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Abstract
In this paper, to simulate free surface flows of granular materials in a dense regime as a continuum media, a 2D SPH model 
is developed. The dense flow is characterized as a pressure dependent visco-plastic material based on a local constitutive 
law to calculate effective viscosity related to local pressure and the norm of strain rate tensor in the numerical method. A 
simple regularization technique is proposed to reproduce stopping condition and the free surface of a granular flow where 
the pressure vanishes. Pressure fluctuation as the main drawback of the weakly compressible SPH method leads to an 
inaccurate pressure distribution. This numerical instability increases at the free surface due to errors associated with the 
truncated kernels. In this work, a new algorithm is proposed to remove the nonphysical fluctuations by relating divergence 
of velocity to the Laplacian of pressure. The algorithm is validated for reproducing the dynamics and deposits of collapsing 
granular columns. The excellent agreement with experimental data is obtained. The maximum thickness of a granular flow 
on a rough inclined plane is obtained based on the local rheology model. The run-out distances and slopes of the deposits 
in the simulations also show good agreement with the values found in the experiments.

Keywords Dense granular material · SPH · Pressure dependent visco-plastic material

1 Introduction

The mechanical behavior of the dry granular material flows 
is of great importance in various fields, including geophys-
ics, physics, and industry. A lot of theoretical and empiri-
cal research has been devoted to this topic, especially for 
determining the mechanical properties of the granular flow.

Based on the velocity and conditions of the granular 
material flow, the following three regimes are considered: 
(a) Pseudo-static state or plastic flow for low velocities. (b) 
The viscous or fluid regime(dense state) in which the parti-
cles flow through contact interactions. (c) Gaseous regime 
when the granular particles have high velocity variations 
and the main interaction of the particles is a binary colli-
sion. Theories described for the flow of granular materials 
are different in each other. However, due to the frequency of 

application, the study of the dense state for granular flows 
is of great interest.

The spreading of collapsing columns of sand and other 
granular materials on a flat surface has been studied using 
both experimental and computational methods. Lajeunesse 
et al. [1, 2] and Lube et al. [3–5] provide an extensively doc-
umented set of experimental case studies. These experiments 
mainly performed on horizontal planes in channels. Also 
Pouliquen [6] and Mangeney et al. [7] describe laboratory 
experiments of granular material flowing over an inclined 
plane covered by an erodible bed.

Many numerical methods have been used to simulate 
granular flow. One of the most accurate numerical meth-
ods to simulate flowing granular media is the Discrete Ele-
ment Method (DEM) [8]. The first application of DEM to 
model granular flows was proposed by Cleary et al. [9]. 
Further improvements have been described in [10–12]. The 
DEM method solves the classical equations of motion on 
each grain individually. In spite of its conceptual simplic-
ity, unfortunately, DEM results in untenable computational 
expense over the large physical domains in geological 
applications.
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One way to describe dry granular flows is to use constitu-
tive equations that express them as a continuum and incom-
pressible media, such that the shear stress is calculated by 
the particle displacement. The continuum rheology models 
provided by Da Cruz et al. [13] and Jop et al. [14], as well as 
the generalized non-local relation by Kamrin et al. [15] for 
granular flow, have yielded significant improvements com-
pared to the rate-dependent Drucker–Prager [16] model for 
modeling problems with relatively high strain rates (zones of 
dense). The volume of fluid (VOF) method has been used in 
Lagr’ee et al. [17] and the finite-element method (FEM) was 
used in Kamrin [18]. While both methods provide accept-
able results for simple problems, the VOF method has diffi-
culties with extensional disconnection, and cannot determine 
truly static zones.

On the other hand, Mesh-free particle methods are effec-
tive for solving free surface problems. The smoothed particle 
hydrodynamics (SPH) is a mesh-free Lagrangian method 
developed by Lucy [19] and Gingold and Monaghan [20] 
to solve astrophysical problems. It has been successfully 
applied to a huge range of applications such as the dynamic 
response of material strength [21, 22], turbulent flow [23] 
and free surface flows [24–26]. Laigle et al. [27] and Pasculi 
et al. [28] performed SPH simulation for mudflows using 
Bingham-type fluids and Bui et al. [29] and Nguyen et al. 
[30] used elastic–plastic relations to model soil failure flows. 
Based on empirical studies conducted by Jop et al. [14] and 
Pouliquen et al. [31], a so-called, �(I) , local constitutive law 
was suggested and demonstrated to be effective in describing 
the dense granular flow. This model correlates the tangential 
stress to normal stress with dimensionless inertial number 
I, which characterizes the local state of granular packing.

In a method for the modeling of incompressible flows, an 
appropriate state equation that correlates pressure changes 
with density changes is used. This approach is known as 
the weakly compressible smoothed particle hydrodynamics 
(WCSPH). In this method, numerical instabilities on the free 
surface are due to the incompleteness of the kernel support 
domain and the error in determining the free surface loca-
tion [32]. In this work, a new algorithm is proposed which 
can be useful for modeling free-surface flows to produce 
accurate and stable results. In this algorithm, the divergence 
of velocity is linked to the Laplacian pressure in the equa-
tion of mass conservation. The velocity–pressure coupling, 
eliminate non-physical oscillations. Also, the gradient of 
interpolation function is normalized using the correction 
tensor of first-order derivatives. Although these enhance-
ments have been examined separately, the simultaneous use 
of these reforms leads to a stable and consistent approach.

The purpose of this work is to use the local rheology 
model in a proposed SPH algorithm for the simulation 
of complex free surface dense granular flows. The paper 
is organized as follows: Sect. 2 describes the governing 

equations used to simulate free-surface flows of granular 
materials. The brief introduction to SPH is presented in 
Sect. 3 then modified SPH algorithm is discussed in Sect. 4. 
Section 5 reviews the formulation of the constitutive law; 
The validation of the model is performed in Sect. 6 by 
reproducing few simple free-surface flow test cases and by 
reproducing experimental measurements of granular mate-
rial collapses by Lube et al. [3, 4] and Mangeney et al. [7]. 
The discussion and conclusions are given in Sects. 7 and 8.

2  The Governing equations

In the present work, the granular material is considered as 
a fluid that moves with a field flow based on a “continuum” 
approach. The governing equations for a continuum flow are 
presented in the following Lagrangian form:

where, � and � are density and dynamic viscosity of the 
fluid, � is the velocity vector of the fluid and p is the pressure 
of the fluid. � is gravity acceleration, and t indicates time. 
The sub-particle scale (SPS) stress tensor � is necessary to 
represent the effects of eddy viscosity with a coarse spatial 
resolution, and its application into the particle simulation 
has been initially developed by Gotoh et al. [33]. The SPS 
model has been applied successfully in several free surface 
problems in SPH [23, 34]. The SPS stress in the particle 
simulation needs to be modeled for introducing an effect of 
the eddy viscosity. The SPS stress is represented as [23]:

Where ksps and �t are the kinetic energy and the eddy vis-
cosity, respectively. �̇�ij indicates the strain rate of the flow 
(i and j here denote spatial coordinates). It is assumed that, 
the eddy viscosity and the kinetic energy are modeled by the 
static Smagorinsky model as:

where cs is Smagorinsky constant and is equal to 0.2, �x is 
the initial particle spacing and �̇� =

√
2�̇�ij ∶ �̇�ij is the norm of 

strain rate tensor, where, the components of the rate of strain 
tensor can be written as:
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In SPH method, the dry granular material is assumed to 
behave as a quasi-compressible material. It is approximated 
by an artificial material that is more compressible than the 
real one. The pressure term in Eq. (2) is calculated using an 
equation of state, which has a function of density change; 
thus, the pressure equation of granular material will obey 
Hooke’s law [35]:

Where K is the bulk modulus, V is the volume, �V∕V  is the 
volumetric strain, and �0 is the initial density of the soil. 
K should be chosen as small as possible in order to ensure 
a near incompressibility condition. In this study, we chose 
K = 50�0gHmax (50 times the maximum initial pressure) 
[35], where Hmax is the initial height of the granular column. 
This kind of approach for setting up SPH computations is 
usually referred to as weakly compressible SPH (WCSPH).

3  Smoothed particle hydrodynamics (SPH) 
formulation

In SPH, The integral representation of function A is approxi-
mated by a smoothing kernel function wh

(|r − r�|) , with a 
smoothing length h:

Where � is the supporting domain. The particle approxima-
tion of Eq. (10) for particle a, can be written as [36]:

Where ∀b is the volume of particle b, rab is the distance 
between particles a and b, particle b is in the support domain 
of particle a. Hereafter Wh

(
rab

)
= Wh

(||ra − rb
||
)
 will be sim-

ply written as: Wab.The choice of smoothing kernel func-
tion in SPH will directly affect accuracy, efficiency, and the 
stability of the numerical algorithm. In this study, the cubic 
B-spline kernel proposed by Monaghan and Lattanzio [37] 
was used:

where �D is 10

7�h2
 for two-dimensional space and q is the nor-

malized distance between particles a and b defined as q =
r

h
 . 
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4
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1

4
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For the cubic B-spline function, the effective area of support 
domain is 2 h.

3.1  Continuity equation

The discrete form of the continuity Eq. (3) for particle a is:

where �ab = �a − �b is the relative velocity of particles a 
and b. ∇aWab = ∇aW

(
ra − rb, h

)
 is the gradient of the kernel 

function. The kernel gradient normalization is used due to 
its increased accuracy [38]. The expression for the kernel 
gradient normalization is:

where

3.2  Momentum equation

The particle acceleration from the pressure gradient can be 
approximated as:

This form ensures linear and angular momentum conver-
sation [39]. Morris et al. [40] suggested an expression for 
viscous and Laplacian operators. The expression, shown in 
following Eq. (15), has been applied in Xu et al. [41] for 
internal flow simulations.

Where � is the dynamic viscosity; �ab = �a − �b and � is a 
small value to avoid singular denominator. While this for-
mulation preserves the linear momentum, it does not gen-
erally preserve angular momentum. In SPH formulation, 
the angular momentum conservation properties influence 
its performance especially in the simulation of violent free 
surface flows. For This reason, Cleary et al. [42] proposed 
the new formulation that conserves angular momentums and 
performs better for turbulent flows:
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However, Eqs. (15–16) result in many numerical errors 
around the free surface. By showing the inaccuracy of these 
relationships in the absence of precise interpolation around 
free surfaces, Schwaiger [43] expressed the Laplacian of 
pressure and viscosity term with the suggestion of a new 
operator:

where n is the number of dimensions and �  is a tensor, 
defined as:

where i and j stand for the coordinate directions, different 
from a and b for the particles. The gradient calculation in 
the second term on the right hand side of Eqs. (17) and (18) 
is corrected through Eq. (12), which can further reduce the 
error around the free surface [43]. Thus, on applying the 
above spatial discretizations,the discretized conservation of 
momentum equation is,

 In the present study, the SPH formulations preserving con-
servation properties were preferred.
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3.3  Boundary treatment

Three layers of dummy particles, called ’boundary particles’, 
are generated in the boundary region parallel to solid wall, to 
simulate the solid boundary proposed by Morris et al. [40], see 
Fig. 1. The main advantage of dummy particles is the simplic-
ity of their use in complex geometries, as well as the exact 
description of the boundary in simulation, when the initial 
arrangement of particles is performed.

In Fig. 1, The fluid particles near the wall interact with the 
dummy particles based on their support domain. The distance 
between the dummy particles is equal to the initial distance 
between the real particles and the dummy particles are not 
allowed to move. The viscosity given to the dummy particles 
is the same as of the real particle, and the fictitious velocity 
is linearly determined in terms of their distance from the cor-
responding boundary of the neighboring fluid particle with the 
following equation:

The velocity differences are calculated by using the follow-
ing equation:

Where the non dimensional � value is chosen so that:

(21)�b = −
db

da
�a

(22)�ab = ��a

(23)� = min

(
�max, 1 +

db

da

)

Fig. 1  Fluid particle ( ∙ ) interact with dummy particles representing 
the wall ( ◦ ) to ensure full support of the kernel interpolation
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The choice �max = 1.5 by Morris et al. [40] led to good 
results. In this research, good results have also been obtained 
by choosing �max = 1.8.

For the pressure calculation of dummy particles, Adami 
et al. [44] applied a free-slip wall boundary condition by sim-
ply omitting the viscous interaction of a fluid particle with 
adjacent dummy particles. As shown by Adami et al. [44] the 
pressure of a stationary dummy particle, w, inspired by a single 
approaching fluid particle, f, is computed as:

 The quantities corresponding to dummy and approaching 
fluid particles are denoted by respective subscripts, hereaf-
ter. The second term on the right hand side of Eq. (24) is the 
hydrostatic component. In the SPH convention Eq. (24) is 
expressed as:

As we do not update the properties of dummy particles in a 
wall, we obtain its density from the pressure p�:

4  Modified SPH algorithm

Using Eq. (14) to determine the pressure gradient leads to the 
calculation of non-zero pressure gradients for constant pres-
sure fields. Hence, the inaccurate determination of the pressure 
and the increase of its oscillations will result in a numerical 
error, especially in free surface regions. Fatehi and Manzari 
[45] showed that the velocity–pressure coupling reduces the 
nonphysical fluctuations. In an explicit time-marching scheme, 
the continuity Eq. (1) to update densities is introduced as:

The SPH discretization of momentum equation, namely Eq. 
(2) as an explicit time-marching scheme leads to:

 Thus, The coupling between the velocity of the fluid and the 
pressure field can be presented as:
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The pressure fluctuations are prevented by applying a similar 
approach. To this end, ∇.

(
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)
 in Eq. (29) is substituted by 

an equivalent term ∇
2p
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1
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∇�.∇p . Therefore, using:

The revised form of the semi-discredited continuity equation 
can be written as:

In which � ≥ 1 is a constant. Using this multiplier, one can 
adjust the amount of correction term to remove the unwanted 
pressure oscillations in the solution. It is worth noting that

 The step size is determined according to the stability condi-
tions based on the speed of sound and viscosity [36]:

where ca is sound speed of particle a and CCFL is the Cou-
rant–Friedrichs–Lewy number, assumed equal to 0.2 for the 
2D simulations carried out in the present work.

5  Constitutive law

The relation between pressure and shear stress in one-dimen-
sional problems is written as [13]:

 where the friction coefficient � depends on, inertial number 
I, proposed by Da Cruz et al. [13] which is provided by the 
following equation [14]:

 where |�̇�| is the shear strain rate, �s is the density of the 
grains material, and d is the granular grain diameter. The 
value of inertial number I, determines the state of the granu-
lar flow. For a low inertial number I, the flow is in a quasi-
static state with low velocity, and for a very large value of 
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I, a gaseous regime occurs with high velocity, in which par-
ticles do interact with each other [46]. The flow between 
the quasi-static state and gaseous regime is considered as a 
viscous or dense state, which the granular material behaves 
like a fluid. In the dense state, the friction coefficient � is 
locally determined by the inertial number I, and satisfies the 
following equation proposed by Jop et al. [14]:

 where �s and �2 are material-dependent parameters. A 2D 
or 3D equation has been extended by Jop et al. [14] based 
on the constitutive law in Eq. (34) for the granular material, 
as following:

In this rheology model, the viscosity is locally determined 
by the pressure p, inertial number I, and the shear rate |�̇�| . 
Based on extensive experimental data and analysis, we have:

where � = I0
(
�sD

2
)−0.5 . In Eq. (38), the first term of the 

right side represents the yield stress which distinguishes the 
solid-like and viscous-like flow regimes while the second 
term can be considered as the stress generated by the visco-
plastic behavior of a non-Newtonian fluid. When the vis-
cosity provided by the constitutive equation approaches to 
infinity, time step of Eq. (33) tends to zero, in these cases, a 
regularization method is needed to replace the large values 
of viscosity with small ones, to prevent the undesirable small 
time steps. The proposed regularization method, inspired 
from the Papanastasiou’s regularization [47] transposed to 
the �(I) rheology:

where �r = 0.01 and �s = 0.000001 . The viscosity profile is 
shown in Fig 2.

6  Numerical verification and applications

The proposed SPH method coupled with �(I) local rheology 
model is applied in modeling glass beads and sand granular 
flows. The model is first verified by applying it to free-sur-
face granular flowing down an inclined plane. The numeri-
cal results can be compared to analytical predictions and 
experimental data. Subsequently, the proposed algorithm is 
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��̇���
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s

applied to simulate granular column collapses for different 
column ratios and granular dam-breaking flows in rectangu-
lar channels. Numerical results are compared with different 
experimental observations.

6.1  Granular flow on an incline

We first consider a two-dimensional steady incompressible 
granular layer with thickness h, of the granular material of 
solid fraction � defined as � =

�

�s
 composed of grains of 

diameter d along an infinite plane inclined at an angle � . The 
analytical solution is the so-called Bagnold’s profile where 
the frictional granular shear stress is modeled using the �(I) 
rheology [48]. The steady-state velocity profile of the solu-
tion has the following expression [49]:

For this velocity profile, the mean velocity Ū and the mean 
inertial number Ī are defined respectively by:

where U(h) is the free surface velocity. Since the depth-
averaged velocity Ū is the same everywhere, equal to U0 . It 
is possible to determine it by using Eq. (40). In each point 
of the front, the velocity U0 is:

where Ī and I� are the inertial numbers associated with the 
flow of thickness h and the steady-uniform flow of thickness 
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h

d

Fig. 2  The variation of viscosity versus the pressure and the shear 
rate
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hs far upstream respectively. In fact, the function hs(�) is 
the thickness of the deposit left by a steady uniform flow at 
the inclination � . The Eq. (43) is the relationship between 
Ī and I�:

In the steady-uniform flow, the Eq. (36) can be expressed as 
a function of I� by using the friction law:

The Eqs. (43) and (44) allow us to replace Ī∕I0 with a func-
tion of h∕hs:

During experiments with granular material released down an 
inclined plane, the mean velocity Ū , the inclination � and the 
thickness h were related through the following experimental 
relation [50]:

where � and � are empirical parameters which depend on the 
material. Jop et al. [48] found the following expression for 
the parameter I0 of Eq. (36):

where L is a constant parameter which depends on the mate-
rial. In the constitutive law, I0 should be a constant, whereas 
it depends on � through the term 

√
cos � . However, this term 

does not vary much in the experimental range.
The values for parameters L,�,�,�s,�2 from experimental 

measurements obtained by Forterre and Pouliquen [50] are 
listed in Table 1.

For glass beads with � = 0.0 by using Eqs. (41) and (46), 
we obtain an empirical relation for Ī:

By using Eqs. (45), (47) and (48), one finds that hs should be 
related to inclination � and thickness h through the relation:

(43)
I𝜃

Ī
=

(
h

hs

)3∕2

(44)tan � = �(I�) = �s +
�2 − �s

1 + I0∕I�

(45)Ī

I0
=

(
hs

h

)3∕2
tan 𝜃 − 𝜇s

𝜇2 − tan 𝜃

(46)
Ū√
gh

= −𝛾 + 𝛽
h

hs(𝜃)

(47)I0 =
5

2

� d

L
√
� cos �

(48)Ī =
5

2

𝛽 d√
𝜑 cos 𝜃

1

hs

(49)h5∕2
s

= L.h3∕2
�2 − tan �

tan � − �s

In steady state, by setting the boundary condition 
h = hs = const. far upstream to the front, the Eq. (49) is 
simplified to the following form:

To validate the proposed algorithm and local pressure-
dependent viscosity, we will simulate here, the collapse of 
granular columns over inclined channels and compare results 
with experimental one [7]. The experimental set-up consists 
of a planar channel with 3m length with possible inclina-
tion angles � varying from horizontal up to 25.0◦ . A rectan-
gular granular mass of thickness h0 = 14 cm and of down-
slope length r0 = 20 cm , an aspect ratio a = h0∕r0 = 0.7 is 
released gradually from a reservoir at time t = 0.s by open-
ing a gate (Fig. 3).

The glass beads are sub-spherical, cohesion-less and 
highly rigid with a diameter d = 0.5mm . They flow 
down an inclined channel, roughened by gluing a layer 
of the same beads on its surface. The particle density 
�s = 2500 kgm−3 and volume fraction � = 0.6 of the 

(50)hs = L
�2 − tan �

tan � − �s

Table 1  Parameters for the rheology model [50]

† For glass beads by taking � ≈ 0.6 and an average value of � = 25◦ , 
I
0
= 0.279

Glass beads (d = 0.5 mm) † Sand (d = 0.8 mm)

L∕
d

1.65 2.03
� 0.0 0.77
� 0.136 0.65
�
s

tan(20.9◦) tan(27.0◦)

�
2

tan(32.76◦) tan(43.4◦)

Fig. 3  Experimental setup: The initial mass (light gray) with initial 
thickness h

0
= 14 cm and width r

0
= 20 cm is released on a plane 

with inclination � by opening a gate with constant speed. [7]
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mass were estimated, giving an apparent flow density 
of � = ��s = 1500 kgm−3 . In the experiments, a gate is 
removed at the initial time to release the granular mass. 
The gate removal is simulated here by considering a lifting 
velocity Vgate = 1.3ms−1 as measured in the simulations. 
To compare flows with different inclinations, the velocity 
profile and the deposit of thickness are used in the analy-
sis. Steady granular flows are observed in all the tested 
inclinations in numerical simulation. The velocity profiles 
are given in Fig. 4. The analytical solutions in Sect. 6.1 
are used as the reference. Fig. 4 shows the validation of 
the numerical model against the Bagnold analytical solu-
tion regarding stream wise velocity profiles. For all three 
inclinations, the good agreement is obtained with respect 
to the analytical solution.

The granular bed has been created by the deposit of 
steady uniform flows in the inclined plane. Indeed, thin, 
steady uniform granular flows can be observed within a 
range of inclination angles [6]. These flows leave a uniform 
deposit along the plane with a thickness hs . The variation of 
hs

d
 vs. � is shown in Fig. 5. Here hs represents the minimum 

thickness for flow at a given angle � [6]. The experimental 
results [6] are well-fitted by Eq. (50). Also, the numerical 
results are in good agreement with experimental data.

The collapse of granular mass is simulated on a gentle 
slope using similar parameters. Granular mass is in contact 
without friction with a gate; the gate is removed in the direc-
tion perpendicular to the inclined bed. The simulation with 
the regularized constitutive law (Eq. (39)) is shown in Fig. 6.

The collapse of the mass at the top of the channel is very 
fast, and the progressive front also goes faster than the exper-
imental model. Except for run-out distances, the final form 
of the deposit is comparable to the experimental results. 

Considering the actual effect of bed friction at � = 22° would 
lead to further progress, a better fit with empirical results 
will be observed. The maximum flowing thickness is about 
5 cm for � = 22°. These results are in good agreement with 
the simulations of flows over an inclined plane performed 
by Mangeney et al. [7].

At the instant t = 0.11cm , just after the gate is removed, 
which triggers a near bed flow. the maximum horizontal 
velocity is obtained close to the substrate. In the following, 
the flow is concentrated only in a shallow sub-domain close 
to the free surface which is observed with the velocity field. 
The maximum horizontal velocity is obtained near the free 
surface. In the flowing region, the horizontal velocity has a 
parabolic profile similar to Eq. (40) (Fig. 6c).

The viscosity value can be obtained from Eq. (38) only 
with the initial thickness of the column h0 , the diameter and 
grain density, the slope angle and the rheological param-
eters. The amount of pressure, assuming that the flow layer 
has a thickness equal to half the initial thickness, determines 
the viscosity � ≃ 1.4 pa s. Note that, for this calculation, the 
strain rate in Eq. (38) is negligible.

As observed in Fig. 7, in the flowing region, the vis-
cosity gradually increases with the distance perpendicular 
to the free surface, which seems to be mainly influenced 
by the increased pressure. The viscosity near the transi-
tion of the static/flowing region is slightly lower than its 
value for the collapse on the horizontal bed. The viscosity 
decreases towards the front where it is less than 0.7 pa s. 
The viscosity changes between the maximum value in the 
static region and its minimum value, which is obtained in 
the vicinity of the forward and near the free surface. As a 
result, the viscosity mainly shows a pattern similar to the 
pressure field, which covers the effect of the strain rate. 

Fig. 4  Velocity profiles: lines indicate reference solutions calculated 
from Eq. (40) and markers are numerical results
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Fig. 5  Thickness h
s
 left on a plane of inclination angle � after steady 

uniform flows
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The distribution of the strain rate is an interesting feature. 
High strain rate zone is concentrated initially near the bed 
close to the front and further upslope along most of the 
flowing region.

Figure 8 shows the comparison of the simulated granular 
mass and the experimental results performed by Mangeney 
et al. [7] at different times for thickness profile as a function 
of the down slope during the collapse for inclination angle 
� = 10°. Obviously, as the angle increases, the deposit extends 
further down the plane and becomes flatter. In the initial stage, 
the flow is observed lagging behind the experimental results 
(Fig. 8a). The shape of the final deposit is in good agreement 
with the laboratory results, except in the vicinity of the back 
wall, where the simulated maximum thickness is smaller, and 
the front is running slower, the final run-out distance is about 
15% shorter than experimental results, The viscous effects 
strongly change the flow dynamics and deposit so the dissipa-
tion due to plastic deformation is much smaller than that due to 
viscous effects. The viscosity of the lateral wall should be sev-
eral times higher than the viscosity of granular media. There-
fore, by considering the actual effect of the viscosity of the 

wall, the thickness of the deposit near the back wall increases, 
which it match the experimental observations.

6.2  The granular column collapse

The collapse of the confined column of grains onto a horizon-
tal plane under its own weight is known as “granular column 
collapse” which starts with the vertical fall of grains alongside 
lateral spreading flow; . The focus is on the scaling law cor-
responds to the final distance of the flow front, which is called 
run-out distance. The experiment was performed in quasi-two 
dimensions configuration by Lajeunesse et al. [1] and Lube 
et al. [4]. If the initial height of the column is h0 , its initial 
half-width is r0 , the final maximum thickness is h∞ and the 
final half-width is r∞ (Fig. 9).

The experimental scaling for the run-out distance in the 
two-dimensional configuration reads:

(51)
r∞ − r0

r0
≃

{
𝜆1a, a < a0
𝜆2a

𝛽 , a > a0

Fig. 6  Snapshots of the granular collapse over a plane inclined at � = 22°. The colors represent the distribution of Horizontal velocity
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Where a = h0∕r0 is the column aspect ratio and �1, �2, �, a0 
are essentially material dependent parameters. In two dimen-
sions, Lube at al. [4] found �1 ≃ 1.2, �2 ≃ 1.9, � ≃ 2∕3 
and 1.8 ≤ a0 ≤ 2.8 for sand and sugar. Lube et  al. [4] 
found a small transitional region for 1.8 ≤ a0 ≤ 2.8 
between the linear and the power-law descriptions which 
is shown in Fig.  13, while Lajeunesse et  al. [1] found 
�1 ≃ 1.8, �2 ≃ 2.3, � ≃ 2∕3 and a0 ≃ 3.0 for glass beads. 
Similar scaling was obtained for the final height of the 
deposit:

Where Lube et al. [3] found �3 ≃ 1.0, �4 ≃ 1.0, � ≃ 0.4 and 
a0 ≃ 1.15 . To follow the experimental set-ups, the param-
eters of rheology model as shown in Table 2. are used in 
simulation for initial column ratios 0.19 ≤ a ≤ 3.0 , with the 
initial radius r0 = 97.2mm , and for a > 3.0 , r0 = 29.2mm . 
The solid density �s = 2600Kgm−3 and the volume fraction 
is set to be 0.62. We note that the time of each experiment 
depends only on the height of the initial column of the mass 
of the grains and follows the relation [1]:

(52)
h∞

r0
≃

{
𝜆3a, a < a0
𝜆4a

𝜅 , a > a0

The sand and glass beads collapse simulations of the 
granular column show that the rheological model in SPH 
can determine the characteristics of granular flow in a dense 
state. The granular media behaves like a fluid at the begin-
ning of the movement. During the flow, it gradually becomes 
a quasi-static state with lower velocity and less mobility. The 
displacement and failure mechanism of the granular flow 
column can be affected by many factors such as grain size, 
granular material, and roughness of the bed. To demonstrate 
the granular flows clearly, Figs. 10, 11 and 12 show three 
granular column failure flows of sand for a = 0.9 , a = 2.75 
and a = 4.8 . Two patterns of flow for the collapse of the 
granular column can be seen in Figs. 10, 11 and 12. In the 
collapse process, the column on both sides begins to move in 
the outward direction, because the surface particles that slip 
on the substrate become less and less, the column gradually 
reaches its final deposit.

(53)ts ≃ 3.2

√
h0

g

Fig. 7  Viscosity (in Pa s) calculated with the �(I) rheology at different times for granular collapse over a plane inclined at � = 22°
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In Fig. 10, particles of fronts move outwards and large 
velocity can be observed at both sides of the column 
fronts at t = 0.05 s . At t = 0.07 s , more particles on the 
free surfaces extend over the horizontal bed to the out-
wards, because the particles fall off the top of the column 
at high velocity. The shape of the column is changing to 
a sinusoidal function since it moves symmetrically and 
simultaneously in both directions. In the time of particles 
spreading from the surface, high-velocity particles are 
gradually approaching from the flow state to the quasi-
static state. As a result, there are fewer flowing particles 
with high velocity on the surface at t = 0.11 s (Comparing 
with those at t = 0.1 s ). So, the proposed model results in 
a lower velocity of spreading, thus less displacement of 
the front, which is in better match with the experiments.

For ratio a = 2.75 , the collapse of column begins from 
both sides with sliding down the surface particles to the 
substrate as demonstrated in Fig. 11b–c. A cone deposit 
of the column is left (Fig. 11d).

For the column ratio, a = 4.8 , the upper part of the 
column retains its original shape, falls in the vertical 
direction; Beside both sides of the front, the particles are 
gradually deviating horizontally, so the particles collide 
vertically with static particles in the center as shown in 
Fig. 12a at t = 0.03 s , After the column collapses com-
pletely, the flow is similar to that for a = 2.75 . For a much 

Fig. 8  Comparison of the simulated granular mass and the experimental results (pink line) at different times for granular collapse over a plane 
inclined at � = 10° : the colors represent the distribution of pressure (pa) (color figure online)

Fig. 9  Granular columns collapse: sketch of experimental set-up and 
parameters definition [4]

Table 2  Parameters reology for sand column collapse [48]

�
s

�
2

I
0

Sand (d=0.32 mm) tan(30.5◦) tan(51.3◦) 2.65
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larger column, a = 4.80 (Fig. 12), the falling process of 
the upper part is more obvious in Fig. 12a, and even at 
t = 0.1 s , this part is still observed in Fig. 12b.

Figure 13 shows that a good agreement exists between 
numerical and experimental results [3, 4] indicating that the 
proposed SPH model is able to correctly simulate this kind 
of granular flow.

6.3  Granular dam‑breaking flows

In this section, the SPH method is applied to model rectan-
gular pile of granular material that allows a dam-breaking 
flow to be produced in channels. The model set-ups fol-
low the experiments conducted by Lajeunesse et al. [1, 2]. 
The particles are arranged in a square lattice with an initial 
separation of 1mm , and thus smoothing length of 1.3mm . 
Also, three layers of SPH particles are located outside the 

computational granular domain to represent the solid wall. It 
is used to model dam-breaking flows caused by glass beads.

The density is �s = 2600Kgm−3 ; the volume fraction is 
set to be 0.62 according to the experiments by Lajeunesse 
et al. [1, 2]. In this study, the flows in simulations are 
performed in two dimensional configurations. Similar to 
the cylindrical column failure, the initial ratio a = h0∕l0 
is important in spreading of the granular materials in the 
channel. Lajeunesse et al. [1] observed at small a, the flow 
is initiated by failure at the edge of the pile along the upper 
surface where material slides down, on the other hand, 
Underlying grains remain static. when the flow is devel-
oped, the velocity profile in the vicinity of the front, is in 
the horizontal direction (Fig. 14).

The ratio a = 0.6 with initial length l0 = 102mm was 
firstly modeled. The velocity vectors of the flows are 
shown in Fig. 15 for a = 0.6 . A sliding interface can be 
defined to distinguish the static internal part and the flow-
ing region; then the interface is added to the simulation 

Fig. 10  horizontal velocity ( ms
−1 ) (left column) and pressure (Pa) (right column), calculated with variable viscosity with the �(I) rheology at 

different times for granular collapse over a horizontal plane for a = 0.9
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results to separate the two sections. For a small ratio 
a = 0.6 , the collapse of the edge as a granular dam-break-
ing flow extends along the sliding interface. The veloc-
ity near the flow front becomes very high in the whole 
thickness with the development of the collapse mechanism 
at t = 0.07s . In the distance from the flowing front, high 

velocity values are available only for particles below the 
free surface, and then gradually decreases to the sliding 
interface.

For a large ratio, a = 3.2 with the initial length 
l0 = 53mm , at t = 0.02 at the beginning of the flow, the 
upper part of the column falls due to gravity in the vertical 

Fig. 11  Values of the pressures (pa) in the model at different times for granular collapse for a = 2.75

Fig. 12  Values of the horizontal velocity ( ms−1 ) in the model at different times for granular collapse for a = 4.8
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direction, so the vertical velocity in the flowing region is 
almost the same. In the vicinity of the sliding interface, the 
velocity vectors diverge gradually in the horizontal direc-
tion. After the full collapse of the column at t = 0.229 s , the 
column takes the shape of a triangle. In the vicinity of the 
front, the flow continues with relatively high velocity vec-
tors. These phenomena are well replicated in simulations 
compared to experimental results (Fig. 16).

Figure 17 shows the evolution of the mass front (l − l0)∕l0
with time for a = 0.6 , where the time is scaled with 
�c =

(
h0∕g

)0.5 . The experimental results [1, 2] are also plot-
ted in the figure for comparisons. After passing the transient 
acceleration stage, which lasts approximately 0.8�c , the pillar 
base moves at the approximately constant spreading veloc-
ity for about 0.2�c . Most of the total distance traveled by the 
pillar base takes place within this time interval. Eventually, 
the advance front slows down and stops at about 0.6�c . The 

front movements in this period almost follow an inclined line 
with a constant slope.

7  Discussion

In this study, the numerical results presented using a visco-
plastic-based constitutive law in SPH framework, express 
the dynamic behavior of granular free-flow flows. In other 
words, as observed in the experiments, the formation of a 
uniform region and the flow-transfer property were well 
reproduced. In the collapse of the granular column on 
inclined bed simulation, the results confirm that the uni-
form region behind the flow front behaves as a steady uni-
form regime with a Bagnold velocity profile and numerical 
parameters, in addition to having a small effect on the final 
deposit, play an important role in the velocity to reach a 
uniform steady state. Numerical simulations show that the 
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Fig. 13  Scaling from numerical simulation compared with scaling from Lube et al. [4] for granular columns collapse

Fig. 14  Velocity field at the wall of the rectangular channel for a = 0.46 [1]
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viscosity decreases from values greater than � = 1.5 pa s 
in deep-static regions to zero in near the free surface. As 
the angle of substrate increases, the used model predicts 
the velocity field and run-out distances slightly less than 
the experimental results. The Simulations show that the 
main differences are near the front flow and lateral back 
wall. Indeed, the parameter I of the �(I) rheology varies 
mainly in the flowing region. The thin layer flows over a 
rigid bed characterize the region near the flow front. The 
high strain rate regions at the tip of the front are located 
near the bed. These high deformation regions confirm the 
strong nonlinear character of the �(I) rheology. The con-
sidering the actual effect of the viscosity of the wall, it 
will reduce the overestimated dissipation near the back 
wall. On the other hand, simulations show that there is the 

overestimated collapse of the columns near the back wall 
due to significant sliding of the mass in this region. The 
velocity profile with the maximum value at the free surface 
is accompanied by an exponential decrease in velocity near 
the transition between the flowing and the static regions.

For the granular collapses, In comparison with the experi-
ments, the SPH method with pressure-dependent rheology 
predict fairly well the time evolution of surface deforma-
tion of the granular column after collapsing. The results of 
the granular column collapse showed that the initial column 
ratio plays an important role in the granular expansion in the 
horizontal plane. The difference in the failure mechanism 
between small values of initial column ratio and high initial 
column ratios observed in the experiments can also be cap-
tured in the SPH simulations. For small column ratios, the 

Fig. 15  horizontal velocity ( ms−1 ) (left column) and pressure (Pa) (right column), calculated with variable viscosity with the �(I) rheology at 
different times for granular dam-breaking for a = 0.6
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failure mechanism consists of the avalanche of the outside 
column edge, leaving the column inside undisturbed; a cone 
deposit is left for the column. while for high column ratios, 

the whole granular column collapses completely, resulting 
in the final deposit looks like a Mexican-hat. In all cases, 
there was a triangular wedge (or trapezoidal wedge for low 

Fig. 16  horizontal velocity ( ms−1 ) (left column) and pressure (Pa) (right column), calculated with variable viscosity with the �(I) rheology at 
different times for granular dam-breaking for a = 3.2
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aspect ratio columns) which has the basal width larger than 
the column one and make an angle with the horizon, within 
which the grains never move.

Except in the vicinity of the column base where the flow 
is in resting, the measured velocity profiles are similar to 
those that are usually observed in static granular surface 
flows. The velocity varies linearly in the flowing layer while 
decreasing exponentially in the interface with the static 
region. The wave front time evolutions show when the flow 
is fully developed ( t > 𝜏c ), the wave front approximately 
travels in a constant velocity, along the slope line independ-
ent of the initial column ratio which presents in Fig. 17.

8  Conclusions

In this paper, with the objective of modeling free-surface 
flows, a constitutive law describing dense granular materi-
als is implemented within the SPH framework. The dense 
granular flow is characterized as a pressure-dependent vis-
coplastic material by this constitutive law, with an apparent 
viscosity depending on local pressure and the norm of strain 
rate. Due to the pressure-dependent rheology, The pressure 
oscillations could be converted into perturbations of flow 
velocity and free-surface shape. Hence, a modified SPH 
algorithm proposed to reduce spurious pressure oscillations 
in the solution. The proposed method proved to be robust 
and more stable for the problems solved.

The SPH model has been validated by reproducing ana-
lytical solution of the uniform flows down an inclined plane 
and simulating granular spreading on a horizontal bed with 
excellent accuracy. The simulation results are found to be in 
good agreement with available experimental observations. 

In the vicinity of free surfaces, and in particular fluid fronts, 
where the level of numerical noise remains relatively high, 
implementation of the modified SPH algorithm and consist-
ency corrections [38, 43] can be effective. Using of eddy 
viscosity assumption was able to handle higher velocity flow 
problems that happened at large column ratios. Increasing 
the value of apparent viscosity in static and stopping regions 
leads to a reduced time step so a new viscosity regulariza-
tion method has been proposed to be capable of reproducing 
yield condition within the reasonable approximation.
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