that for all 
considered simulations 1∕f ≫ 𝜏c , so that the dynamics 
imposed by the perturbation is much slower than the natural 
time scale describing binary particle interaction.

3  Results

The main focus of [16] was on relating the energy propaga-
tion results to the ones that would be expected from a simple 
continuous method of the following form:

where E is the measure of energy propagation (such as 
elastic energy stored in the compressive contacts between 

(1)∇2E −
1

c2
�2E

�t2
−
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D

�E
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particles), c is the speed of energy propagation, and D meas-
ures diffusive damping. As D → ∞ , the model reduces to 
linear wave equation, and as c → ∞ to diffusion equation. 
Assuming that the boundary condition is specified by a per-
turbation of the form E(x, 0, t) = E0e

��te�kx (corresponding to 
the perturbation imposed in the DEM simulations), where 
� = 2�f  , k = 2�∕� and f and � are the frequency and wave-
length of imposed perturbations, one can find a solution of 
Eq. (1) in the form of a damped wave whose properties are 
described by a simple dispersion relation [16],

where X = (�∕c)2 − k2 , and q is the wave number corre-
sponding to the z direction. Detailed discussion of the con-
sequences of this dispersion relation could be found in [16]. 
The DEM simulations [16] have shown that there is a rather 
narrow range of f, � leading to a well defined weakly-disper-
sive energy propagation; Fig. 1 shows four snapshots of elas-
tic energy during one period of the boundary motion for the 
perturbation parameters that lead to a well defined wave. The 
existence of such a range was rationalized based on the exist-
ing results for c resulting from the elasticity theory, and for 
D based on the estimate D ≈ ve�∕3 , where it was assumed 
that ve = c , and � was some typical length-scale over which 
coherent properties of a propagating wave are lost [14, 25]. 
The DEM simulations and the model specified by Eq. (1) 
suggest large values for � ≈ 30 − 40 d . While such large val-
ues of a typical length scale are still not well understood, in 
what follows we will show that they are consistent with the 
length-scales describing non-affine particle motion.

Computations of affine (conforming) and non-affine (non-
conforming) components of particles’ motion was carried 

(2)q = −|q|e��∕2, |q2| = X
2 + (�∕D)2, tan� = −

�

(DX)
,

out using the approach outlined in [17]. The algorithm 
implemented computes first affine component by consider-
ing the motion of a particle relative to the surrounding par-
ticles (in a small circle whose radius is equal to 2.5 d ). The 
non-affine component is then found by subtracting the affine 
component from the particle dynamics computed in simula-
tions. Before considering non-affine component of particle 
motion, we discuss the affine one. For brevity, here we focus 
only on the reference case discussed in [16] ( f = 30Hz , 
� = 250 d , r = 0.1 , and � = 0.9 in 2D) and on limited set of 
other cases where either f or � are varied.

Figure 2 shows the affine component for the reference 
system at a given time (for the ease of comparison all the 
similar figures will show the results at the same (nondi-
mensional) time). This figure suggests well defined affine 
motion for this choice of parameters. However, Fig. 3, where 
either the frequency (part a) or the wavelength (part b) are 
modified, shows that, in both cases, the affine component 
decreases very quickly away from the oscillating boundary.

Figure  4 shows the time-averaged dominant mode 
amplitude of the Fourier transform (Fourier expanded in 
the x direction), for few systems, including those shown 
in Figs. 2 and 3. Similarly as in analysis of ‘raw’ DEM 
results [16], we find wave-like propagation for the refer-
ence case (part a), while a change of the frequency or 
wavelength leads to a quick decay of the affine compo-
nent as one moves ahead from the oscillating boundary. To 
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Fig. 1  Elastic energy at four instances during one period of the 
boundary oscillation; The upper wall is static, and the lower one per-
forms standing type of motion. In this and following figures we use 
r = 0.1 , f = 30  Hz, � = 250 d , the amplitude of wall perturbation, 
A = 0.6 d , and 40, 000 particles except if specified differently
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Fig. 2  Affine component for the reference system at t = 240 (in units 
of �c)
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(a) f = 100 Hz, λ = 250 d.
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(b) f = 30 Hz, λ = 62.5 d.

Fig. 3  Affine component of particle dynamics for the specified sys-
tems at the same time as shown in Fig. 2
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conclude, we find that the intensity of affine component of 
particle dynamics is strongly correlated with the wave-like 
propagation of energy.

We proceed by discussing non-affine component of par-
ticle motion. This component is described by the quantity 
Dmin , computed by subtracting affine component from par-
ticle dynamics and averaging appropriately [7, 17]. Large 
Dmin corresponds to large non-affine part of the particles’ 
dynamics.

Figure 5 shows the results for the reference case, at the 
same time as the affine motion shown in Fig. 2. The part 
(a) shows the contact number of the particles, and part (b) 
shows non-affine motion. We note that while the parts of 
the computational domain corresponding to stronger affine 
component are characterized by smaller number of contacts, 
the non-affine motion does not follow this trend and does not 
show any obvious spatial dependence.

Next we discuss the influence of the frequency and wave-
length of perturbation on non-affine component of particle 
dynamics. Figure 6 shows two typical examples illustrat-
ing prominently strong non-affine component close to the 
oscillating boundary. To confirm that this is a general fea-
ture of the results, Fig. 7 shows the non-affine component 
averaged over the x direction and over time. We see large 
Dmin for short wavelengths and high frequencies of perturba-
tions, consistently with the snapshots shown in Fig. 6. These 
results suggest strongly that non-affine part of the particle 
motion is responsible for removal of wave-like propagation 
of energy. Note also that the length scale characterizing 

non-affine dynamics is similar ( 20−30 d ) to the quantity � 
entering the diffusion equation in Eq. (1).
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(c) f = 60 Hz, λ = 250 d.
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(d) f = 100 Hz, λ = 250 d.

Fig. 4  Dominant mode amplitude of the Fourier transform of the aff-
ine component
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Fig. 5  Reference case results at the same time as in Fig. 2

x(d)

z(
d)

-100 -50 0 50 100
-100

-50

0

50 0.5
0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05
0

(a) f = 100 Hz
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Fig. 6  Non-affine component at the same time as in Fig.  2. All the 
parameters that are not listed are the same as in the reference case
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4  Conclusions

In this paper, we discuss particle-scale aspects of energy 
propagation through dense granular system. We focus in 
particular on affine and non-affine components of parti-
cle dynamics. The parameters that lead to a well defined 
coherent energy wave lead to strong affine and rather weak 
non-affine dynamics. However, the parameters for which 
we observe strong dissipation and quick loss of coherence 
are found to lead to stronger non-affine component of par-
ticle dynamics, and to fast attenuation of the affine com-
ponent, as one moves away from the oscillating bound-
ary. We conjecture that this strong non-affine component 
leads to a significant energy loss and that it is responsible 
for the loss of wave-like properties of propagating energy 
wave. We expect that this finding will serve as a basis 
for the future work discussing in more detail mechanisms 
determining the length scale on which non-affine part of 
particle dynamics becomes significant.
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