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Abstract
Particle shape, as one of the most important physical ingredients of granular materials, can greatly alter the characteristic of 
inter-particle force distribution which is of vital importance in understanding the mechanical behavior of granular materi-
als. However, currently both experimental and numerical studies remain limited in this regard. In this paper, we for the first 
time validate the ability of the level set discrete element method (LS-DEM) on capturing the inter-particle force distribution 
among particles of arbitrary shape. We first present the technical detail of LS-DEM; we then apply LS-DEM to simulate 
experiments of shearing granular materials composed of arbitrarily shaped particles. The proposed approach directly links 
experimentally measured material properties to model parameters such as contact stiffness without any calibration. Our 
results show that LS-DEM is able to not only capture the macro scale response such as stress and deformation, but also to 
reproduce the particle scale contact information such as the distribution of contact force magnitude, contact orientation and 
contact friction mobilization. Our work demonstrates the promising potential of LS-DEM on studying the mechanics and 
physics of natural granular material and on aiding design granular particle shape for novel macro-scale mechanical property.
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1  Introduction

Any collection of macroscopic solid frictional particles with 
size greater than 1 μ m belong to the family of granular mate-
rials. They are ubiquitous on earth and are the second most 
manipulated industrial material [1]. Despite such a unified 
and simple definition, at the macro-scale, different granular 
materials can exhibit drastically different mechanical prop-
erties and can behave like solids, liquids, gase or even with 
the aforementioned phases coexisting [2, 3] under different 
external loading and boundary setting. Such complex macro-
scale behavior is closely tied to the heterogeneously distrib-
uted force chains formed by inter-particle forces [4, 5], the 
characteristic of which is sensitive to particle shape effect 
[6, 7]. However, investigations on the force transmission 
among arbitrarily shaped particles are still lacking due to 
several technical limitations both experimentally and com-
putationally. On one hand, most experimental studies so far 

involving measuring inter-particle forces rely on advanced 
optical techniques (for example refractive index matching 
tomography [8] and 3D X-ray diffraction and X-ray tomog-
raphy [9]) that are able to reasonably measure particle scale 
deformation. Because of this, these methods often require 
the test material to have specific properties such as being 
birefringent [4] for photo-elasticity measurement or exhibit-
ing optically detectable particle deformation for GEM meas-
urement [10]. As such, they can only handle a very limited 
number of particles (typically in the order of magnitude of 
100 [8] or even less for complex particles such as sands 
[10]). As such, experimentally it still remains a challenge 
to incorporate particle shape effects into the study of inter-
particle force distribution. On the other hand, due to recent 
advances in numerical techniques, relevant investigations 
have also been carried out based on discrete methods. In 
general all discrete methods aim at simulating the kinemat-
ics of a system of particles but in two different ways: either 
explicitly by penalizing the inter-particle penetration based 
on a certain contact model, known as the (classical) dis-
crete element method (DEM) [11], or implicitly by solving 
a linear complementarity problem (LCP) with non-equality 
constraint for all particle contacts under the limit of infinite 
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particle rigidity, known as the non-smooth contact dynam-
ics (NSCD) [12]. In the rigid grain limit (which is usually 
the case for most granular material application [13]), these 
two methods have been shown to give similar results and 
we refer to [14] for a detailed discussion and comparison 
between DEM and NSCD. Such numerical techniques have 
been employed to characterize the inter-particle force net-
work of granular media ranging from disk assembly in the 
late 90s [15, 16] to assemblies of pentagonal particles [17], 
elongated particles [18, 19], polyhedras [20], to assemblies 
composed of poly-disperse particles [21, 22] dated ten to 
5 years ago, and to investigate granular pile instability based 
on friction mobilization analysis of particle contacts [23, 
24]. However, in all current NSCD based numerical meth-
ods, usually all contact type between a certain shaped par-
ticle must be identified and be pre-built into the algorithm 
for contact detection and computation. As such it can only 
handle a system of particles with either identical and sim-
ple shape such as isotropically shaped polygons [17] or the 
so-called RCR particles [19], or with very limited number 
of elementary particle shape type (mixture of sphere and 
RCR particles in [25] and mixture of cube, sphere, ellipsoid 
and cylinder in [14]). Another general class of DEM variant 
method utilizes sphere (disk) clumps [26] that can handle 
systems of particles with different shape, however since the 
number of sphere (disk) needed to approximate one particle 
scales up dramatically fast with the change of particle shape, 
this method can be computationally intractable in simulating 
systems of complex-shaped particles. Therefore, while many 
granular materials commonly seen in nature such as sands 
are composed of particles with different and complex shape, 
numerically our understanding is mostly limited to particles 
with simple shape besides sphere (disk). More importantly, 
although many qualitative agreements can be found with 
experimental studies such as the appearance of strong and 
weak force network [4] and the shear-induced alignment 
effect on inter-particle force distribution [27], there has been 
no direct validation of the inter-particle force distribution 
computed from classical DEM or NSCD.

In summary, experimentally investigations are limited by 
particle property, shape and system size; while numerically 
these limitations become much less of an issue, the cor-
responding conclusions have never been directly validated. 
An important question to ask is, is there a numerical tech-
nique, with computationally tractable expense, that is able to 
capture the inter-particle force distribution among particles 
with different arbitrary shape? In this paper, we attempt to 
answer this question—we for the first time validate the abil-
ity of a newly developed DEM variant method called LS-
DEM [28] on capturing the inter-particle force distribution 
among particles with arbitrary shape by using a recently 
developed experiment technique that is able to quantitatively 
measure inter-particle forces [29]. The paper is structured 

as follows: in Sect. 2 we present the technical details of LS-
DEM; in Sect. 3 we first discuss a set of experiments that 
allow us to measure inter-particle forces in granular materi-
als, then introduce the corresponding numerical simulations 
and lastly validate LS-DEM by comparing simulation results 
with experiment measurements; in Sect. 4 we outline the 
conclusions of this study and implications for future work.

2 � Comparison between LS‑DEM and DEM

2.1 � Introduction to LS‑DEM

LS-DEM [28] works in principle just like DEM: for each 
particle in a system, denoted as particle i here, once know-
ing all forces f i acting on it, DEM (and LS-DEM) simulates 
its dynamics by numerically integrating Newton’s equations 
of motion for the translational and rotational degrees of 
freedom:

with the mass mi of particle i, its position ri , the total force 
f i acting on it due to contacts with other particles, with 
boundaries or due to external body force field, the 3 × 3 
inertia matrix Ii (in 3D), its angular velocity �i and the total 
torque Ti acting on it. DEM treats each simulated particle as 
rigid but allows a small inter-penetration d to compute the 
contact force fi and moment Ti based on a chosen contact 
model. There are many contact models developed with dif-
ferent level of sophistications: Herztian or Hookean contact 
with particle scale damping[13, 30], incorporation of roll-
ing resistance [31, 32], consideration of hysteresis [33] etc. 
A detailed introduction to various contact models can be 
found in [34]. In our study, the total force f j,i (for simplicity 
we hereafter omit the superscript and call it f  ) exerted by 
particle j to i is computed based on the following formula:

where f n and f t are respectively the normal and tangential 
component of f  ; n̂ and �s are respectively the contact nor-
mal and the accumulated tangential displacement; �s is the 
inter-particle friction coefficient; and kn(kt) is the normal 
(tangential) contact stiffness with unit of force per area.

However, unlike DEM, LS-DEM is able to compute d and 
the corresponding contact force and moment among parti-
cles with various shape. In LS-DEM each individual particle 
is represented by two quantities: a set of spatially distributed 

(1)mi

d2ri

dt2
= fi, and

d

dt
(Ii ⋅ �i) = Ti

(2)f = f n + f t

(3)f n = kndn̂

(4)f t = −
�s

|�s|min
(
kt|�s|, �s|f n|

)
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points {x1, x2,… , xn} (nodes) discretizing the particle sur-
face (called the mesh) and a discretized level set function 
�(p) where p are the grid points with color indicating the 
signed distance to the grain surface (negative for inside 
and positive for outside), as shown in Fig. 1a. Accordingly 
the discretized level set function �(p) is scalar-valued and 
implicit.While {x1, x2,… , xn} provides the information of 
particle geometry, �(p) gives the signed distance of a certain 
point p to the surface of the particle which is formed by con-
necting {x1, x2,… , xn} : 𝜙(p) > 0 when p is outside the sur-
face, �(p) = 0 when on the surface and 𝜙(p) < 0 when p is 
inside the surface. To detect contact between two particles, 
a master-slave approach is used, where we evaluate the value 
of all nodes of the master using the level-set function of the 
slave. If the value of the level set function is negative for any 
node, contact exists and force and moment are computed for 
each penetrating node, which are then summed to give the 

total contact force and moment between the two particles, 
as shown in Fig. 1b. In current LS-DEM implementation the 
contact model becomes:

where P is the total number of penetrating nodes of particle 
i into particle j; f n,z and f t,z are the normal and tangential 
force computed at node z; dz , n̂z and �sz follow the same def-
inition but are now computed at each node z. In this paper, 
however, we modify the contact model implementation to 
instead only consider the node with maximum penetration. 
By doing so, LS-DEM becomes mesh-independent in dis-
placement controlled loading condition and converges to 
DEM in simulating circular particles (see “Appendix 1”). 
Taking advantage of the level set function formulation, 
contact detection between two arbitrarily shaped particles 
become very trivial and require very little computational 
expense. For more technical details of LS-DEM, we refer 
to [28, 35].

3 � Beyond DEM: capturing the mechanical 
response of granular material 
with arbitrarily shaped particles

In the previous section we introduced the technical details 
of LS-DEM. In this section, we will show the ability of LS-
DEM on capturing the macro scale response and further 
capturing particle scale information of a system of particles 
with different arbitrary shape. In order to do this, we first 
detail the experiments that allow us to measure both the 
macro scale response and the particle scale information in 
particular the inter-particle forces, then explain our simula-
tion setup, and lastly compare LS-DEM simulation results 
to experimental measurements.

3.1 � Experiments: extract inter‑particle forces 
in granular materials

Laboratory tests are carried out using a custom-built shear 
apparatus designed to subject a two-dimensional analogue 
granular assembly to (quasi-static) shear conditions [29, 36]. 
The shear mechanism is generated by a displacement-con-
trolled linear actuator connected to the shear cell. Simultane-
ously, a vertical load �N is applied to the granular assembly 
confined in the shear cell through a dead weight loading 

(5)f n =

P∑
z=1

f n,z =

P∑
z=1

kndzn̂z

(6)f t =

P∑
z=1

f t,z = −

P∑
z=1

�sz
||�sz||

min
(
kt|�sz|, �s|f n,z|

)
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Fig. 1   a An example of constructing one particle with arbitrary shape 
using level set function; surface points (nodes) are shown as the dots 
in cyan, overlaid grid points p represent the associated discretized 
level set function � with color showing the signed distance to the sur-
face: outside the surface 𝜙(p) > 0 , on the surface �(p) = 0 and inside 
the surface 𝜙(p) < 0 . b Figure adapted from [35]: an example of con-
tact detection between two particles: evaluate �

s
(xm

i
) for every node 

xm
i
 of the master particle against the level set function �

s
 of the slave 

particle (color figure online)
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system. The shear cell is a horizontal deformable paral-
lelogram with one arm fixed to a support structure and is 
subjected to shear strain and normal strain in the y-direction 
while maintaining zero normal strain in the x-direction. At 
each load step, image processing techniques are employed 
to measure the length in the y-direction Ly and shear angle 
� defined as the angle between the y-axis and the tilted side 
of the shear cell. Given these measurements, the compo-
nents of the macroscopic strain tensor � are obtained as 
follows: �xx = 0 , �yy = ΔLy∕Ly and �xy = 1∕2 tan � , where 
ΔLy is the change in length in the y-direction between the 
initial and deformed configurations. Images are acquired 
with an optical imaging system (Allied Vision Prosilica 
GT4907 15.7 Megapixel CCD camera attached to a Nikkor 
AF 105mm f∕2.8 lens ) that is installed above the apparatus 
(Fig. 2).

Experimental tests are performed on granular samples 
composed of either circular or arbitrarily-shaped grains. 
Both 2D analogue samples follow a log-normal distribu-
tion of grain diameter and are fabricated using the same 
rubber-like material (Stratasys FLX9895DM) and the same 
additive manufacturing technology (Stratasys Object500 
Connex3 printer). All specimens were fabricated using the 
same additive manufacturing process. Factors such as the 
orientation of the print, support material composition and 
removal, and environmental conditions of storage of the 
raw materials were kept constant for all 3D-printing jobs. 
Such precautions were taken to ensure consistency in the 
effect of potential inhomogeneities and anisotropies. While 
the particles in the experiments have been assumed to be 
elastic, isotropic and homogeneous, it is clear that this is 
not necessarily true, and the experiments rely on averag-
ing the two independent bulk elastic constants over several 
measurements and macroscopic estimates of linear elastic 
behavior. Quantifying the degree of inhomogeneity and 

anisotropy in 3D printed materials is an open question in 
mechanics and lies outside the scope of our paper. Accord-
ingly, the printed grains constituting the circular- and 
arbitrarily-shaped assemblies have the same mechanical 
properties, i.e. a Young’s modulus E = 63 MPa and a Pois-
son’s ratio � of approximately 0.5. The height of the grains 
was set to 20 mm. The circular-shaped assembly has a total 
of Np = 313 grains while the arbitrarily-shaped assembly 
is comprised of Np = 398 grains . The arbitrarily-shaped 
assembly is engineered based on X-ray Computed Tomog-
raphy images of a sand sample (Caicos ooids) [29, 37]. 11 
grain shapes are extracted for their different morphological 
properties (i.e. sphericity and roundness). The selected grain 
shapes are then copied and scaled to follow a log-normal 
distribution. Finally, a row of circular Teflon cylinders is 
added between the shear cell boundaries and the granular 
sample to ensure that the cell is sufficiently filled.

As the sample is sheared, we perform simultaneous meas-
urements of particle- and continuum-scale quantities that 
govern the mechanical behavior of granular materials. At the 
particle-scale, the geometrical arrangement of the granular 
assembly, including the position of contact points and cen-
troids, is characterized by means of image processing (i.e. 
the watershed segmentation algorithm [38–40] from Matlab 
Image Processing Toolbox). The 2D Digital Image Correla-
tion (2D-DIC) software VIC-2D (Correlated Solutions, Inc., 
Columbia, SC, USA) [41] is used to measure the intra-parti-
cle full-field displacements and strains by comparing digital 
images in the undeformed and deformed configurations [42, 
43]. The intra-particle full-field stresses are extracted from 
the strains assuming Hooke’s law applies. Figure 3 shows 
an example of the measured strain field and computed stress 
field for the arbitrarily shaped particle assembly at shear angle 
� = 13.9◦ . The normal and tangential inter-particle forces are 
inferred using the Granular Element Method (GEM) [10, 36, 

Fig. 2   Picture of the experimen-
tal setup



Capturing the inter‑particle force distribution in granular material using LS‑DEM﻿	

1 3

Page 5 of 16  43

44], provided that average particle stresses and contact point 
locations are known. Figure 4 presents experimental results of 
the intra-particle stresses and force networks obtained using 
the aforementioned measurement techniques at different shear 
angle � in the circular- and arbitrarily-shaped assemblies.

At the macroscopic scale, the Cauchy stress tensor �̄ is 
expressed as a function of the inter-particle forces and fabric 
[45] as follows:

(7)�̄ =
1

V

Nc∑
c=1

sym (f c ⊗ bc)

where Nc is the total number of contact points, V is the total 
volume of the granular assembly, f c is the inter-particle 
force, and bc is the branch vector at the contact c.

More details on the experimental setup, granular assem-
blies, and measurement techniques can be found in [29, 36].

3.2 � LS‑DEM simulations

Since the experiments are quasi-2D, we carry out 2D LS-DEM 
simulations—every simulated particle has a one-to-one cor-
respondence to the one used in the experiment, as shown in 

Fig. 3   a Measured shear strain 
field using DIC and b accord-
ingly computed principle stress 
difference using the measured 
strain via Hooke’s law

Fig. 4   Inter-particle forces 
inferred with GEM superim-
posed on difference of principal 
stresses �

1
− �

2
 at different 

values of shear angle � for a–c 
the arbitrarily-shaped and d–f 
circular-shaped assemblies
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Fig. 5. In the following, based on the experimental setup, we 
discuss how we implement the boundary condition, choose 
the contact model and determine all parameters used in our 
simulations.

3.2.1 � Boundary condition implementation

In order to properly implement the boundary boundary con-
ditions, we start by drawing a free body diagram (Fig. 6), in 
which we consider the boundary frame “AD-DC-CB” with-
out the arm “AB” which is mounted to the table and fixed. 
In this way, under quasi-static loading condition, “AD-DC-
CB” must always be in equilibrium by balancing all external 
forces: forces exerted by the particles ( Fkl ), forces imposed by 
the weight and shear-driving motor ( FN and Fh respectively) 
and reaction forces at the two slider ( FA and FB ). Taking the 
granular assembly as a whole with one stress state, firstly we 
can estimate the forces exerted by the particles to the boundary 
as the following:

where �� is the 2 × 2 stress tensor for the granular assembly 
at a shear angle � , nkl and Skl are respectively the normal and 
cross-section area of each confining bar with kl = AD , DC 

(8)Fkl = −�� ⋅ nklSkl
or BC. By force equilibrium we can solve for FA , FB and Fh , 
all of which cannot be measured in our experiments (see 
“Appendix 2”). In our implementation, we choose to take 
(|FA| − |FB|)sin� as an input in addition to FN and � , and 
compute the vertical dilation ratio �� = (h� − h0)∕h0 × 100% 

Fig. 5   a, c Initial configuration 
of the set up, b, d correspond-
ing 2D simulation setup for 
cylindrical particle case and 
arbitrarily shaped particle case; 
every simulated particle has 
a one-to-one correspondence 
to the one used in the experi-
ment—same initial configura-
tion, size, shape and density

Fig. 6   Free body force diagram of the boundary frame “AD-DC-CB”; 
F
A
 , F

B
 and F

h
 are not directly measured from experiment
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by moving DC vertically based on the force equilibrium in 
the y direction, where h� and h0 are respectively the heights 
of the arm DC at a given shear angle � and at � = 0 . Table 1 
shows the input quantities and also the output quantities of 
interest.

3.2.2 � Contact between cylinders with parallel axes

In section two we presented the general contact model for 
our LS-DEM implementation. In this section we discuss the 
specific expression for each parameter such as kn . In our 
experimental setup, for case one each contact takes place 
between two cylinders with parallel axes, we use the fol-
lowing applicable Hertzian contact theory that allows us to 
express the contact force Fc in the following way [46]:

where E∗ is the effective modulus and can be determined via 
1∕E∗ = (1 − �2

1
)∕E1 + (1 − �2

2
)∕E2 with �1, �2,E1,E2 being 

the Poisson’s ratio and elastic modulus of the two contact 
cylinder respectively, L is the cylinder length, and � is the 
indentation depth. Approximating � by d we accordingly 
determine the normal contact stiffness by:

This model holds for contact between a cylinder and a 
flat surface by treating the flat surface as a cylinder with 
infinite radius. We assume that such model also holds for 
contact between two arbitrarily shaped particles with paral-
lel axes. In DEM common practice is to take kt = �kn with 
0.5 ≤ � ≤ 1 [13, 28, 30, 35]. However, it is found that simu-
lation results are not sensitive to the particular value of � 
[30], we therefore keep the same ratio as in [35] by taking 
� = 0.9 . In this way, all parameters of the contact model can 
be physically defined and directly determined from experi-
mental measurements.

3.2.3 � Parameter determination

To this point, all other parameters ( kn, �,�s ) are introduced 
except two: global damping � and time step Δt , both of 
which are closely tied to the implemented time integra-
tion scheme in LS-DEM. In our study, for 2D we rewrite 
the equations of motion considering damping and use the 

(9)Fc =
�

4
E∗L�

(10)kn =
�

4
E∗L

centered finite difference integration scheme proposed in 
[47] for numerical integration:

where vn+1∕2
i

 , vn−1∕2
i

 , �n+1
i

 and �n
i
 are respectively the veloci-

ties and rotational positions of particle i at different discre-
tized time step. The global damping � has unit of inverse of 
time, and dissipates the kinetic energy of each particle as 
if it is immersed in viscous fluid. We note that simulations 
are carried out in a loading rate faster than that imposed in 
experiment since it is computationally very expensive to use 
the real quasi-static loading rate. Accordingly, the introduc-
tion of � allows us to maintain quasi-static numerically by 
quickly dissipating kinetic energy, and helps with accounting 
for the dissipative frictional force between particles and the 
underlying glass plate that is not directly modeled in our 
simulation. We set Δt to be a small fraction of ttol to main-
tain numerical stability, where ttol is the characteristic binary 
collision time between two particles [33]. Now the complete 
parameter space of our LS-DEM model is

In this parameter space, Δt and � are determined based on 
common DEM computation practice. We also know the con-
tact stiffness between the 3D-printed particles from the 
measured Young’s modulus and Poisson’s ratio (see the 
experiment section). For the associated friction coefficient, 
we consult [48] where a similar rubber-like material is used 
for particle fabrication, and a value of 0.6 is used. We adjust 
0.6 to 0.5 such that the stress component �y,� under uniaxial 
compression before shear is applied ( � = 0 ), matches the 
applied compression force FN on the confining bar (properly 
scaled by the cross section of the confining bar). Here �y,� is 
computed from the Christofferson equation using the inter-
particle forces inferred by GEM. With these four parameters 
being constrained, the actual parameter space reduce to just 
� . We note here that, since the PTFE particles are not con-
sidered for forces computation in the experiments, the asso-
ciated friction coefficient and elastic properties are not 

(11)mir̈i + 𝜉mivi = f i

(12)Ii�̈i + 𝜉Ii�i = Ti

(13)v
n+1∕2

i
=

1

1 + �Δt∕2

[
(1 − �Δt∕2)v

n−1∕2

i
+

Δt

mi

f i

]

(14)�
n+1∕2

i
=

1

1 + �Δt∕2

[
(1 − �Δt∕2)�

n−1∕2

i
+

Δt

Ii
Ti

]

(15)rn+1
i

= rn
i
+ Δtv

n+1∕2

i

(16)�n+1
i

= �n
i
+ Δt�

n+1∕2

i

(17)℘ =
[
kn, �, �s, Δt, �

]

Table 1   Simulation input and 
output of interest Input F

N

�

(|F
A
| − |F

B
|)sin�

Output �� =
(h�−h0)

h0

× 100%



	 L. Li et al.

1 3

43  Page 8 of 16

measured. We set the friction coefficient between PTFE cyl-
inders and that between PTFE cylinder and aluminum 
boundary bar both to be 0.1, elastic modulus to be 0.5 GPa 
and Poisson’s ratio to be 0.46 based on [49]. As the 
3D-printed particles has much rougher surface than those of 
the PTFE particles, we set the associated friction coefficient 
between them to be 0.5 as well. Tables 2 and 3 show values 
of relevant parameters used in our simulation, where �1 and 
�2 are the damping parameters determined for cylindrical 
particle case and arbitrarily shaped particle case respec-
tively. Again, we note that all modeling parameters except � 
are kept as the same for both cases and are consistent with 
our experimental measurements. While the damping param-
eter � can not be measured experimentally, the determined 
�1 and �2 are consistent with those estimated from a structural 
dynamics perspective [50]: for each particle in the system, 
we may simplify its interaction with all other surrounding 
particles effectively as a linear spring-dashpot system (LSD) 
with corresponding stiffness keff ∼ kn and damping 
�eff ∼

√
keff∕m , where kn and m are the contact stiffness and 

mass of the considered particle. Since most particles in 
experiments are 3D printed, we estimate keff  by considering 
the elastic property (shown in Table 2) of such material, and 
compute the average mass of all 3D-printed particles, which 
together for both case gives � ∼ 104—in close proximity to 
the determined �1 and �2 . We further note that due to the 
particle mass distribution of each experiment case is differ-
ent, we expect slight discrepancies between �1 and �2.

3.3 � Comparison between LS‑DEM simulation 
and experimental results

In this section we show the comparison between LS-DEM 
simulation and experiment results on both the macro scale 
and the inter-particle force level scale.

3.3.1 � Macro‑scale mechanical response

LS-DEM has already been shown to be able to capture the 
macro-scale deformation and shear-banding of real sands 
subjected to triaxial loading [35]. Therefore our study serves 
as another evaluation on the ability of LS-DEM on capturing 

the macro-scale response with additional results on the grain 
scale. As mentioned before, on the macro scale we compare 
two quantities: the vertical dilation ratio �� =

h�−h0

h0
× 100% 

and the average stress �� at a given shear angle � computed 
according to Eq. 7. Figures 7 and 8 show the comparisons 
for �� and the three stress components of �� : �x,� , �y,� and �� 
for both experimental cases. Our model correctly captures 
not only the evolution of all three stress components with 
increasing � but also the vertical dilation ratio evolution, see 
Figs. 7 and 8. For the arbitrarily shaped particle experiment, 

Table 2   Experimentally measured material properties

Material properties Boundary 
(alu-
minum)

PTFE cylinders 3D-printed 
particles

Young’s modulus E (GPa) 72 0.5 0.0635
Poisson’s ratio � 0.33 0.46 0.5
Density � ( kg∕m3) 2700 1471 961

Table 3   Other model input parameters

Parameters Value

L (m) 0.02
�
s
 (between boundary and PTFE cylinder) 0.1

�
s
 (between PTFE cylinders) 0.1

�
s
 (between PTFE cylinder and 3D-printed particle) 0.5

�
s
 (between 3D-printed particles) 0.5

Δt (s) 10−5

� 0.9
�1 ( s−1 ) [calibrated] 1.7 × 104

�2 ( s−1 ) [calibrated] 1.1 × 104
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Fig. 7   Vertical dilation �� and stress �� response as the shear angle � 
increases computed from experiment and simulation for the cylindri-
cal particle case
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for �� we notice that although our model shows an earlier 
dilation than that from experiment, it is able to capture the 
overall trend and both the maximum compaction and the 
maximum dilation ratio at the right amount and under the 
right shear angle � (Fig. 8). Our results demonstrate that by 
using a suitable contact model, LS-DEM is able to quanti-
tatively capture the macro scale response of granular mate-
rial with all model parameters (except the global damping 
� ) being directly determined experimentally without any 
calibration.

3.3.2 � Particle‑scale force response

In this section, we go one scale downward and for the first 
time make comparison between experiment and simulation 
at the inter-particle force level. We note that, the simulations 
use the same physical parameters ( �s , � , E and � , see 
Tables 2, 3) as in the experiments. In our particular cases, 
we are unable to make one-to-one comparisons of kinemat-
ics and even worse kinetics at the particle level, as the par-
ticle systems are chaotic—small perturbations can create 
large differences. Additionally, a given contact point is spo-
radic and cannot be traced in time. As such, in terms of the 
inter-particle forces, we present qualitative and statistical 
comparisons. First, in terms of qualitative comparisons, 

Fig. 9 show the spatial distribution of inter-particle forces 
for both cases in experiments and simulations at four differ-
ent shear angles � = 0.2◦, 4.4◦, 8.0◦and 13.9◦ . It can be 
observed that even though the exact spatial locations of large 
force chains are not the same between experiments and sim-
ulations, our simulations can capture the overall evolution 
of force network qualitatively. One step further, in terms of 
statistical comparisons, we compare inter-particle forces in 
terms of their distribution; specifically, the polar diagram of 
contact force magnitude |f c| , the polar diagram of friction 
mobilization � =

|f ct ||f cn| , and the polar histogram of contact 
orientation defined as the direction of f c

n
 ( f c

n
 is defined as 

the normal component of f c ). Figures 10 (for cylindrical 
particle case) and 11 (for arbitrarily shaped particle case) 
show the results of |f c| , � and contact orientation from simu-
lation and experiment at the same four shear angles. For all 
three quantities, simulations show both qualitative and quan-
titative agreement with experiments. In particular, in terms 
of the polar diagram of contact force and polar histogram of 
contact normal, our model successfully captures: (1) their 
rotation as the shear angle � increases, and (2) larger contact 
forces are less mobilized than smaller ones (Figs. 10e, h, k, 
11e, h, k). We observe that, especially for the case of cylin-
drical particles, however, simulations slightly under-estimate 
the magnitude of friction mobilization � . A possible reason 
could be that due to manufacturing errors the 3D printed 
spherical particles may show slight deviation from perfect 
disks which are however implemented in our simulation. 
This explanation is consistent with the result that the arbi-
trarily shaped particle case shows higher friction mobiliza-
tion than the spherical shaped particle case.  

4 � Conclusions and future outlook

This study for the first time presents systematic analysis that 
evaluates the ability of LS-DEM on predicting particle scale 
response of granular material beyond the macro-scale, and 
beyond simple particle shape. Our contribution can be sum-
marized as follows:

•	 We show that by using the suitable contact model, LS-
DEM is able to capture quantitatively the macro scale 
mechanical response of granular material measured from 
experiments, with all model parameters being physically 
well-defined and directly measured from experiments 
(except damping).

•	 We for the first time perform systematic comparison 
between simulation and experiment results at the particle 
scale. We show that LS-DEM simulations, with all model 
parameters being consistent with experimental measure-
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Fig. 8   Vertical dilation �� and stress �� response as the shear angle � 
increases computed from experiment and simulation for the arbitrar-
ily shaped particle case
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ments, can quantitatively predict the inter-particle force 
distribution among particles with various shape.

Our study also opens the door for several valuable future 
investigations. For instance, is it possible to directly deter-
mine the global damping � from experimental measure-
ments? In our current implementation � is computed based 
on the average mass of the system and is held constant for 
each particle—this turns out to be a rather good approxi-
mation for our case since all particles have similar mass; 
however, this may be problematic for system with high poly-
dispersity. It may be beneficial to consider particle scale 
damping that is commonly used for highly dynamical situa-
tions such as granular flow [13, 30], where the particle scale 
damping between two particles in contact is determined by 
the mass of the two particles, the coefficient of restitution e 
and the contact stiffness kn . Investigations along this direc-
tion remains a topic for the future.

To conclude, by systematically comparing experiment 
and numerical simulation results at both macro and particle 
scales, we show the versatility and potential of LS-DEM in 
studying the physics and mechanics of granular materials. 

We also present several valuable future investigations on 
LS-DEM with the goal of multi-scale predictability. Along 
this direction, LS-DEM opens an avenue to efficiently study 
the inter-play between particle shape and inter-particle force 
distribution which remains vital in understanding not only 
many natural phenomena such as booming sand dunes [51], 
but also engineering granular particles for novel properties 
[52].
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Appendix 1: Resolve the mesh‑dependency 
of current LS‑DEM implementation

As mentioned in Sect. 2, in LS-DEM currently force and 
moment contributions from all penetrating nodes are consid-
ered, which in fact will cause LS-DEM to be mesh-dependent 

Fig. 9   The spatial distribution of inter-particle forces measured from experiments (red) and computed from simulations (blue) for both cases. All 
forces are shown under then same scale for a clear comparison (color figure online)



Capturing the inter‑particle force distribution in granular material using LS‑DEM﻿	

1 3

Page 11 of 16  43

in displacement controlled loading condition - the mechani-
cal response of a particle system will depend sensitively on 
the discretized fineness of each particle’s surface, i.e. how 
many nodes each particle has. However, such mesh-dependent 

behavior vanishes for force controlled loading condition. To 
see this, using both LS-DEM and DEM with exactly the same 
model parameters we present several numerical tests of two 
identical frictional disk with radius R = 15 mm vertically 

Fig. 10   Particle scale response 
represented by the polar 
diagram of contact force 
magnitude f c , the polar diagram 
of friction mobilization � =

|f ct ||f cn| , 
and the polar histogram of 
contact normal at four different 
shear angle: � = 0.2

◦ (a–c), 
� = 4.4

◦ (d–f), � = 8.0
◦ (g–i), 

and � = 13.9
◦ (j–l) from 

experiment and simulation for 
cylindrical particle case
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stacked between two rigid walls with the top wall being moved 
downward via either displacement controlled ( Δ ) or force con-
trolled condition (f), as shown in Fig. 12. In either case we 

output two quantities: the contact force magnitude |F|, and 
the inter-particle penetration d. For DEM d = 2R − |r1 − r2| 
where r1, r2 are the centroid position of the two particle 

Fig. 11   Particle scale response 
represented by the polar 
diagram of contact force 
magnitude f c , the polar diagram 
of friction mobilization � =

|f ct ||f cn| , 
and the polar histogram of 
contact normal at four different 
shear angle: � = 0.2

◦ (a–c), 
� = 4.4

◦ (d–f), � = 8.0
◦ (g–i), 

and � = 13.9
◦ (j–l) from 

experiment and simulation for 
arbitrarily-shaped particle case
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respectively; for LS-DEM d =
∑

z dz where we sum over the 
penetration dz of all penetrating nodes. For LS-DEM simula-
tion each disk surface is randomly spatially discretized with 
either 30, 50 or 70 nodes. As shown in Fig. 13, the mesh-
dependence problem appears for displacement controlled load-
ing condition while vanishes for force controlled case. This 
can be explained by the following: in displacement controlled 
case the top wall is displaced downward for a certain amount 
that will lead to larger contact force with denser disk surface 
discretization, which subsequently leads to increasing |F| and 
d; while for the force controlled case, external force is already 
known and is used to compute displacement by enforcing equi-
librium − no matter how dense the surface discretization is the 
total force from all penetrating nodes should always equilibrate 
the externally prescribed one. Therefore the results for |F| and 
d all collapse onto those computed from DEM.

In order to solve this mesh-dependency problem and further 
show that LS-DEM converges to DEM with proper modifica-
tion, two simple approaches are tested: regarding the contribu-
tions from all penetrating nodes, we either take average or only 
consider the one with maximum penetration:

(18)f n =
1

P

P∑
z=1

f n,z, f t =
1

P

P∑
z=1

f t,z

Fig. 12   a Displacement controlled and force controlled loading con-
dition with prescribed Δ and f respectively, and both with output the 
inter-particle force F and penetration d; b, c Loading curve of input 
Δ and f 

Fig. 13   Inter-particle force 
magnitude |F| and penetration 
d response for displacement 
controlled case (a, b), and for 
force controlled case (c, d) from 
DEM simulation and LS-DEM 
simulations with 30, 50 or 70 
nodes
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or

As shown in Fig. 14, for displacement controlled loading 
condition, both approaches resolve the mesh-dependency 
problem but only the modification of considering maximum 
penetration can further make LS-DEM converge to DEM: 
the computed |F| and d from LS-DEM converge to those 
computed from DEM as the node number N discretizing 
a grain surface is increased from 30 to 70. We can expect 
that as N goes larger and larger, LS-DEM will converge to 
DEM for simulating circular particles with exactly the same 
model parameters.

Appendix 2: Boundary condition 
implemenation

Here we discuss our methodology in estimating the variation 
of |FA| and |FB| as � increases. We note first that all quantities 
mentioned here are experimentally measured. Following the 

(19)
f n = f n,zm

|||dzm = max1≤z≤P
{
dz
}
,

f t = f
j,i
t,zm

|||dzm = max1≤z≤P
{
dz
}

discussion in Sect. 3 (Fig. 6), we assume the forces exerted by 
the particles and from FN to the boundary “AD-DC-BC” all 
act at the center of each bar and the former can be estimated 
based on the stress state of the granular assembly �� . In each 
configuration with a certain � value, we have the following 
unknown vectors: FA , FB and Fh , see Fig. 6. However, we 
only end up having three instead of six unknowns due to our 
experiment setup: FA and FB should always be perpendicular 
to AD and BC, and Fh should always be horizontal. We herein 
denote them as FA , FB and Fh as the corresponding signed 
magnitude: if positive the force is along the assumed direction, 
otherwise opposite. With force and torque equilibrium we have 
three equations and can therefore solve for FA , FB and Fh . At a 
certain configuration with a given � , we assume that:

Forces exerted by the particles can be estimated by:

(20)FA = FA

[
cos� sin�

]
,

(21)FB = FB

[
cos� sin�

]
,

(22)Fh = Fh

[
1 0

]

(23)Fpq = −
(
�� ⋅ npq

)
Spq

Fig. 14   Inter-particle force 
magnitude |F| and penetration d 
response for the same displace-
ment controlled case from 
DEM simulation and LS-DEM 
simulations with 30, 50 or 70 
nodes; a, b taking average for 
all penetrating nodes and c, d 
considering only the node with 
maximum penetration
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where “pq” is one of “ AD”, “DC” and “BC” and Spq is the 
corresponding arm area. By force and torque equilibrium 
we must have:

where Fl stands for all external force exerted to “AD-DC-
CB” with rlM being the position vector point from point M 
(center of bar “DC”) to the location of Fl . Combining the 
above equations and after some algebra we arrive at the fol-
lowing linear system:

where

with

where rA and rB are locations of the slider A and B which 
both remain unchanged through the experiment with the sub-
scripts “1” and “2” denote the x and y component respec-
tively. Solving the above linear system can give us the esti-
mation of FA and FB.
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