
Vol.:(0123456789)1 3

Granular Matter (2019) 21:88 
https://doi.org/10.1007/s10035-019-0938-y

ORIGINAL PAPER

Force transmission and anisotropic characteristics of sheared granular 
materials with rolling resistance

Wei Wu1 · Gang Ma1   · Wei Zhou1 · Di Wang1 · Xiaolin Chang1

Received: 23 August 2018 / Published online: 22 August 2019 
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
We adopt a two-dimensional granular assembly in a direct shear box to systematically investigate the role of rolling resistance 
during the shearing process. A discrete element method with parallel computation and a rolling friction model is utilized in 
this paper. The macro- and microscale responses are sensitively subjected to a change in the rolling friction. The critical-
state indices are found to be linearly related to each other, and the linear relationship between the critical-state indices and 
the rolling friction coefficient is evidently observed. The macro- and microscopic relationships are discussed from the con-
nections between the stress and fabric properties. For microscale behaviors, different rolling frictions can generate various 
magnitudes of arching effects caused by antirotation and pose different characteristics to the force chains. The algorithm 
related to the extraction of force chains is adopted to explain the local sustaining structures. The localization, length, number 
and magnitude distribution of the force chains depend on the rolling friction. The influence of the rolling resistance on the 
friction mobilization is evident. A transition of the force distribution from the exponential to the Gaussian distribution is 
observed when the rolling resistance conditions change. The strong–weak contact systems and various anisotropic parameters 
are utilized to characterize the mechanical and geometrical roles of rolling resistance.

Keywords  Direct shear · DEM · Rolling friction · Critical state · Force chain · Anisotropy

1  Introduction

When simulating real granular materials in a direct shear 
test, incorporating the rolling resistance into a mechanical 
analysis is an effective approach but should still be system-
atically investigated. Ai et al. [1] summarized that rolling 
resistance arises from the following sources: microslip 
and friction on the contact surface, plasticity, deformation, 

contacts, viscosity, hysteresis, and adhesion effects. They 
further comprehensively evaluated the performance of exist-
ing rolling resistance models [2–6] and noted the different 
models’ limitations in specific applications. The irregu-
larities or asperities of the granular surface can result in a 
weak rolling resistance, and a larger rolling resistance can 
be derived from interlocking between the grains with non-
convex or angular shapes [7]. To some extent, utilizing the 
rolling resistance model can effectively reflect the influence 
of the particle shape on the particle interaction and geo-
metrical arrangement.

Several authors have conclusively shown that the macro- 
and grain-scale responses are significantly affected by the 
particle’s rolling resistance [8–11]. Estrada et al. [9] verified 
the validity of using rolling resistance as a shape parameter 
to account for particle angularity and proved that the hin-
drance of rotation acts as one of the main influencing factors 
in the mechanical behavior of granular systems. To recog-
nize the authentic properties of using rotational resistance, 
Zhao and Guo [12] employed a triaxial compression test to 
investigate the influence of antirotation on the characteristic 
behavior of granular materials. However, both the macro-, 
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meso-, and micromechanical responses of the direct shear 
tests that consider rolling resistance still lack a comprehen-
sive explanation from certain fundamental aspects.

A direct shear test is one of the most commonly used 
testing methods in geotechnical engineering [13]. Despite 
the limitations of the direct shear test, especially its nonuni-
form distribution of stresses and strains [14, 15], Potts et al. 
[16] confirmed that a granular assembly behaves uniformly 
within the final failure zone, with no significant develop-
ment of the progressive failure, and that the peak strength 
prediction is accurate. It has been found that simple shear 
is the dominant deformation mode in the plane shear flows, 
the localized failure zones, and the shaking level grounds 
under seismic shear waves [17]. Dounias and Potts [18] also 
used the finite element method to demonstrate that the stress 
condition within the direct shear is analogous to the simple 
shear. The effectiveness of the two-dimensional discrete ele-
ment modeling of direct shear tests was also illustrated [19]. 
A quantitative validation of the numerical modeling was 
performed by means of physical test data [20]. Similar to 
the discrete element method (DEM) simulations performed 
by Liu et al. [21], a simple shear region is selected at the 
center of the direct shear sample to extract the mechanical 
information, thus avoiding the inhomogeneous restraints of 
the boundary walls and facilitating more uniform fields of 
strain and stress for further study.

In terms of the microscopic levels, different shear zones 
are extracted to explore the local structural characteristics, 
and the relationship between the macro- and micro-scale 
properties are established. It is also observed that the micro-
scale arching effect related to antirotation between particle 
contacts evidently influences the force chain behavior and 
local structures. The adequate algorithm to extract the force 
chains are realized in our work. In contrast to the crystal-
line or polycrystalline solids, the contact forces occupy an 
inhomogeneous distribution for packing granular materials. 

Hence, the characterization of the force distribution in 
a granular medium is of great practical importance [22]. 
The jamming structures of particle assemblies [22] are also 
explored by means of the statistical method and force-chain 
characteristics. The strain localization corresponding to the 
shearing process is also figured out within different zones 
of the sample, and the properties of the nonaffine deforma-
tion are explored. For Hertzian potentials, the normal con-
tact force distributions exhibit an exponential tail for large 
contact forces [23]. In this work, the transition between the 
exponential and Gaussian dependence of the probability 
distribution functions (PDFs) is discussed. To combine the 
multiscale properties, the correlation between the macro-
scopic and microscopic parameters is comprehensively 
investigated from various aspects. The basic theoretical 
backgrounds related to the rolling friction models and stress-
force-fabric features are presented in Sect. 2. The open-
source code LIGGGHTS [24] with the parallel computing 
method is employed in this paper. The implementation of 
the rotational resistance model put forward by Ai et al. [1] 
is coupled in the code.

2 � Theoretical analysis

2.1 � Rolling friction

The rolling of particles is an important factor for control-
ling the mechanism of fabric reconstruction [25]. Based on 
the model proposed by Iwashita [2] and Jiang et al. [6], Jun 
Ai et al. [1] used both one-way and cyclic rolling in the 
elastic–plastic spring-dashpot models. In this model, the 
total rolling resistance torque Mr contains a spring torque 
Mk

r
 and a viscous damping torque Md

r
 . The mechanism of 

the loading and unloading behavior of the spring torque Mk
r
 

is shown in Fig. 1. The incremental calculating procedure of 

Fig. 1   a Contact model considering rolling friction [1]; b The mechanism of the loading and unloading behavior of the rolling resistance torque
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the rolling torque is also adopted. The incremental equations 
are as follows:

where Mm
r
= �rRrfn ( Rr = rArB

/(
rA + rB

)
 and fn denotes the 

normal contact force) represents the limiting spring torque 
when the full mobilization rolling angle ( �m

r
= Mm

r

/
kr ) is 

achieved. The rolling stiffness ( kr = 3kn�
2
r
R2
r
 ) is used for 

calculations in this paper.
The viscous damping torque Md

r
 is given by the following 

expression:

The rolling viscous damping coefficient Cr takes the form:

where ηr is the rolling viscous damping ratio and Ccrit
r

 is the 
rolling critical viscous damping constant ( Ccrit

r
= 2

√
Irkr ). 

The term Ir is the equivalent moment of inertia for the rela-
tive rotational vibration mode between spherical particles:

in which JA and JB are the moments of inertia correspond-
ing to the centroid and mA and mB represent the masses of 
particles A and B, respectively. To analyze a single role of 
the rolling resistance coefficient, the values of �r in Eq. (3) 
and f  in Eq. (2) are set to zero in this paper.

2.2 � Mechanical expressions in two‑dimensional 
systems

2.2.1 � Fabric and contact force description

The concept of “fabric,” which is used to describe the geo-
metrical property of discontinuity in granular materials, was 
proposed by Oda [26]. The microscopic pictures of packed 
particles are attributed to three aspects: the mechanical 
roles of particle sliding and rolling during deformation, the 
mechanism of generating a shear plane, and the mechanism 
utilized to control the fabric reconstruction. For infinite 
assemblies in a two-dimensional system, the fabric tensor 
can be expressed in the general form [27, 28]:

(1)

ΔMk
r
= −krΔ�r

Mk
r,t+Δt

= Mk
r,t
+ ΔMk

r

|||M
k
r,t+Δt

||| ≤ Mm
r

(2)Md
r,t+Δt

=

{
−Cr𝜃̇r, if

|||M
k
r,t+Δt

||| < Mm
r

−fCr𝜃̇r, if
|||M

k
r,t+Δt

||| = Mm
r

(3)Cr = �rC
crit
r

(4)Ir =

(
1

JA + mAr
2

A

+
1

JB + mBr
2

B

)−1

(5)Fij = mv ∫S

E(�)ninjd�

which also has a general normalized form [29]:

The term mv is equal to 2N/S and represents the contact 
density (where S is the area of overall granular assembly and 
N denotes the number of contacts). The term E(�) , which 
characterizes the distribution of normal contact orientation, 
is visualized as the general 2D expression:

The anisotropic tensor, ac
ij
 , can be calculated by the meas-

ured statistics of Eqs. (5) and (7):

and represents the deviatoric part of the tensor that char-
acterizes the distribution of the overall normal contact 
orientation.

Using the second Fourier series expression, an approxima-
tion for the normalized normal contact direction is generated:

The parameter ac corresponds to a nondimensional coef-
ficient characterizing the magnitude of the normal contact 
anisotropy, which is derived from the fabric tensor Fij [30]:

The major principal direction of the normal contact anisot-
ropy, �c , is expressed as

The distributions of the average normal and tangential force 
components can also be characterized by the average normal 
contact force tensor Nij and the average tangential contact force 
tensor Tij in the discrete or integral form [31], in a manner 
analogous to that of calculating the fabric tensor Fij . Further-
more, both the anisotropy magnitude and preferred orientation 
of the mean contact forces can be derived from the tensors. 
The approximate equations of the tensors are the following:

(6)Fij =
1

2N

2N∑

k=1

nk
i
nk
j

(7)E(�) =
�

2
(1 + ac

ij
ninj), a

c

ij
= ac

ji
, ac

kk
= 0

(8)ac
ij
= 4(Fij −

1

2
�ij)

(9)E(�) =
�

2

(
1 + ac cos 2(� − �c)

)

(10)ac =
2

√(
F11 − F22

)2
+ 4F2

12

F11 + F22

(11)�c=
1

2
tan−1

(
2F21

F11 − F22

)

(12)

Nij =
1

2𝜋 ∫
2𝜋

0

f̄n(𝜃)ninjd𝜃 ≈
1

Ng

∑

Δ𝜃g

f̄ c
n
ninj

Tij =
1

2𝜋 ∫
2𝜋

0

f̄t(𝜃)tinjd𝜃 ≈
1

Ng

∑

Δ𝜃g

f̄ c
n
tinj
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The quotient Ng , which represents the number of orien-
tation intervals, is 36 in this paper. The contact-based tan-
gential directional vector ( � = (− sin �, cos �) ) is orthogonal 
to the normal vector ( � = (cos �, sin �) ). Here, the Fourier 
series expressions of both the average normal force compo-
nent f̄n and the average tangential force component f̄t are put 
forward by Rothenburg [32]:

The term f̄0 , which characterizes the average normal con-
tact force over all contacts in the assembly, is calculated by:

The coefficients an , at and aw are adopted to describe the 
anisotropy magnitude of f̄n and f̄t . The terms �n and �t are 
used to describe the principal orientation of the mean normal 
contact force f̄n(𝜃) and mean contact tangential force f̄t(𝜃) , 
respectively. Similar to the procedure used in Eqs. (10) and 
(11), the parameters an , at , �n and �t can be calculated:

Physically speaking, when the distribution of the tan-
gential contact forces is not symmetrical, the value of aw is 
nonzero, and it acts to compensate for a lack of the normal 
contact in the direction of maximum loading [31]. Under the 
moment equilibrium condition:

The following expression for aw is obtained:

2.2.2 � Stress‑fabric‑force (S‑F‑F) relationship in 2D system

Granular assemblies sustain external pressure by redistrib-
uting them among the particle contacts. In an attempt to 
measure the fabric with a finite number of circular particles 
and a narrow size-distribution in a two-dimensional system, 
Rothenburg and Bathurst [30] expressed the average stress 
tensor throughout a granular assembly as [33–35]:

(13)
f̄n(𝜃) = f̄0[1 + an cos 2(𝜃 − 𝜃n)]

f̄t(𝜃) = f̄0[aw − at cos 2(𝜃 − 𝜃t)]

(14)f̄0 =
1

2𝜋 ∫
2𝜋

0

f̄n(𝜃)d𝜃

(15)

an =
2

√(
N11 − N22

)2
+ 4N2

12

N11 + N22

, �n=
1

2
tan−1(

2N21

N11 − N22

)

at =
2

√(
T11 − T22

)2
+ 4T2

12

N11 + N22

, �t=
1

2
tan−1(

2T21

T11 − T22
)

(16)∫
2𝜋

0

f̄t(𝜃)E(𝜃)d𝜃 = 0

(17)aw =
1

2
aat sin 2(�c − �t)

where S represents the area of a two-dimensional system 
and the sum is performed over all contacts. lj represents the 
jth projection of the branch vector � . Similar to the trun-
cated Fourier series expressions of f̄n and f̄t , the mean of the 
branch vectors can be adopted as the function of the normal 
contact orientation:

The term d̄0 characterizes the mean length of the branch 
vectors in the assembly. The parameters ad, awd  , and at

d
 sym-

bolize the magnitude of anisotropy. Owing to the condition 
that the particle shape used in the paper is spherical, the 
value of d̄t(𝜃) equals zero.

The stress-force-fabric relationship (S-F-F) [30, 31, 36] in 
cohesionless granular assemblies provides an approach for 
bridging the gap between the macroscopic stress tensor and 
the microscopic anisotropic fabric parameters. The separate 
contributions of the normal contact force component, con-
tact tangential force component, and normal contact compo-
nent to the shear strength are discussed in several previous 
studies [37–40]. According to the distribution functions of 
E(�) , f̄n(𝜃) , f̄t(𝜃) and d̄n(𝜃) , the stress expression in Eq. (18) 
can be calculated by:

Hence, the stress tensor becomes the function of the ani-
sotropy parameters, which ensures both the qualitative and 
quantitative connection of micro- and macroscale properties.

3 � Numerical preparation

In the numerical simulation, the Hertz-Mindlin model is 
adopted as the contact law. Both the normal and tangential 
components have a spring force and a damping force. The 
tangential overlap is truncated to fulfill the Coulomb crite-
rion ft ≤ �fn . For the tangential force, there exists a “his-
tory” effect that can account for the tangential displacement 
between the particles as they contact each other. The model 
parameters involved in the computational procedure, such 
as the viscoelastic damping constants �n , �t and the elastic 
constants kn , kt , can be calculated via Young’s modulus E, 
the shear modulus G , the Poisson ratio � , the coefficient of 
restitution e , and other quantities [41].

The initial direct shear box shown in Fig. 2 is 1.0 m 
long and 0.6 m high. The samples are composed of 10,000 

(18)�ij =
1

S

∑

c∈S

f c
i
lc
j

(19)
d̄n(𝜃) = d̄0[1 + ad cos 2(𝜃 − 𝜃d)]

d̄t(𝜃) = d̄0[a
w
d
− at

d
sin 2(𝜃 − 𝜃d)]

(20)

𝜎ij = mvd̄0 ∫
2𝜋

0

[f̄n(𝜃)ni + f̄t(𝜃)ti][d̄n(𝜃)nj][1 + ac cos 2(𝜃 − 𝜃c)]d𝜃
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particles, with a linear radius distribution of 3, 4, and 5 mm, 
and particles with the same radii have the same mass per-
centage in the assembly. The radius expansion method is 
employed to generate a homogeneous numerical sample. 
This method is utilized to insert a specified number of par-
ticles with random coordinates in a predetermined space. 
Allowing for the fact that no new particles will be placed if 
the new particle overlaps with another particle or wall, an 
artificial small-radius particle swarm within the specified 
volume is created. The particles are then expanded until the 
required void ratio is obtained. Once the generation process 
is finished, the granular assembly is relaxed to release the 
overlaps under the confinement of a boundary produced by 
rigid walls with an infinite mass.

The initial sample comes to equilibrium with the move-
ment of the four enclosed stress-servo-control walls. The 
coefficients of interparticle sliding friction and rolling fric-
tion are set to 0.5 and 0.0 during the sample preparation, 
respectively. During the shearing process, the sliding friction 
coefficient � is then set to 0.5. The shearing is achieved by 
moving the lower half of the box to the right at a constant 
velocity accompanied with the constant vertical stress �yy . 
In this paper, the mean pressure for initial consolidation and 
the vertical stress during shearing are both set as 200 kPa, 
thus omitting the effect of the mean pressure from the fol-
lowing analysis.

To evaluate the mechanical role of rolling resistance, 
various rolling friction coefficients �r are used. Sixty-three 
simulations with a broad range of friction coefficients were 
performed to confirm the accuracy of the numerical results. 
The particle–wall rolling and sliding friction coefficients are 
set at 0.0 during both the consolidation and shearing pro-
cess. To satisfy the condition of a quasistatic state during the 
simulation procedure, the horizontal strain rate is selected 

to ensure the resulting inertia index I = 𝜀̇x⟨d⟩
√
𝜌∕p ≤ 10−3 

[42]. The horizontal velocity of the lower half of the box 
is set to 0.01 m/s, and the calculated strain ratio fulfill the 
quasi-static condition. The principal parameters taken in the 
DEM analysis are shown in Table 1.

In the direct shear test, the shear plane and the zero linear 
extension direction are horizontal [43, 44]. Because both the 
deformation and stresses in the central region of the sam-
ple are relatively uniform and exhibit a nearly simple shear 
mode, it has been concluded that the stress ratio and volu-
metric strain calculated from the simple shear region nearly 
coincide with those calculated from the entire sample used 
for the direct shear test [21, 45]. Hence, we also utilize this 
region to extract the microscopic information. Similarly, we 
adopted the displacement of the top servo-control wall to 
evaluate the volumetric behavior in this paper. In this study, 

Fig. 2   The characters of the 
granular assembly within direct 
shear tests

Table 1   Parameters for DEM simulation

Parameter Symbol Value Unit

Particle number N 10,000
Particle density � 2600 kg

/
m3

Particle radius r 3, 4, 5 mm
Young’s modulus E 65 GPa
Poisson’s ratio � 0.12
Coefficient of restitution e 0.95
Time step Δt 1.0e−7 s
Particle–particle sliding friction � 0.5
Particle–wall sliding friction � 0.0
Particle–wall rolling friction �

r
0.0

Rolling viscous damping �
r

0.0
Box length and height 1.0 and 0.6 m
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the particles that are selected to calculate the macroscale 
stress in the direct shear box are initially located within 
region B, as shown in Fig. 2. The extraction of the central 
region of the whole granular assembly can also effectively 
minimize the boundary effects.

4 � Investigation of macroscopic results

A series of numerical simulations were conducted with a 
variety of rolling friction coefficients �r to explore its effect 
on the shear behavior. q =

(
�1 − �2

)/
2 is the deviatoric 

stress, and p =
(
�1 + �2

)/
2 is the mean stress. Xiao et al. 

[46, 47] adopted the laboratory tests to verify the usual crit-
ical-state behavior of rockfill materials with complex shape. 
Zhao and Guo [48] confirmed that a complete description of 
the critical state of a granular material must consider a criti-
cal fabric structure relevant to the critical stress. They fur-
ther put forth that the definition of the critical state involves 
three criteria, namely, �=�c(�=q∕p) , e=ec (void ratio), and 
K=Kc . Figure 3a adequately describes the linear behavior 
between �c and ec with an increase in the rolling friction 
coefficient. K is the joint invariant of the deviatoric stress 
tensor sij ( sij = �ij − 1∕3�ij ) and the deviatoric fabric tensor 
F

′

ij
 ( F�

ij
= Fij − 1∕3�ij ), which is expressed as:

Kc can behave as an effective indicator of the compat-
ibility of the stress condition with fabric structures at 
critical state [48]. The rolling friction strongly affects the 
microscopic fabric, which makes it necessary to explore the 
dependence of the critical-state anisotropy variable Kc on the 
rolling friction coefficient. As seen in Fig. 3b, Kc evidently 
increases as the rolling resistance is increased, which exhib-
its a linear relationship between Kc and �r . This observation 
indicates that the validity of utilizing the term Kc to serve 
as the critical-state index should be evaluated rationally in 
accordance with the rolling friction.

In terms of the relationship between the microscale prop-
erties and macroscopic responses, the coaxiality between 
the fabric and external stress should be explored. As shown 
in Fig. 4a, it is interesting to note that a linear correlation 
between the principal stress direction �� and �c is evident, 
which demonstrates that the coaxiality between the fabric 
and stress is strictly confirmed within various conditions of 
rolling friction during all the loading stages. To combine 
the anisotropic factors with the macroscopic response, we 
calculate the stress ratio q/p by means of Eq. (20). Hence, 
the stress ratio can be expressed by the fabric and force. 
The comparison between the external stress ratio [calculated 

(21)K = sijF
�

ij

Fig. 3   Critical-state indexes 
within various conditions of 
rolling resistance: a �

c
 and e

c
 

under different rolling frictions; 
b The relationship between the 
critical-state anisotropy vari-
able K

c
 and the rolling friction 

coefficient

Fig. 4   Macro- and micro-
scale relationship for different 
conditions of antirotation: a the 
relationship between the stress 
orientation and fabric orienta-
tion; b the comparison between 
the external stress ratio and the 
stress ratio calculated by stress-
force-fabric relationship
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from Eq. (18)] and the stress ratio calculated by Eq. (20) is 
presented in Fig. 4b. The comparison shows that the coinci-
dence between the external stress ratio and the fabric-force-
based stress ratio by Eq. (20) is well fulfilled when �r is 
low. When �r increases (when �r = 0.6 ), the stress ratio q/p 
obtained from the stress tensor given in Eq. (20) is slightly 
larger than the stress ratio from the external stress tensor 
calculated from Eq. (18), which also gets discovered by 
Rothenburg and Bathurst [33].

5 � Microscopic characteristics

The DEM provides an in-depth perspective for extracting 
the particle-scale information, thus embodying the strategy 
of probing into the fundamental mechanism of microscopic 
behavior. The local structural mechanism of sustaining the 
capacity and the contact force features are pivotal and under-
lying aspects of granular assemblies, in which the different 
mechanisms of rolling resistance can be explained.

5.1 � Contact force transmissions and local structures

In discrete granular assembly, the external stress can be 
decentralized to unique contact networks, which generate 
the force transmission chains, shown in Fig. 5. The data 
are extracted from the critical-state particles, which are 
originally located in region B described in Fig. 2a, and the 
position is characterized by the X-axis and Y-axis. Owing 

to the conditions that the shear band is limited to a region 
that contains 5–10 particles [49], it is evident that the force 
chain distributions exhibit the most distinctive characteris-
tics within the shear band region for samples with different 
rolling resistances. Although the networks of force chains 
become fewer and scattered when the rolling resistance is 
increased, the magnitudes of the contact forces, displayed by 
the thickness and color of columns in Fig. 5, are elevated. 
Based on the enlarged local voids (marked by red circles in 
Fig. 5c) between force chains, it is demonstrated that more 
contacts begin to lose the opportunity to sustain forces 
with an increasing rolling friction coefficient. As illustrated 
from the spatial distribution of the coordination number 
in Fig. 5d, it is clear that the region at or near the shear 
band has the largest proportion of nonmechanical particles 
(with zero or only one contact) which are depicted by the 
color red. As noted by Thornton [50], these particles do not 
sustain the force transmission. Hence, it can be concluded 
that the increase in the rolling resistance can make the force 
chains sparse, thus creating more floating particles, espe-
cially within the shear band.

Figure 6 demonstrates the particle structural mechanisms 
of increasing the rolling resistance, which is analogous to 
the description of Iwashita and Oda [4]. The column-like 
structure of Fig. 6a, characterizing the local structure in the 
absence of the rolling friction, contrasts with that shown in 
Fig. 6b, which shows a bent structure with the exertion of 
rolling torques on the contacts and generates the arching 
mechanism. As evidently shown in Fig. 5c, the increased 

Fig. 5   Force chains and coordination number descriptions under different influences of rolling resistance: a when �
r
= 0.0 ; b when �

r
= 0.2 ; c 

when �
r
= 0.6 ; d The spatial distribution of the coordination number (when �

r
= 0.2)
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void space between the force chains can illustrate the mecha-
nisms shown in Fig. 6b, which indicates that more particles 
that have begun to lose the capacity of sustaining forces 
are caged by the skeleton constituted by the arching parti-
cles. The elevated void ratio discussed in Fig. 3a can also 
verify the increased local void within the force chains in 
Fig. 6b when �r increases. Due to the sparsification of the 
force network, the particles that mainly function as the load-
carrying structures tend to sustain more intense forces with 
an improvement in the rolling friction.

The strengthened local arching structures can also be 
explained from the effects of the rolling resistance on the 
mobilization friction. Owing to the fact that the sliding con-
tacts are critical to the analysis of plastic deformation [51], 
the frictional saturation index � = ft

/
�fn is adopted to char-

acterize the effects of rolling friction on the sliding phenom-
enon within contacts. The contacts with ft < 𝜇fn are donated 
as elastic contacts, and ft = �fn represents the yield criterion 
and corresponds to plastic contacts [52]. As shown in Fig. 7a, 
the probability distributions of frictional saturation P(�) 
nearly exhibit linear curves within various rolling friction 
conditions at the critical state. P(�) gradually decreases with 
an increase in � , and an improvement in the rolling friction 
can make the contacts more prone to being plastic because of 
the increased P(�) at larger values of � . The P(�) values when 

� approaches 1.0 are shown in the insert of Fig. 7a, which 
indicates that P(�) first increases with an increase in �r , and 
then experiences a slight decrease at larger �r conditions. 
Hence, it is evident that the increase in the rolling friction 
can elevate the plastic magnitudes to some extent when �r is 
less than 0.6. To evaluate the overall level of friction mobi-
lization, the mean friction mobilization index is employed:

In Fig. 7b, we observe that the distinctions between the 
peak Īm values of various rolling conditions are evidently 
larger than those of the critical-state values. The critical-
state Īm values are nearly the same when �r exceeds 0.1 in 
comparison to the gradually increasing trend of peak Īm val-
ues with an increase in �r . It can be concluded that the anti-
rotation can evidently influence the sliding behavior within 
the contact system, especially during the peak state. How-
ever, the effects of the rolling resistance on the sliding mobi-
lization nearly disappear during the critical-state period.

5.2 � Strong‑network force chains

As previously mentioned, the coexisting force chain net-
works, namely, the strong and weak networks as defined 
by Radjai et al. [53], play different mechanical roles in the 
sample. The forces that exceed the average contact force f̄  
belong to the strong network, and the weak network includes 
forces lower than f̄  . The strong network occupies the domi-
nant force magnitude when sustaining the deviatoric load, 
and the weak network with a relatively lower force magni-
tude performs the function of supporting the strong force 
chains. According to the force chain networks in Fig. 5, the 
magnitude of the strong force chain tends to increase when 
�r increases, but its proportion in the whole force network 
weakens, especially at larger �r conditions. For tests with 
a larger rolling friction shown in Fig. 5, some of the weak 
force chains supporting the strong network are weakened and 
even vanish, thus giving rise to a greater burden of certain 

(22)Īm =
1

N

∑

c∈N

f c
t

𝜇f c
n

Fig. 6   Particle structural features under different rolling friction con-
ditions: a without rolling resistance; b With rolling resistance

Fig. 7   a Probability distribu-
tions P(�) of the frictional 
saturation index for elastic con-
tacts ( f

t
< 𝜇f

n
 ) under various 

conditions of rolling resistance; 
b the mean friction mobilization 
index for different rolling influ-
ences at the critical state
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local particles with strong forces. As shown in Fig. 8(a), the 
proportion of the strong contacts gradually decreases towards 
steady values as the rolling friction increases. The decrease in 
the strong contact ratio can indicate the increased localization 
of strong force chains when the rolling resistance increases.

Considering the dominant role of strong force chains, the 
orientation order parameter is analyzed to characterize the 
orientation of the strong force chains [54]:

where li represents length of the branch vector, and �i is the 
angle between the contact force and the vertical direction. 
When Sorient= 1.0, all the strong contact forces are vertically 
distributed. When Sorient = 0.0, the forces are oriented at 45◦ 
or directed randomly, and Sorient = − 1.0 indicates a hori-
zontal orientation of the strong contact forces. As shown in 
Fig. 8b, the orientation order parameter linearly decreases 
with an increase in �r , which indicates that the strong forces 
first tend to be more horizontally oriented with an increase 
in the rolling resistance. At the critical and peak states, the 
relationship between the orientation order parameter and 
rolling friction is different.

Peters et al. [55] has identified that the stronger forces 
are carried by certain chainlike particles groups that are 
regarded as the force chains. The magnitude and the orien-
tation of force chains depend on the particle stress tensor:

where the terms Vp and Nc represent the particle volume and 
the coordination number respectively. The force chains are 
quasi-linear, and can reflect the authentic trajectory of the 
principal stress with most compression [56, 57]. The minor 
principal stress is the most compressive principal stress. As 
put forward by Campbell [58], the minimum particle num-
ber that constitute a force chain is three. To be brief, the 
adequate algorithm adopted to extract the force chains can 

(23)Sorient =
1∑
i l
2

i

�

i

l2
i
cos2 �i − 1

(24)�particle

ij
=

1

Vp

Nc∑

c=1

f c
i
rc
j
,

refer to the work of Peters et al. [55]. In Fig. 9, we present 
the force chain structures under various conditions of roll-
ing friction. It demonstrates that the force chains within the 
condition of no rolling resistance are scattered in contrast to 
the concentrated clumps of force chains with increasing roll-
ing friction. On the other hand, the structures exhibit more 
orientation towards the maximum principal stress direction 
when �r increases. Especially for �r = 0.6 , almost all the 
force chains are directional.

The adequate information of force chains gets explained in 
Fig. 10. The length of force chains is defined by the number 
of particles within a force chain. An exponential relationship 
between the force chain length and the number of force chains 
is verified. With increasing rolling resistance, the proportion 
of lower-length force chains decreases and that of the larger-
length force chains get increased. The total number of force 
chains gets reduced when �r increases from 0.0 to 0.5, and then 
experience a slight increase trend. By comparison, the charac-
teristics of the average length of force chains exhibit an inverse 
trend. It indicates that when �r exceeds 0.6 the increase of the 
rolling coefficient cannot strengthen the constitution of force 
chains. Hence the utilization of rolling coefficient to character-
ize the effects of rolling resistance should be limited by a rea-
sonable scope, and this scope of �r in our present work is 0.5.

5.3 � Force distributions and orientation

Owing to the fact that the characteristics of force chains inti-
mately relate to the force distribution [59], a qualitative charac-
terization of the force transmission behavior is significant. The 
probability density function (PDF) of the normal contact force 
is plotted in Fig. 11 (log–log), where the data are adopted from 
the critical state. As the bimodal character is usually observed 
in the interparticle force distribution within granular assem-
blies, an exponential decrease for the forces above the average 
force f̄n and a power-law distribution for the forces below f̄n 
are exhibited [53, 60, 61]:

(25)P(fn
/
f̄n) ∝

{
(fn

/
f̄n)

−𝛽 , fn < f̄n

e𝛼[1−fn∕ f̄n], fn > f̄n

Fig. 8   Critical-state strong 
networks within different condi-
tions of rolling frictions: a the 
proportion of strong contacts; b 
the orientation order parameter 
for strong networks
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This result indicates that the distribution of normal 
contact forces becomes wider in the sample as the rolling 
resistance increases. The coefficient � increases towards a 
steady value with an increase in �r , which is in contrast to 
the descending trend of �.

It has previously been verified that P(fn
/
f̄n) occupies 

a small peak or a plateau at small fn values and has an 
exponential tail when fn is large [62, 63]. As shown in 

Fig. 11, a small peak exists when fn
/
f̄n equals 1.0 for the 

tests with 𝜇r < 0.05 . With an increase in �r , the peak phe-
nomenon gradually disappears. Owing to the conclusion 
that the emergence of the peak represents the jamming 
characteristics [63], the reduction in rolling resistance can 
effectively strengthen the jamming state. The observation 
can also be explained from the conclusion of O’Hern et al. 

Fig. 9   Force chain structures 
extracted from the granular 
assemblies within different 
conditions of rolling friction: 
a when �

r
= 0.0 ; b when 

�
r
= 0.2 ; c when �

r
= 0.6
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[62] that the increase in the solid fraction can induce the 
peaks near fn

/
f̄n = 1.0 , and the decrease in �r corresponds 

to the larger solid fraction in our work. The increased den-
sity of force chains in Fig. 5a can also verify the increased 
magnitude of jamming when �r is reduced.

The exponential tails when fn > f̄n , as shown in Fig. 11, 
fall off more slowly when �r increases. When the stress 
among the granular assemblies is elevated, the exponential 
tail can experience a gradual transition to a Gaussian force 
distribution, and the transition is derived from the force 
chain development [62]. To characterize the deviation from 
the exponential feature when fn > f̄n , the exponent of the 
quadratic function [63], P(fn

/
f̄n) ∝ e[𝜆1−𝜆2fn∕ f̄n+𝜆3(fn∕ f̄n)

2
] , is 

adopted. The absolute value of ||�3|| can be responsible for 
the transformation between the exponential and Gaussian 
distributions, which are depicted in the insert Fig. 11. It is 
observed that ||�3|| gradually decreases towards a steady level 
when the rolling friction increases, which indicates that the 
improvement of rolling resistance can make P(fn

/
f̄n) prone 

to an exponential attribution at larger values of fn
/
f̄n . In 

other words, a reduction in the rolling friction can induce 
P(fn

/
f̄n) to approach a Gaussian distribution, which violates 

the usual robust exponential form of granular packing [64]. 
Hence, the utilization of the rolling friction in a numerical 
simulation is reasonable.

The stress fluctuations can be attributed to the variation 
of force chains, and a localization of force chains gradu-
ally emerges from the loading process [65]. The localization 
originates from the disorder within the particle arrangement. 
The participation number � is used to quantify the degree of 
localization [61]:

where N represents the entire contact number within the 
granular assemblies, and fi is the force magnitude at each 
contact point. The characterization of force chains is dem-
onstrated in Fig. 12. As shown in Fig. 12a, the participation 
number decreases with an increase in the rolling resistance, 
which exhibits a linear relationship with �r . This observa-
tion indicates that the force chains are more localized with 
an increase in �r . In terms of the heterogeneity of the force 
chain magnitude, the Gini coefficient is employed to charac-
terize the distributions of the force magnitude [66]:

The term Nc is denoted as the number of contacts. The 
increase of Gini coefficient indicates more evident inhomo-
geneity among the whole contact system. The Gini coef-
ficient is usually adopted to characterize a nation’s income 
inequality and represent the homogeneity of certain quanti-
ties [66]. The normal contact force f n

i
 is sorted in a nonde-

creasing order ( f n
i
≤ f n

i+1
 ). The Gini coefficient is calculated 

from the critical-state data. Gini = 0.0 implies total homoge-
neity of the normal contact forces, in contrast to total hetero-
geneity when Gini equals 1.0. Figure 12(b) indicates that the 
force heterogeneity is intensified when the rotational resist-
ance is elevated and tends to be constant when �r exceeds 
0.6. Therefore, it can be concluded that the samples with 
less rolling friction behave more homogenously from both 
the geometrical features and magnitude distribution of force 
chains.

5.4 � Local strain and nonaffine displacements

For crystals, translational invariant particles will undergo the 
same number of local deformation under the uniform stress. 
On the contrary, the local deformation of amorphous materials 
changes strongly due to the change of particle environment. 

(26)� =

�
N

N�

i=1

q2
i

�−1

, qi =
fi

∑N

k=1
fk

(27)Gini =
1

Nc

�
Nc + 1 − 2

�∑Nc

i=1

�
Nc + 1 − i

�
f n
i

∑Nc

i=1
f n
i

��

Fig. 10   Distributions of the number of force chains with respect to 
the length of force chains under different rolling condition

Fig. 11   Probability distribution functions of normal contact forces at 
the critical state within various conditions of rolling frictions
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Therefore, the displacement of particles can no longer be 
described by a single affine transformation. The notion of non-
affine can be utilized to characterize the deviation from the 
affine deformation field. For the amorphous granular materials, 
the local strain is heterogeneous, and the nonaffine displace-
ment of particles is evident among granular assemblies [67]. 
The behaviors of neighbor particles also differ from each other 
within different regions of granular materials. Hence the local 
strain and nonaffinity are necessary to be adopted to explore 
the strain localization and spatial distribution of local proper-
ties. Many previous work also confirmed that the nonaffine 
measures can be an effective indicator to describe the charac-
teristics of strain localization [68–70].

The affine tensor � utilizes the displacement of neighbor 
particles to obtain the affine displacement field. The mean-
square difference of the relative displacements between 
nearest-neighbor particles and the central reference particle 
determines the affine tensor � . The mean-square difference is 
expressed as [71]:

where n is number of neighbor particles for the reference 
particle. During the traversal of neighbor particles, the 
region is defined as the area of the circle with the radius of 
1.5dmax, and dmax represents the maximum diameter of the 
particle assembly. The terms i and j represent the adequate 
coordinate system. ri

n
(t) is the ith component of the spatial 

position for the nth neighbor particle at time t. By minimiz-
ing D2 , the affine tensor � can be calculated [67]:

(28)

D2 =
∑

n

∑

i

(
ri
n
(t) − ri

0
(t) −

∑

j

(
�ij + �ij

)(
rj
n
(t − �t) − r

j

0
(t − �t)

))2

(29)� =
∑

k

XikY
−1
kj

− �ij

(30)Xij =
(
ri
n
(t) − ri

0
(t)
)(

rj
n
(t − �t) − r

j

0
(t − �t)

)

(31)Yij =
(
ri
n
(t − �t) − ri

0
(t − �t)

)(
rj
n
(t − �t) − r

j

0
(t − �t)

)

Based on the affine tensor, the local strain �L can be 
deduced [72]:

Hence the local deviatoric strain �L
q
 can be calculated:

In our work, the time interval �t is 0.01 s and the calcu-
lation of both the local strain and nonaffine deformation 
is performed at critical state. In Fig. 13, the distributions 
of local deviatoric strains �L

q
 are exhibited. It demonstrates 

that the distributions of the local deviatoric strain show 
little differences for various conditions of rolling resist-
ance. For �L

q
 with less magnitude, the increase of rolling 

friction can slightly increase the corresponding propor-
tion. At large level of �L

q
 , the distributions within various 

�r conditions are almost the same. It indicates that the 
local deviatoric strain seems not to be influenced by the 
change of the rolling friction, especially within the larger 
magnitude of �L

q
.

Based on classical mechanics and dynamics theory, 
Goldenberg et al. [73] proposed displacement fluctuation 

(32)�
L =

−
(
� + �

T
)

2

(33)�L
q
=

√
2

3
�
L
dev

∶ �
L
dev

Fig. 12   Characterizations of 
force chains at the critical state: 
a the participation number 
describing the localization 
of force chains with different 
rolling resistances; b the Gini 
coefficients with different roll-
ing frictions
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Fig. 13   Probability distribution of the local deviatoric strain within 
different conditions of rolling resistance
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under non-affine deformation. On the basis of Goldenberg 
et al. [73], Chikkadi and Schall [74] defined a continuous 
displacement field based on the weighted method of coarse-
graining function. The fluctuation part can be obtained by 
subtracting the displacement of a single particle from the 
continuous displacement field, which is considered as the 
local measurement of non-affine deformation. The con-
tinuous displacement field with coarse-graining function is 
defined as:

and the nonaffine displacement is:

where the term N represent the total particle number. Δ�ij 
represents the difference of displacement vectors between 
the central reference particle and its peripheral particles. � 
is the coarse-graining function:

In this paper, the term d0 equals to 1.5dmax.
The probability distribution function of local nonaffine 

deformation is described in Fig. 14 under different condi-
tions of rolling friction. Unlike the local deviatoric strain, 
the distribution of the nonaffine displacement behave dif-
ferently among different value domains. When Δr�

i
 is below 

1E−6, the particles with more rolling resistance account for 
more proportions. When the value of nonaffine displace-
ment increases, the increase of �r evidently reduces the 
particle percentage. The nonaffine displacement can also 
characterize the plasticity [72]. According to Fig. 14, for all 
conditions of �r , the particles with low-magnitude plastic-
ity take the most proportions. It can also be concluded that 
the decrease of rolling resistance can intensify the plastic-
ity. Namely, for high-level nonaffine displacements, more 
particles tend to be plastic when �r decreases.

Figure 15 shows the distribution of the particle nonaffine 
deformation within the whole sample region. The half height 
of the sample is the boundary of the upper and lower half 
boxes, and this region corresponds to the shear concentration 
domain. Within the shear concentration region, high value 
of nonaffinity is observed. When the distance from the con-
centration domain gets increased, the nonaffine displacement 
obviously get reduced. It illustrates that the plasticity behav-
ior is more prominent in shear concentration region, and the 
area where the plasticity carriers concentrate is also known 
as the shear transformation zone (STZ) [72, 75]. Therefore 
it is evident that the shear transformation zones are mainly 
localized among the shear boundary of the two half boxes.

(34)U(�, t, �t) =
1

N

N∑

j=1

Δ�ij(t, �t)�
(
�ij(t − �t) − �

)

(35)Δ�
�

i
(t, �t) = Δ�i(t, �t) − U(�, t, �t)

(36)�(�) = H
(
R2 − d2

0

)

To characterize the magnitude of localization of nonaffine 
displacements, the participation ratio pΔr� can be adopted 
[67]:

The term N  represents the particle number, and Δr�
i
 is 

donated as the nonaffine displacement of particle i. When 
the sample deformation refer to all the particles, the partici-
pation ratio approaches the order unity with less magnitude 
of localization. Figure 16 shows the change of the participa-
tion ratio with respect to the rolling friction coefficient. The 
improvement of rolling resistance can make the participation 
ratio gradually increases. It indicates that the nonaffine dis-
placements are more localized within the samples with less 
rolling friction. Considering the fact that the nonaffine defor-
mation within granular assemblies depend on the particle 
arrangements, the increase of rolling resistance can make the 
particles more difficult to freely move around. From Fig. 14, 
it also clearly exhibits the more proportion of high-magni-
tude nonaffinity for the samples with less rolling resistance. 
Hence the high-level nonaffine displacements with less roll-
ing friction correspond to the more evident localization.

5.5 � Anisotropic characteristics

As discussed previously in Sect. 2, the stress tensor can 
be quantitatively expressed as a function of the anisotropy 
parameters. A comprehensive study on different anisotropy 
sources is presented below.

We present the distribution of the directional con-
tact proportions, mean normal contact forces, and mean 
contact tangential forces in the polar diagrams (Fig. 17), 
where the values of �r = 0.0 , �r = 0.2 , and �r = 0.6 are 
chosen to be the analytical perspectives. To make our 
analysis brief, the distributions in Fig. 17 only refer to the 
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i Δr
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Fig. 14   Probability distributions of nonaffine displacement for differ-
ent rolling conditions
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critical state. Both the distributions of the contact propor-
tions and mean normal contact forces become more ani-
sotropic when �r increases. For contact tangential forces, 
with an increased �r , the distribution tends to be more 
butterfly-shaped, and the magnitude of the mean tangential 
contact forces located along the principal stress direction 
gradually decreases.

The anisotropy parameters related to the normal con-
tact, and normal contact and tangential force distributions 
are exhibited in Fig. 18. It is evident that the rotational 
resistance can enhance the values of the anisotropy param-
eters, which indicates a linear relationship between all the 
parameters and the rolling friction coefficient. Although 
the increasing trend is not evident when �r exceeds 0.6 
for the contact normal anisotropy, the overall monotonic 
increasing trend still exist. The slopes of the fitting lines 
for various anisotropy parameters are nearly the same at 
the critical state.

6 � Conclusion

In this paper, by means of the DEM with a Hertz-Mind-
lin model considering rolling friction, numerous direct 
shear tests are performed with various conditions of roll-
ing friction. The mechanical and geometrical roles of the 
rolling friction are reflected in structural characteristics, 
force transmission, and many fundamental microscale 
responses. The main conclusions from the observation 
are given below:

1.	 The coaxiality between the fabric and stress tensors is 
fulfilled within various conditions of rolling friction, and 
the stress-force-fabric relationship is well verified using 
different rolling friction coefficients during the shear-
ing process. The critical-state stress ratio and void ratio 
are linearly correlated for various conditions of rolling 
resistance. The critical-state anisotropy variable also 
gets linear increase with respect to the rolling friction 
coefficient.

2.	 The force chain networks become sparse with an 
improvement in the rolling resistance, and the localiza-
tion of force chains quantitatively depends on the roll-
ing resistance. The number of force chains decreases 
exponentially with the increase of force chain length. 
The decrease of rolling friction coefficient can accelerate 
the exponential decay rate. The local structural mecha-
nisms related to the rotational resistance are evidently 
recognized by the local buckling phenomenon of parti-
cles, which corresponds to the discrete distribution of 
force chain networks in space. The distribution of con-
tact force magnitudes exhibits evident inhomogeneity 
with the increase of rolling resistance. Both the peak and 
critical values of the mean friction mobilization index 
increase with an increase in μr. The exponential tail of 
the probability distribution of normal contact forces 
experiences a transition towards a Gaussian distribution 
when the rolling friction decreases.

Fig. 15   Spatial distribution 
of nonaffine displacements 
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Fig. 16   The relationship between the rolling friction and the partici-
pation number
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3.	 The local deviatoric strains among various rolling condi-
tions nearly occupy the same characteristics of distribu-
tion at larger values. The proportion of particles with 
lower nonaffine displacements gradually gets increased 
when the rolling resistance increases in contrast to the 
descending trend for larger nonaffine displacements. For 
samples with relatively lower rolling friction, the parti-
cles tend to become more plastic. The shear transforma-
tion zone is mainly located at the shear concentration 
zone where the boundary of the upper and lower half 
boxes locates.

4.	 The improvement of the rolling friction clearly strength-
ens the arching effect between particles and the capabil-
ity of a strong network to sustain the deviatoric load. 
Concomitantly, the role of the weak network in sup-
porting the strong force chain is weakened or locally 
eliminated. Along with the increased prominence of the 
rolling resistance, less strong contacts are generated. 
Both the distributions of the normal contact and nor-
mal contact forces become more anisotropic when μr 
increases. The critical-state anisotropy parameters are 
all linearly correlated to the rolling friction coefficient.

Fig. 17   Polar diagrams of the directional contact proportion, mean normal contact force and mean contact tangential force under the influences 
of three types of rolling frictions
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