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Abstract
This paper presents a numerical study of the effect of fine content on the mechanical behavior of bidisperse granular materials 
using the discrete element method. Triaxial compression tests are performed on different samples with fine contents varied 
from 0 to 40%. It was found that, starting from 20%, fine content has a visible effect on the shear strength. The optimal fine 
content is about 30%, at which the shear strength is the best. An investigation into the granular micro-structure showed that 
the fine particles, on one hand, come into contact with coarse particles, but on the other hand, separate the latter ones as fine 
content increases beyond 20%. Thus, the part of the shear stress carried by the coarse–fine contacts increases, while the part 
carried by the coarse–coarse contacts decreases. For fine content ≤ 30%, the coarse–coarse contacts primarily carry the shear 
stress. Above this optimal fine content, the fine–coarse contacts overtake the coarse–coarse ones. The fine–fine contacts have 
little contribution to supporting the shear stress. For the studied range of fine content, the coarse particles primarily carry the 
shear stress, leaving the fine particles under relatively low stresses. Moreover, the matrix composed of fine particles is greatly 
softened by the shear loading. A classification of binary mixtures depending on their micro-structure was also proposed.

Keywords  Bidisperse materials · Discrete element method · Shear loading · Micro-structure · Stress transmission · Contact 
network

List of symbols
fc	� Fine content
fn , ft	� Normal and tangential contact forces
Kn , Kt	� Normal and tangential contact stiffnesses
kn , kt	� Normal and tangential particle stiffnesses
Em	� Young’s modulus of the particle material
�	� Contact friction angle

Dmin , Dmax	� Minimum and maximum diameters of coarse 
particles

dmin , dmax	� Minimum and maximum diameters of fine 
particles

Gr	� Gap ratio
�	� Stress tensor
p	� Mean stress
q	� Deviatoric stress
�	� Strain tensor
�11	� Axial strain
�v	� Volumetric strain
L	� Sample size
Nc	� Number of coarse particles
Nf 	� Number of fine particles
Cv	� Coefficient of variation
e	� Global void ratio
n	� Global porosity
ec	� Intergranular void ratio
ef 	� Interfine void ratio
Vv , Vs	� Void and solid volumes
F, C	� Fine and coarse fractions
C−C	� Coarse–coarse contacts
C−F	� Coarse–fine contacts
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F−F	� Fine–fine contacts
 	� Coordination number
 C−C

C
	� Average number of C−C contacts per coarse 

particle
 C−F

C
	� Average number of C−F contacts per coarse 

particle
 F−F

F
	� Average number of F−F contacts per fine 

particle
f k	� Force at a given contact k
lk	� Branch vector joining two particle centers at 

a given contact k
�
C−C	� Contribution of the C−C contacts to the 

macro-stress
�
C−F	� Contribution of the C−F contacts to the 

macro-stress
�
F−F	� Contribution of the F−F contacts to the 

macro-stress
��	� Volume fraction of a given phase �
�
�	� Intrinsic averaged stress of a given phase �

�̂
�	� Partial stress of a given phase �

Mp	� Internal moment tensor of a given particle p
pF , qF	� Mean and deviatoric stresses carried by the 

fine fraction
�	� Stress reduction factor
�F
p
	� Mean stress ratio for the fine fraction

�F
q
	� Deviatoric stress ratio for the fine fraction

p̂F	� Contribution of the fine fraction to the mac-
roscopic mean stress

q̂F	� Contribution of the fine fraction to the mac-
roscopic deviatoric stress

1  Introduction

Granular materials are often used for construction of hydrau-
lic earth structures such as dikes, levees, dams, etc. Granu-
lar soils with gap-graded particle-size distribution (PSD) or 
widely graded and upwardly concave PSD are susceptible to 
internal erosion, during which fine particles can be detached 
and transported by seepage flow through the pore space 
between coarse particles [1]. The migration of fine particles 
modifies their porosity and their micro-structure. As a con-
sequence, internal erosion could reduce the shear strength 
of granular soils [2, 3], hence the stability of hydraulic earth 
structures. The mechanical consequence of internal erosion 
is still an open research topic. It requires a deep understand-
ing of the contribution of fine particles to the mechanical 
behavior of granular soils.

The role of fine particles on the drained and undrained 
stress-strain behaviors of silty sands have been experi-
mentally investigated [4–7]. Salgado et al. [6] observed 
that the drained shear strength and the dilatancy of silty 
sands increase with silt content. Thevanayagam et al. [7] 

investigated the effect of fine content on the undrained col-
lapse potential, which is defined as the ratio of the maxi-
mum pore pressure induced by the shear to the confining 
pressure. The authors found a threshold value for fine con-
tent, under which the collapse potential increases with fine 
content but above which it decreases with fine content. The 
authors attributed these opposite effects to a variation of 
the granular micro-structure with fine content. They made 
a conjecture that, with increasing fine content, the micro-
structure of granular mixtures can change from a category 
where contacts between coarse grains are dominant to a cat-
egory where contacts between fine grains are dominant. This 
conjecture should be verified by investigating experimentally 
the granular micro-structure. Such an investigation might be 
performed by using X-ray tomography imaging technology 
[8], however, this technique is quite delicate and expensive. 
To the best of our knowledge, no experimental investigation 
of the effect of fine content on the granular micro-structure 
has been performed so far.

Discrete element method (DEM) has been widely used 
to simulate numerically granular media. This method was 
found to be able to reproduce the main features of the 
mechanical behavior of granular materials such as the non-
linearity, the softening phase, the dilatancy and the induced 
anisotropy [9]. One of its main advantages is that any local 
information at the particle scale can be accessed, which 
makes the DEM very suitable for investigating granular 
media from a micro-mechanical point of view. This method 
has been recently used by some authors to investigate the 
micro-structure and the micro-mechanical behavior of 
granular mixtures. Minh et al. [10, 11] studied the contact 
force distribution and the force networks in granular mix-
tures under one-dimensional compression. Shire et al. [12, 
13] investigated the micro-structure and micro-properties 
of granular mixtures under isotropic compression. It is 
worth mentioning that a granular material subjected to a 
one-dimensional or an isotropic compression shows only a 
contractive behavior and never reaches the failure. Voivret 
et al. [14] studied the shear behavior and force transmission 
in highly polydisperse 2D granular materials composed of 
disks by simulating direct simple shear tests. Surprisingly, 
the authors found that the shear strength is almost independ-
ent of the particle size polydispersity although the solid 
fraction increases with the latter parameter. As the poly-
dispersity increases, more and more large particles but less 
and less small particles are included in strong force chains 
which sustain primarily the shear stress. Dai et al. [15] also 
observed in their 2D simulations that fine particles leave the 
solid skeleton as fine content increases. In the 3D numerical 
simulations performed by Ng et al. [16] on binary mixtures 
of ellipsoids, no significant effect of fine content on the shear 
strength was also found. As the simulated mixtures in this 
study contain a few numbers of coarse particles (25, 56 and 
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150 for the respective fine contents 50% , 30% and 10%), 
the conditions required for the representative volume ele-
ment are hardly fulfilled. On the contrary, Aboul-Hosn [17] 
found an increase of the shear strength with fine content 
when simulating triaxial compression tests on 3D granular 
mixtures with fine contents comprised between from 5% to 
15%. The effect of the fine particles on the shear behavior of 
bidisperse granular materials at the macro- and micro-scales 
is apparently not well understood yet

This paper presents a numerical study of the effect of fine 
content on the behavior of granular mixtures under shear 
loading. Triaxial compression tests are simulated on granu-
lar materials with gap-graded particle size distribution by 
using the DEM. The performed numerical simulations are 
first presented in Sect. 2. The effect of fine content on the 
behavior of granular mixtures is then analyzed at the macro-
scale as well as at the micro-scale in Sects. 3 and 4. The 
micro-mechanical investigation focuses on (1) the role of 
fine particles in the granular micro-structure, (2) the stress 
transmission through the contact network and the force net-
works in a granular mixture, and (3) the contribution of the 
fine particles in carrying the overburden stress. Based on this 
study, a classification of binary mixtures in terms of their 
micro-structure is proposed in Sect. 5.

2 � Numerical simulations with the DEM

A dry cohesionless granular soil is an assembly of distinct 
particles which can be assumed to be rigid. The interac-
tion between particles can only occur at frictional inter-
faces. The DEM models dry granular media as they are. 
This method has the two following main ingredients: (1) 
Newton–Euler dynamic equations to describe the transla-
tional and rotational motions of each rigid particle, and 
(2) a contact law to calculate the interaction forces at the 
contact between two particles. An explicit or implicit 
time-stepping scheme is used to numerically integrate 
the dynamic equations. At each step, the velocity and the 
position of each particle are integrated up to the end of 
the step. At the same moment, contacts between particles 
are detected and contact forces are calculated from the 
velocity and the position of particles in contact. There 
are two main approaches for the DEM, which differ from 
each other in the way of modeling the interaction at con-
tact. The molecular dynamic (MD) approach considers a 
small compliance effect at the contact point so the contact 
force can be uniquely determined from the elastic relative 
displacement at the contact point [18]. On the other hand, 
the contact dynamic (CD) approach neglects the compli-
ance effect at the contact point. As a consequence, the 
contact force cannot be uniquely determined from the rela-
tive displacement at the contact point without considering 

the dynamic equations of the whole system [19]. In both 
approaches, Coulomb’s friction law is used in the tan-
gential direction to limit the tangential force. For the MD 
approach, an explicit integration scheme of high order 
can be used with a time step sufficiently small to describe 
accurately the dynamic process at the contact point. For 
the CD approach, the numerical integration can only be 
done implicitly, but with a time step much bigger than that 
used in the MD approach.

We use the DEM based on the MD approach, which is 
implemented in the open-source software YADE [20]. In 
this preliminary study, for the sake of simplicity, spheri-
cal particles are considered with a linear contact force-
displacement model at each contact between two particles. 
According to this contact law, the normal and tangential 
interactions at a contact are modeled by two linear springs 
with respective stiffnesses Kn and Kt . The contact normal 
and tangential stiffnesses are calculated from the respec-
tive particle stiffnesses, kn and kt , by assuming that the 
latter ones are connected in series in each direction:

where superscripts i and j denote two particles at the contact 
point. The normal particle stiffness kn can be roughly esti-
mated from the Young’s modulus Em of the particle material 
and the particle diameter D: kn = �EmD∕2 . The tangential 
force ft is limited by Coulomb friction law: ∣ ft ∣≤ fn tan� 
where fn is the normal force and � is the friction angle. The 
microscopic parameters used in our simulations are identi-
cal to those used in the paper of Scholtès et al. [21]: normal 
particle stiffness kn∕D = 250 MPa which corresponds to 
Em = 160 MPa, stiffness ratio kt∕kn = 0.5 and friction angle 
� = 35°.

Granular samples considered in this study are binary 
mixtures of coarse and fine particles (Fig. 1a). The particle 
size distribution (PSD) is a gap-graded curve as shown in 
Fig. 1b. This gap-graded PSD is characterized by fine con-
tent fc and the gap ratio Gr = Dmin∕dmax ( Dmin is the mini-
mum diameter of coarse particles and dmax is the maximum 
diameter of fine particles). Fine content fc is varied from 0 
to 40% . A value of 3 is chosen for the gap ratio Gr to keep 
the computation time reasonable since a higher value of Gr 
leads to a large number of particles and then to a very long 
computation time. It is worth mentioning that, according 
to Chang and Zhang [22], a gap-graded soil with gap ratio 
of 3 might be unstable – in other words, fine particles 
might migrate due to seepage flow.

Particles are first generated into a cube composed of 
six rigid walls. At this stage, each particle diameter is 
reduced by a factor of 2.0. Particles are then progressively 
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expanded to reach the target size distribution. After that, 
the box dimensions are slowly reduced until the stresses �i 
( i = 1, 2, 3 ) reach a confining stress of 100 kPa. It is worth 
noting that 100 kPa is a typical value for the confining 
stress that has been often considered to perform experi-
mentally triaxial tests on granular soils, for example by 
Thevanayagam et al. [7, 23], Salgado et al. [6] and Murthy 
et al. [4]. This value corresponds, in reality, to the horizon-
tal stress in a dike at a depth of about 10 metres. To obtain 
dense samples, the friction angle � is set to 0° during the 
compaction process and is then reset to its original value 
(35°) at the end of the compaction process. Triaxial com-
pression tests are then performed by prescribing a small 
strain rate 𝜀̇1 = 0.01 s−1 in direction (1), while keeping the 
lateral stresses �2 and �3 constant. Each sample is loaded 
until the axial strain �11 reaches 15%.

Table 1 shows the number of coarse particles ( Nc ), the 
number of fine particles ( Nf  ) and the ratio L∕Dmax of the 
sample size to the maximum particle diameter for different 
values of fine content fc . For a given fine content, the num-
ber of coarse particles is carefully chosen such that the total 
number of particles is not too large and the simulated sam-
ple can be considered as a Representative Volume Element 
(RVE). The choice of the sample size for a gap-graded PSD 
is not an easy task. One might rely on experimental stand-
ards for triaxial compression tests in laboratory. For exam-
ple, the ASTM standard [24] recommended that the ratio of 
the specimen diameter to the largest particle size is larger 
than 6, while the French standard [25] recommended a value 
larger than 5 for widely graded soils and 10 for uniformly 

graded soils. It should be noted that the chosen sample sizes 
shown in Table 1 satisfy these criteria. For DEM numerical 
simulations, no clear rule has been established. Wiącek and 
Molenda [26] showed that for polydisperse granular pack-
ings which are not widely graded and are subjected to uni-
axial compression, the RVE size is about 15 times the aver-
age particle diameter, i.e. the sample must include at least 
15 × 15 × 15 = 3375 particles. Salot et al. [27] found out that 
the RVE size for simulating a triaxial compression test on 
samples having a tight and uniform PSD is about 8000 parti-
cles. For a gap-graded PSD, the number of particles required 
for a RVE must be varied with fine content, and 8000 parti-
cles are, in general, not enough. Shire et al. [28] stated that a 
gap-graded sample with a minimum of 500 coarse particles 
can be considered as a RVE when simulating an isotropic 
compression. A shear loading might require a larger number 
of coarse particles to achieve a RVE. It is worth noting that 
the RVE size for a granular material is determined in a statis-
tical sense. This means that different random generations of 
samples with the same size must give close results as stated 
by Chareyre [29]. We adopted this statistical approach to 
check if the simulated binary mixtures under shear loading 
can be considered as RVEs. For a given value of fine content 
fc with the chosen sample size, five samples are randomly 
generated, compacted and then subjected to triaxial com-
pression tests in the same manner. Figure 2 shows the ratio 
q / p of the deviatoric stress q = �11 − �33 to the mean stress 
p = (�11 + 2�33)∕3 and the volumetric strain �v versus the 
axial strain �11 for five different samples randomly generated 
for fc = 20% with the chosen sample size L∕Dmax = 7.2 . It 

Fig. 1   a A simulated granular 
mixture and b the considered 
gap-graded grain size distribu-
tion
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Table 1   Respective numbers, 
Nc and Nf  , of coarse and fine 
particles, ratio L∕Dmax and 
coefficient of dispersion Cv for 
different values of fine content 
fc

fc (%) Nc Nf L∕D
max

C
v
 (%) fc (%) Nc Nf L∕D

max

0 1430 0 7.5 1.1 25 1296 93,170 7.3
5 1347 15,305 7.3 3.0 30 1246 115,186 7.4
10 1266 30,346 7.2 2.3 35 1063 123,386 7.2
15 1276 48,571 7.2 1.6 40 982 141,198 7.2
20 1273 68,646 7.2 1.7
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can be seen that these five random samples with the same 
size show close behaviors. The dispersion in terms of shear 
strength (maximum value of the stress ratio q / p) is quanti-
fied by the coefficient of variation Cv used in the statistical 
analysis. The values of Cv for fc = 0, 5%, 10% and 20% are 
shown in Table 1. These low values of Cv indicate that the 
chosen sample sizes for fc ≤ 20% can be considered as RVE 
sizes. For fc ≥ 25% , we did not perform this repeatability 
study because the simulation of samples with a high fine 
content is very time-consuming. However, the samples with 
fc = 25% and 30% can be considered as RVEs as they con-
tain almost the same number of coarse particles as the sam-
ple with fc = 20% . For the samples with fc = 35% and 40%, 
the number of coarse particles is reduced to gain the compu-
tational time while maintaining almost the same sample size. 
With about 1000 coarse particles, compared to the value of 
500 indicated in [28], these samples can be expected to be 
RVEs. It is worth mentioning that the number of particles 
used for fc = 0 is smaller than 8000 particles recommended 
in [27]. However, the dense state of the generated samples 
reduces significantly the dispersion of their behavior.

3 � Macroscopic investigation

3.1 � Void ratios

In a mixed soil that contains a fine content smaller than a 
threshold value, coarse particles may constitute a solid skele-
ton to carry mainly the overburden stress. A significant frac-
tion of fine particles may be confined within pores between 

the former ones so they may not participate in sustaining the 
shear stress as stated by several authors [23, 30]. According 
to Thevanayagam and Mohan [23], the global void ratio, 
e, defined as the ratio of the volume of actual voids to the 
volume of solids may not be adequate to describe the density 
of such a mixture. The authors proposed to consider a mixed 
soil as a composite medium consisting of two matrices: 
coarse-grained matrix and fine-grained matrix. The inter-
granular void ratio, ec , and interfine void ratio, ef  , were then 
introduced to describe the densities of the coarse-grained 
and fine-grained matrices, respectively. The intergranular 
void ratio ec is defined by assuming that all the fine parti-
cles do not sustain any stress and can be considered as the 
intercoarse voids. On the other hand, the interfine void ratio 
ef  is defined by considering that the coarse particles are of 
zero volume.

where Vv is the void volume; VF
s

 and VC
s

 are the total solid 
volumes of the fine particles and of the coarse particles, 
respectively.

Figure 3 presents the three void ratios e, ec and ef  versus 
fine content fc for the simulated samples. Three remarkable 
ranges of fine content with two threshold fine contents 20% 
and 32% can be identified. For the range (i) with fc < 20% , 
the intergranular void ratio ec remains more or less con-
stant, while the interfine void ratio ef  decreases greatly with 
increasing fine content fc . This means that the fine particles 
fill voids left by the coarse particles without separating the 
latter ones. As a result, the global void ratio e decreases as 
fine content increases. It should be noted that the interfine 
void ratio ef  for this range of fine content is very high com-
pared to the intergranular void ratio ec and the curve for ef  
cannot be fully represented in the chosen scale in Fig. 3. 
Within the range (ii) with 20% ≤ fc < 32% , the fine par-
ticles separate the coarse ones and occupy the void space 
between them. The fine-grained matrix gets denser but the 

(2)ec =
Vv + VF

s

VC
s

=
e + fc

1 − fc
, ef =

Vv

VF
s

=
e

fc
,

Fig. 2   Stress ratio q / p and volumetric strain �
v
 versus axial strain �

11
 

for five different samples randomply generated with fc = 20% with 
L∕D

max
= 7.2

Fig. 3   Global void ratio e, intergranular void ratio ec and interfine 
void ratio ef  versus fine content fc
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coarse-grained matrix gets looser. The coarse-grained matrix 
is still denser than the fine-grained matrix. One would 
expect that there exists an intermediate configuration where 
the fine particles fill fully voids between coarse particles 
without separating them; however, this is not the case. As 
shown in Fig. 3, at fc = 20% , fine particles begin to separate 
coarse ones but the interfine void ratio ef  is still very large. 
This means that intercoarse voids are not fully filled yet by 
the fine particles. It is interesting to note that, at the last 
threshold fine content fc = 32% , the interfine void ratio ef  is 
equal to the intergranular one ec , and the global void ratio e 
reaches it minimum value. Lade et al. [31] also observed an 
optimal fine content at which the global void ratio is mini-
mum when analyzing experimentally the density of mix-
tures of coarse and fine spherical balls. In these experiments, 
equal coarse balls of diameter D are mixed with equal fine 
balls of diameter d. The coarse balls are deposited first in 
a container and the fine balls are then added from the top 
while the container is vibrated. For mixtures with the ratio 
D∕d = 3.5 , the optimal fine content is about 40%. It should 
be noted that the difference between the optimal fine content 
of 32% found in our study and the value of 40% shown in 
[31] may be related to the fact that the coarse balls, as well 

as the fine balls, are of different size and they are generated 
and compacted simultaneously in our study. In doing so, the 
fine balls have more chance to be intercalated between the 
coarse particles. Minh et al. [11] also found an optimal fine 
content of about 30% in their simulations of binary mix-
tures. Figure 3 also shows that, for the range (iii) where fine 
content goes beyond 32% , the coarse particles are greatly 
separated by the fine ones and the coarse-grained matrix gets 
looser than the fine-grained matrix.

3.2 � Stress–strain behavior

Figure 4 shows the stress ratio q  / p and the volumetric 
strain �v versus the axial strain �11 for the simulated samples. 
The macroscopic Young’s modulus, E, for each sample is 
defined as the initial slope of the corresponding stress-strain 
curve for the range of the axial strain from 0 to 0.1%. The 
maximum and residual values of the macroscopic friction 
angle, �peak and �residual , are also calculated using the Morh-
Coulomb yield criterion. Table 2 shows these macroscopic 
properties for different values of fine content. It is shown that 
the macroscopic Young’s modulus is lower than the micro-
scopic one ( Em = 160 MPa) given to the numerical model 

Table 2   Macroscopic Young’s modulus, E, maximum and residual values of the macroscopic friction angle, �peak and �residual , for different val-
ues of fine content fc

fc (%) 0 5 10 15 20 25 30 32 35 40
E (MPa) 77 69 72 67 69 78 120 137 77 85
�peak (°) 28 28 29 30 33 37 40 40 37 36
�residual (°) 21 20 22 19 21 17 15 12 11 15

Fig. 4   Stress ratio q / p and volumetric strain �
v
 versus axial strain �

11
 for different values of fine content: a fc varies from 0 to 20% and b fc var-

ies from 25% to 40%
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presented in Sect. 2 whatever fine content fc . Holtzman et al. 
[32] found a similar result in their simulations with Hertz-
ian contact model. This is consistent with the fact that a 
sand sample, which is composed of distinct solid particles 
and voids, cannot be stiffer than sand solid particles. On the 
other hand, a sand sample might have a better shear resist-
ance than individual contacts between sand particles. As 
shown in Table 2, the macroscopic friction angle at the peak 
state is indeed higher than the microscopic one ( � = 35 °) 
for fine contents fc ≥ 25% . In fact, the macroscopic shear 
strength depends not only on the microscopic friction angle 
but also on several other factors such as particle shape, par-
ticle packing and arrangement [33–35]. One can also remark 
in Table 2 that the macroscopic residual friction angle is 
quite low compared to the microscopic one whatever fine 
content fc.

Figure 4 shows that fine content fc does not significantly 
affect the stress-strain behavior of the granular mixtures with 
fc < 20% but it does for fc ≥ 20% . There exists an optimal 
fine content fc of 32% under which the macroscopic Young’s 
modulus and the shear strength at the peak state increase 
with fc but above which the latter macroscopic properties 
decrease with fc (Fig. 4b; Table 2). It is interesting to note 
that the optimal fine content of 32% found here is also the 
threshold value observed in Fig. 3 at which the intergranular 
and interfine void ratios are equal and the global void ratio is 
minimum. The same tendency is observed for the material 
dilatancy except that the threshold fine content for it is about 
35%, which is also quite close to the value of 32% observed 
for the maximum shear strength. As the stress-strain curve 
for fc = 32% is almost coincident with the one for fc = 30% , 
we consider that the second fine content threshold is 30% 
instead of 32% and we do not show the results obtained with 
fc = 32% in the following.

The above results mean that a reasonable fine content 
( 20% ≤ fc ≤ 30% ) can make granular materials stronger and 
more dilatant. This is in good agreement with the experimen-
tal results of Salgado et al. [6] who performed drained tri-
axial tests on mixtures of clean Ottawa sand and silt. In this 
study, the effect of fine particles was clearly observed even 
at a low fine content ( fc ≤ 15% ). This might be explained by 
the fact that the sand-silt mixtures considered in their study 
have continuous and broadly graded PSDs, for which fine 
particles might fill the void space between coarse particles 
even at low fine content. Figure 4b also shows that a too 
high fine content ( fc > 30% ) can be a factor unfavorable to 
the shear strength and dilatancy of granular mixtures. The 
mixture with fc = 40% has indeed a lower shear strength and 
a lower dilatancy than the mixture with fc = 30%.

A dense granular sample exhibits a peak on the stress-
strain curve, followed by a marked softening phase. This 
kind of behavior can be observed for the mixtures with 
fc ≥ 20% . The critical state is an important concept in soils 

mechanics, at which soils deform without any change in 
their volumetric strain and their shear strength. Soils reach, 
in general, this particular state at large strain. In our simula-
tions, we perform triaxial tests until 15% of the axial strain, 
which is the value recommended by the the ASTM standard 
[24]. As shown in Fig. 4, the simulated samples reach almost 
the critical state. As shown in Fig. 4b and Table 2, the fine 
particles, on one hand, strengthen granular mixtures at the 
peak state, but on the other hand, weaken them at the critical 
state. Indeed, the macroscopic friction angle for fc = 30% is 
15° at the critical state, much lower than the value of 40° at 
the peak state.

One could try to explain the effect of fine content on 
the mechanical behavior of granular mixtures by using the 
dependency of the void ratios e, ec and ef  upon fine content 
fc shown in Fig. 3. The negligible effect of the fine particles 
on the stress-strain behavior observed for the mixtures with 
fc < 20% is related to the fact that the fine-grained matrix 
is very loose (range (i) in Fig. 3) so the fine particles do 
not participate actively in supporting the external loading. 
However, it is not easy to explain why the shear strength and 
the dilatancy increase with fine content when fc > 20% but 
decrease when fc > 30% , and why a mixture with a signifi-
cant fine content shows a marked softening phase. It should 
be noted that adding fine particles into a mixture leads to 
two opposing effects: on one hand, the coarse-grained matrix 
gets looser, which weakens the mixture, but on the other 
hand, the fine-grained matrix gets denser, which strength-
ens the mixture. It is not well understood yet which effect 
is more important than the other for a given fine content. In 
the following, we bring some insights into granular mix-
tures to better understand how the fine particles modify the 
granular micro-structure and participate in sustaining the 
applied shear stress.

4 � Microscopic investigation

In this section, we first define three coordination numbers to 
describe the micro-structure of granular mixtures and then 
show how they depend on fine content and how they evolve 
during shear loading. Next, the transmission of the shear 
stress through the contact network and the composition of 
force chains are analyzed. Finally, we show how the fine-
grained and coarse-grained matrices participate in carrying 
the shear stress.

4.1 � Coordination numbers

Coordination number, denoted by   , is defined as the aver-
age number of contacts per particle. It is usually used to 
describe the density of a granular assembly at the micro-
scale. However, this definition of the coordination number 
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is not appropriate for a mixture of coarse and fine particles 
because the number of contacts per coarse particle is very 
different from that per fine particle. As mentioned previ-
ously, a binary granular mixture can be thought of as a multi-
phase medium which is composed of the coarse-grained 
matrix, the fine-grained matrix and the interface between 
them. The interaction between particles in each phase occurs 
through C−C contacts (between two coarse particles), F−F 
contacts (between two fine particles), respectively; and 
these two phases interact each other through C−F contacts 
(between a coarse and a fine particle). Describing the local 
densities of the coarse-grained and fine-grained matrices and 
of the interface between them needs thus three coordination 
numbers, denoted by  C−C

C
 ,  F−F

F
 and  C−F

C
 , which are 

defined as the respective average numbers of C−C contacts 
per coarse particle, of F−F contacts per fine particle, and 
of C−F contacts per coarse particle. Minh and Cheng [36] 
and Shire et al. [13, 37] also defined similar coordination 
numbers to study the micro-structure of granular mixtures.

Figure 5a–c shows the respective coordination numbers 
 C−C

C
 ,  C−F

C
 and  F−F

F
 versus fine content fc at the initial, 

peak and critical states. It can be seen that, at the initial 
state, the coordination number  C−C

C
 remains more or less 

constant and the coordination numbers  F−F
F

 and  C−F
C

 
are very small for fc < 20% . This confirms the statement 
made in Sect. 3.1 that the fine particles are almost floating 

within voids between coarse ones and they do not modify the 
granular skeleton which is mainly constituted of coarse par-
ticles. Starting from fc = 20% , a further addition of fine par-
ticles leads, on the whole, to a strong increase in  C−F

C
 and 

 F−F
F

 , particularly for  C−F
C

 , but to a remarkable decrease 
in  C−C

C
 . This means that an increase in fine content induces 

two opposing effects. On one hand, fine particles disrupt 
contacts between coarse ones so they weaken the coarse 
fraction. On the other hand, a significant quantity of fine 
particles around each coarse particle reinforce the interface 
between the coarse-grained and fine-grained matrices. Fur-
thermore, more contacts between fine particles are created 
so the fine-grained matrix gets stronger. Shire et al. [37] also 
observed a decrease in number of contacts par coarse par-
ticle and an increase in number of contacts per fine particle 
with increasing fine content for granular mixtures with big-
ger values of the gap ratio Gr . The best shear strength at the 
peak state for fc = 30% shown in Fig. 4b can be attributed 
to the fact that the coarse particles are strongly reinforced 
by an important number of fine particles around them (about 
50 fine particles per coarse particle, on average), despite the 
fact that they are slightly weakened by a loss of contacts 
between them.

Figure 5 also shows a remarkable decrease in the coor-
dination numbers  C−C

C
 ,  C−F

C
 and  F−F

F
 at the peak and 

critical states for the samples with fc > 20% . The most 
drastic drop in  C−C

C
 ,  C−F

C
 and  F−F

F
 is observed for 

fc = 30% :  C−C
C

 and  C−F
C

 decrease from 3.8 and 44.9 at 
the initial state to 1.8 and 9.1 at the critical state, respec-
tively. This drastic drop in the coordination numbers means 
that the micro-structure of these samples is strongly altered 
after the peak state, which explains why they exhibit a 
marked softening phase as shown in Fig. 4.

The next section gives us more insights into how the shear 
stress is transmitted through the coarse–coarse, coarse–fine 
and fine–fine contacts in granular mixtures.

4.2 � Stress transmission through the contact 
network

When a granular sample is subjected to an external loading, 
contacts between particles participate in transferring forces 
[38, 39]. The stress tensor defined at the macro-scale can 
be related to contact forces at the micro-scale by using the 
following static homogenization operator [40]:

The stress tensor � is defined on a volume V whose boundary 
is tangent to the particles that are close to it (Fig. 6). Super-
script k runs over not only all contacts between particles 
(interior contacts) but also all contacts between particles 

(3)�ij =
1

V

∑

k

f k
i
lk
j
.

Fig. 5   Coordination numbers a  C−C
C

 , b  C−F
C

 and c  F−F
F

 versus 
fine content fc at the initial, peak and critical states
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and the boundary. For a contact between two particles, f k is 
the contact force and lk is the branch vector joining two par-
ticle centers at this contact. For a contact between a particle 
and the boundary, f k is the force exerted by the exterior to 
the particle and the vector lk joins the particle center to the 
contact point.

It has been well known in the literature that the static 
homogenization operator (3) gives a good estimation of 
the macroscopic stress tensor if the volume under consid-
eration contains a sufficient number of particles. This can 
be confirmed in Fig. 7 where the mean stress p estimated 
with (3) is compared to the value of 100 kPa applied on 
the boundary at the initial state for different values of fine 
content fc . Figure 7 also shows that the contribution of the 
contacts on the boundary (the rigid walls in our simula-
tions) to the macroscopic stress tensor � is not negligible 
(about 10% for fc ≤ 20% ) and it decreases as fine content 
fc increases (about 4.5% for fc = 40% ). This is due to the 
fact that the sample sizes L chosen for the simulated sam-
ples (Table 1) are not too large compared to the maximum 
particle size Dmax so the number of contacts on the bound-
ary is not negligible compared to the number of interior 

contacts. It is expected that the stress part relative to the 
contacts on the boundary is negligible compared to that 
relative to the interior contacts when the sample size is big 
enough compared to the particle size. The contacts on the 
boundary result indeed in no more than 2% of the macro-
stress for a sample of fc = 0 with L∕Dmax = 38.

The stress part relative to the contacts between particles 
can be split into three parts �C−C , �C−F and �F−F which 
correspond to the contributions of the respective catego-
ries of C−C , C−F and F−F contacts. For example, the 
contribution of the set of C−C contacts to the stress tensor 
� is computed as:

The stress tensors �C−C , �C−F and �F−F have the same 
principal directions as those of the macro-stress tensor 
� . The contributions of each category of contacts to the 
macroscopic mean and deviatoric stresses, p and q, can 
be calculated, for example pC−C = (�C−C

11
+ 2�C−C

33
)∕3 and 

qC−C = �C−C
11

− �C−C
33

 . Minh et al. [11] used the same stress 
decomposition to study the contributions of each category 
of contacts to the macro-stress for binary mixtures under 
one-dimensional compression.

The mean and deviatoric stresses calculated for the 
three categories of contacts are plotted versus the axial 
strain �11 in Fig. 8a, b for fc = 20% and 30% , respectively. 
Their values at the peak and critical states are plotted ver-
sus fine content fc in Fig. 9. It is shown that, for fc < 20% , 
the C−F and F−F contacts do not contribute significantly 
to the macro-stress. For instance, for fc = 15% , all the 
C−F contacts contribute to only 4% of the macroscopic 
mean and deviatoric stresses at the peak state. A major 
part of the macro-stress is carried by the C−C contacts and 
it remains more or less constant for fc < 20% . This is in 
agreement with the result shown in Fig. 5 where the coor-
dination numbers  C−F

C
 and  F−F

F
 are negligible com-

pared to  C−C
C

 which is not affected by a low fine content. 
Starting from fc = 20% , the C−F contacts contribute to 
supporting the shear stress. For this threshold value, the 
C−F contacts carry about 10% of the macro-stress despite 
a low value of  C−F

C
 , while the stress part carried by the 

C−C contacts is almost the same as that for the samples 
with fc < 20% (Figs. 8a, 9). This explains why the effect of 
fine content on the shear strength is visible starting from 
20% (Fig. 4). It is worth mentioning that it is not easy to 
explain this if we look only at the void ratios in Fig. 3 and 
at the coordination numbers in Fig. 5.

The C−F and F−F contacts participate more and more 
in sharing the macro-stress as fc increases from 20% as 
shown in Fig. 9. At fc = 30% , the C−F contacts actually 
contribute to the deviatoric stress q as much as the C−C 

(4)�C−C
ij

=
1

V

∑

k∈C−C

f k
i
lk
j
.

Fig. 6   Illustration of a volume on which the stress tensor � is defined

Fig. 7   The mean stress p estimated with (3) at the initial state is com-
pared to the mean stress p = 100 kPa applied on the boundary of 
samples with different values of fine content fc . Black and gray colors 
represent the contributions of the interior contacts and of the contacts 
on the boundary, respectively
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contacts. Interestingly, they contribute even more to the 
mean stress p than the latter ones (see also Fig. 8b). The 
role of the C−F contacts becomes more important than the 
role of the C−C contacts at fc = 40% at which the former 
ones contribute to about 53% of the deviatoric stress q at 
the peak state, compared to a value of 35% for the latter 
ones. The F−F contacts have a visible contribution to the 
macro-stress at the peak state when fc ≥ 30% ; however, 
their contribution is quite small, compared to those of the 
C−C and C−F contacts. At fc = 40% , the F−F contacts 
contribute to 22% of the mean stress p and to 12% of the 

deviatoric stress q. The increasing role of the C−F and 
F−F contacts and the decreasing role of the C−C con-
tacts with increasing fine content from 20% are related 
to the increase in the coordination numbers  C−F

C
 and 

 F−F
F

 , and to the decrease in the coordination number 
 C−C

C
 (Fig. 5), respectively. One can remark that the C−C 

and C−F contacts reverse their roles in sustaining the 
shear stress at the threshold fine content of 30%: above 
this value, the C−F contacts sustain more the shear stress 
than the C−C contacts. The contribution of the C−F con-
tacts to the macro-stress increases quickly with fc ≤ 30% , 

Fig. 8   Contributions of the 
three categories of C−C , C−F 
and F−F contacts to the mac-
roscopic mean and deviatoric 
stresses, p and q, versus axial 
strain �

11
 for a fc = 20% and b 

fc = 30%

Fig. 9   Contributions of the 
three categories of C−C , C−F 
and F−F contacts to the mac-
roscopic mean and deviatoric 
stresses, p and q, versus fine 
content fc at the peak state (a, 
b) and at the critical state (c, d)
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which compensates a decrease in the contribution of the 
C−C contacts. As a consequence, the shear strength at 
the peak state increases with fine content fc ≤ 30% . How-
ever, an increase in fine content fc from 30% does not 
lead to a significant increase in the stress part carried by 
the C−F contacts but leads to a strong decrease in the 
stress part carried by the C−C contacts. Consequently, the 
shear strength at the peak state decreases with fine content 
fc > 30% . It is interesting to note that Minh et al. [11] also 
observed a transition at 30% of fine content for binary 
mixtures subjected to one-dimensional compression with 
a gap ratio of 4.0, above which the C−F contacts overtake 
the C−C contacts in carrying the shear stress. The authors 
also showed that at a very high fine content ( fc > 60% ), the 
coarse particles are strongly dispersed by the fine particles; 
in this case the major contribution to the shear stress is 
provided by the F−F contacts.

Figure 9 also shows a marked decrease in the deviatoric 
stresses supported by the three categories of contacts at the 
critical state for the samples with fc ≥ 30% . The most drastic 
drop is observed for the sample with 30% of fine content 
where the deviatoric stresses supported by the C−C and 
C−F contacts are reduced by a factor > 3 from the peak 
state to the critical state. As a consequence, its shear strength 
is greatly reduced at the critical state, which is consistent 
with the great degradation of its micro-structure after the 
peak state as shown in Fig. 5. The deviatoric stress carried 
by the C−C contacts for the sample with fc = 30% becomes 
much lower than that for the sample with fc = 0 at the criti-
cal state. In addition, the C−F contacts in the former sam-
ple suffer a great softening phase. This explains why the 
residual shear strength for fc = 30% is lower than that for 
fc = 0 (Table 2). It is worth noting in Fig. 9 that the mean 
stress at the critical state is primarily carried by the C−F 
contacts for fc ≥ 30% , and the F−F contacts carry almost 
no stress at this state.

We have shown in this section that the external stress 
applied to a binary mixture is mainly transmitted through the 
C−C and C−F contacts. It does not mean that all the C−C or 
C−F contacts carry in the same manner the external stress 
since force transmission through a granular medium is well 
known to be very heterogeneous. In the same system, there 
exist strong and weak force networks with different roles in 
sustaining the shear stress. In the next section, we analyze 
how the contacts in each category constitute the strong and 
weak force networks.

4.3 � Strong and weak force networks

According to the definition of Radjai and Wolf [38], the 
weak and strong force networks are composed of the con-
tacts where the contact force f c is smaller and bigger than 
the average contact force f̄  , respectively. The authors found 

that the strong network sustains almost the shear stress and 
the weak network behaves like a liquid without bearing any 
shear stress. The same result is obtained for the binary mix-
tures considered in this study as shown in Fig. 10. It can be 
seen that the weak network sustains a negligible part of the 
deviatoric stress q.

Figure 11 shows the fractions of C−C , C−F and F−F con-
tacts in the strong network versus fine content fc at the peak 
state. For instance, the fraction of C−C contacts in the strong 
force network is defined as the ratio of the number of C−C 
contacts in the strong force network to the total number of C−C 
contacts. It can be seen that, at low fine content ( fc < 20% ), 
the strong force network is constituted of about 40% of C−C 
contacts and a much smaller fraction of C−F contacts. As fine 
content increases, more C−C contacts participate in the strong 
force network. More than 95% of C−C contacts actually take 
part in the strong force network for fc ≥ 30% . Voivret et al. [14] 

Fig. 10   Contributions of the strong and weak force chains to the 
mean stress p and the deviatoric stress q versus fine content fc

Fig. 11   Fraction of C−C , C−F and F−F contacts in the strong net-
work at the peak state
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also showed that the strong force network passes preferentially 
through coarse particles in highly polydisperse samples. This 
result can be explained by the fact that the presence of fine 
particles around coarse ones makes contacts between coarse 
particles stronger so they carry a much bigger force. It does 
not mean, however, that the C−C contacts can carry a bigger 
stress: they carry, indeed, a lower stress at fc = 30% than at 
fc = 10% (Fig. 9) because more C−C contacts are disrupted by 
fine particles at fc = 30% . Figure 11 also shows that an increas-
ing fraction of C−F and F−F contacts take part in the strong 
force network as fine content increases so they sustain more 
the shear stress. However, a major fraction of these contacts 
are located in the weak force network (more than 56% of C−F 
contacts and 80% of F−F contacts). This is also true for binary 
mixtures under one-dimensional compression at very high fine 
content ( fc > 70% ) as shown by Minh et al. [11].

The above analyzes have shown how the macroscopic 
stress is transmitted through the contact network in a granular 
mixture but they do not show how much stresses the coarse-
grained and fine-grained matrices carry. According to Skemp-
ton and Brogan [30], the stress carried by the fine fraction is an 
important factor that influences the susceptibility of a granular 
material to internal erosion. In the next section, we define first 
the stresses carried by each matrix, and then we show how they 
depend on fine content.

4.4 � Stresses carried by the fine and coarse fractions

In addition to the coarse-grained matrix (C) and the fine-
grained matrix (F) in a granular mixture, voids (V), which 
can be filled by water or not, are present between solid parti-
cles. By homogenizing the stress field in this heterogeneous 
medium, the macroscopic stress can be defined from its coun-
terpart within each phase:

For each phase � , �� is its volume fraction, i.e. the ratio of 
its volume V� to the total volume V. The intrinsic averaged 
stress �� is defined as the average of the microscopic stress 
field �(x) which prevails in the phase under consideration:

According to the mixture theory, the tensor �̂�
= ��

�
� is 

called partial stress, which can be understood as the contri-
bution of the phase under consideration to the macroscopic 
stress � . It should be noted that it is the intrinsic averaged 
stress �� that gives information on how much the phase 
under consideration is stressed. For a dry mixture, voids 
bear zero-stress so we obtain:

(5)�ij =
∑

�∈{F,C,V}

����
ij
=

∑

�∈{F,C,V}

�̂�
ij
.

(6)��
ij
=

1

V� ∫x∈V�

�ij(x)dV .

(7)�ij = �F�F
ij
+ �C�C

ij
= (1 − n)

[

fc�
F
ij
+ (1 − fc)�

C
ij

]

.

The volume fraction �F of the fine fraction is related to fine 
content fc and the porosity n by �F = (1 − n)fc.

Using the definition (6) with some transformations, one 
can define the intrinsic averaged stresses �F and �C in the 
fine and coarse fractions as follows:

where superscript p runs over all the particles in each frac-
tion; and VF

s
 and VC

s
 are the respective total solid volumes of 

the fine and coarse fractions. The tensor Mp , called internal 
moment tensor by Moreau [41], is defined for each particle 
p as follows:

where superscript k denotes each contact on the parti-
cle under consideration; the vector rk connects the parti-
cle center to the contact point; and f k is the contact force. 
As stated in [41, 42], the physical meaning of the internal 
moment tensor Mp remains the same when it is applied to 
a single particle or when it is applied to a collection of par-
ticles. Moreover, when it is applied to a large scale, i.e. a 
collection contains a large number of particles, its physical 
meaning tends to that of the Cauchy stress tensor. It should 
be noted that the estimated macroscopic stress tensor defined 
by (3) can be recovered by summing the tensors Mp over all 
the particles:

The definition (8) can also be transformed to

where �p is the stress tensor defined for each particle with 
the solid volume Vp

s  : �p = Mp∕V
p
s .

Inspired from the stress reduction factor � for the fine 
fraction that was introduced by Skempton and Brogan [30], 
we define two stress factors �F

p
 and �F

q
 , which are the respec-

tive ratios of the mean and deviatoric stresses carried by the 
fine fraction, pF and qF , to their macroscopic counterparts, 
p and q

where pF and qF are computed from the intrinsic averaged 
stress tensor �F defined by (8). The defined stress factors 
�F
p
 and �F

q
 can be thought of as being the relative mean and 

deviatoric stresses carried by the fine fraction, compared to 
the macroscopic counterparts. It is worth mentioning that 
if both fractions carried the same stress, these two stress 

(8)�F
ij
=

1

VF
s

∑

p∈F

M
p

ij
, �C

ij
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1
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s
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ij
,
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ij
=
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k∈p
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i
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.
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(12)�F
p
= pF∕p, and �F

q
= qF∕q,
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factors would be �F
p
= �F

q
= 1∕(1 − n) . Shire et  al. [28] 

defined a stress reduction factor � = pF∕p for the fine frac-
tion. The authors computed the averaged stress �F in the 
fine fraction using the definition (11). However, instead of 
considering the solid volume Vp

s  of each particle, the authors 
associated to each particle an amount of void surrounding 
it, so the volume considered for each particle when comput-
ing the averaged stress �p is Vp = V

p
s ∕(1 − n) . By doing so, 

a binary mixture is considered as a biphasic material: the 
fine and coarse fractions with the respective total volumes 
VF = VF

s
∕(1 − n) and VC = VC

s
∕(1 − n) . As a consequence, 

the resulting stress tensor �F is no longer intrinsic to the 
solid fraction of the fine particles according to (6) and the 
resulting stress factor � is lower than that defined in the cur-
rent study.

Figure  12 shows the absolute mean and deviatoric 
stresses carried by the fine and coarse fractions versus fine 
content fc at the initial, peak and critical states. The stress 
factors �F

p
 and �F

q
 for the fine fraction are shown in Fig. 13. 

It can be seen that at a low fine content ( fc < 20% ), the fine 
fraction carries almost zero-stress. This confirms that the 
fine particles are almost floating in voids between coarse 
particles and carry low stresses. According to Skempton 
and Brogan [30], a significant proportion of fine particles 
in this case can be easily washed out by water flow even 

at low hydraulic gradient – in other words, these mixtures 
are internally unstable. It should be noted that a low stress 
carried by the fine fraction is just a necessary condition for 
the internal instability. This just means that fine particles 
can be easily detached by water flow. The sufficient condi-
tion is whether or not the primary fabric formed by solid 
particles allow detached fine particles to migrate within 
the interstices of this framework.

At a higher fine content ( fc ≥ 20% ), the fine particles par-
ticipate in carrying the applied stress, and its participation 
increases with fine content. It is interesting to note in Fig. 13 
that the fine fraction plays a more important role in carry-
ing the mean stress than in carrying the deviatoric stress: at 
fc = 40% , �F

p
= 1.0 compared to �F

q
= 0.6 at the peak state. 

Shire et al. [28] also found that the stress factor � at the 
isotropic stress state increases with fine content; moreover 
it depends significantly on the gap ratio Gr . By investigat-
ing the stress factors �F

p
 and �F

q
 during the shear loading, we 

find that the shearing leads to a significant reduction in the 
stress carried by the fine fraction (Fig. 13). For the mixture 
with fc = 30% , which exhibits the most marked softening 
behavior as shown in Fig. 4, the stress factor �F

p
 reduces 

indeed from 0.84 at the initial state to 0.43 at the critical 
state. This result indicates that the fine fraction is greatly 
softened by the shear loading, which might make them 
more vulnerable to internal erosion. Concerning the coarse 

Fig. 12   The mean stress a p and 
the deviatoric stress b q carried 
by the fine and coarse fractions, 
compared to the macroscopic 
ones, versus fine content fc at 
the peak state

Fig. 13   Stress factors a �F
p
 and b �F

q
 defined for the fine fraction versus fine content fc at the initial, peak and critical states
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fraction, since voids do not carry any stress and the fine frac-
tion carries a stress smaller than the macroscopic stress, it 
carries a stress much bigger than the macroscopic stress. As 
shown in Fig. 12, the stress carried by the coarse fraction is 
indeed about 1.6 times the macroscopic stress. Furthermore, 
it increases with fine content for fc ≤ 30% but decreases for 
fc > 30% (Fig. 12). This result confirms the optimal fine 
content fc = 30% under which the coarse fraction is rein-
forced by fine particles but above which the coarse fraction 
is weakened since fine particles strongly separate them.

Let us now give an explanation of why the coarse fraction 
gets stronger as fine content fc increases between 20% and 
30%. Solid particles with frictional surface can be thought of 
as gears in a mechanical transmission system so a granular 
binary sample can be assimilated to a system of small gears 
and big gears (Fig. 14). Black and gray gears correspond 
to the particles included in the strong and weak force net-
works, respectively. For fc ≤ 30% , the strong force network 
is primarily constituted of big gears. In such a system, small 
gears have the two following important roles. Firstly, small 
gears intercalated between strong force columns serve as a 
bracing system to laterally stabilize the latter ones: without 
them, strong force columns would collapse. Secondly, an 
important number of small gears around big gears wedge the 
latter ones, thus prevent greatly their rotation. In this case, 
sliding and rolling at contacts between big gears are greatly 
reduced; thus, the coarse fraction gets stronger and the shear 
strength of granular mixtures increases with increasing fine 
content. Indeed, Calvetti et al. [43] and Belheine et al. [9] 
showed that a granular sample resists better shearing if the 
particle rotation is prohibited or reduced.

The partial stresses �̂F and �̂C defined in (5) give the 
contribution of each fraction to the macroscopic stress. If the 
solid fraction was homogeneous, the contribution of the fine 
fraction would be proportional to fine content fc , e.g. 40% 
of fine content would contribute to 40% of the macroscopic 
stress. Figure 15 shows that the contribution of the fine frac-
tion to the macroscopic stress is far from being proportional 

to fine content fc . The fine particles do not significantly con-
tribute to the macroscopic stress when fc < 20% but they do 
when fc ≥ 20% . Moreover, they contribute more to the mean 
stress p than to the deviatoric stress q: for fc = 40% , 21.5% 
of the deviatoric stress q is provided by the fine particles, 
which is much lower than the value of 30.9% of the mean 
stress p. It can be concluded that for the studied range of fine 
content, the coarse particles play a primary role in carrying 
the shear stress, while the fine particles play the role of a 
matrix that reinforces the coarse ones.

5 � Classification of granular mixtures

According to Thevanayagam et al. [7], the micro-structure of 
granular mixtures can be constituted in many different ways, 
depending on fine content. The authors proposed three limit-
ing categories of micro-structure: (a) the coarse–coarse con-
tacts are dominant, (b) the fine–fine contacts are dominant, 
and (c) the fine and coarse particles form a layered system. 
The current study brought several interesting insights into 
the variation of the granular micro-structure and how the 
coarse–coarse, coarse–fine and fine–fine contacts participate 
in sustaining the shear stress, depending on fine content. It 
turns out that the fine–coarse contacts play an important 
role in the micro-structure and there exists an intermediate 
category between (a) and (b), where these contacts primarily 
bear the shear stress. We propose, therefore, the following 
classification of granular mixtures into four limiting cat-
egories of micro-structure with three threshold values as 
illustrated in Fig. 16.

•	 Category (i) for fc < f th
c,1

 : the fine particles are almost 
floating within intercoarse voids, hence they have a lit-
tle contribution to supporting the shear stress. The shear 
strength is then not affected by fine content.

•	 Category (ii) for f th
c,1

≤ fc < f th
c,2

 : the fine particles partially 
fill intercoarse voids but they partially separate coarse 

Fig. 14   A granular binary mix-
ture is assimilated to a system 
of gears. Black and gray gears 
correspond to particles included 
in the strong and weak force 
networks, respectively

Fig. 15   Contributions of the fine fraction to the macroscopic mean 
and deviatoric stresses, p and q, at the peak state versus fine content 
fc
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ones. The fine–coarse contacts are created and contribute 
to carrying the shear stress. However, contacts between 
coarse particles primarily carry the shear stress. In this 
case, the shear strength increases with fine content.

•	 Category (iii) for f th
c,2

≤ fc < f th
c,3

 : the fine particles fully 
fill intercoarse voids and greatly destroy coarse–coarse 
contacts. The fine–fine contacts participate in carrying 
the shear stress. The major contribution to the shear 
stress is provided by the fine–coarse contacts. In this 
case, the shear strength decreases with fine content.

•	 Category (iv) for fc ≥ f th
c,3

 : the coarse particles are fully 
dispersed by the fine ones. The behavior of granular 
mixtures of this category is mainly governed by the fine 
particles. It is thus expected that the shear strength is 
independent of fine content in this case.

It is should be noted that this classification does not include 
the category (c) of layered micro-structure considered by 
Thevanayagam et al. For the binary mixtures considered 
in our study, the first and second threshold values, f th

c,1
 and 

f th
c,2

 , are about 20% and 30%, respectively. We could not 
determine the third threshold value f th

c,3
 since the compu-

tation time for simulating binary mixtures with very high 
fine content is too long. It is worth mentioning that these 
threshold values might depend on many factors like the gap 
ratio, the particle shape or the sample density. According to 
Minh et al. [11], the last threshold value f th

c,3
 is about 60% for 

binary mixtures under one-dimensional compression with a 
gap ratio about 4.0.

6 � Conclusions

In this paper, we have presented a study on the effect of 
fine content on the mechanical behavior of granular gap-
graded materials subjected to shear loading. Numerical 
samples composed of fine and coarse spherical particles 
with different fine contents up to 40% are simulated using 
the DEM. Triaxial compression tests are then performed 
on these samples and their behavior is investigated at the 

macro- and micro-scales. This study brought a lot of insights 
into the granular micro-structure and the stress transmis-
sion in granular mixtures, which allowed us to explain why 
the fine particles can have no effect, positive effect or nega-
tive effect on their stress-strain behavior, depending on fine 
content. At a low fine content ( fc < 20% ), the fine parti-
cles are almost floating within the void space between the 
coarse particles so they do not participate significantly in 
carrying the shear stress. Starting from 20% of fine content, 
the fine particles cause two opposite effects to the granu-
lar micro-structure: on one hand, they come into contact 
with coarse particles and reinforce the micro-structure, but 
on the other hand, they separate coarse particles and then 
weaken the micro-structure. As a consequence, the shear 
stress is transmitted more and more through the coarse–fine 
contacts but less and less through the coarse–coarse contacts 
as fine content increases. The optimal fine content is about 
30% under which the coarse–coarse contacts primarily sup-
port the shear stress. A decrease in the stress part carried by 
them is compensated by a strong increase in the stress part 
carried by the coarse–fine contacts. As a result, the shear 
strength increases with fine content. Above this optimal fine 
content, the coarse–fine contacts overtake the coarse–coarse 
contacts in carrying the shear stress. The coarse fraction is 
greatly weakened and is not sufficiently reinforced by the 
coarse–fine contacts, hence the shear strength decreases. For 
the studied range of fine content, the fine–fine contacts have 
little contribution to the macro-stress. It was also found that 
the strong force network in the studied granular mixtures 
includes almost all the coarse–coarse contacts but no more 
than 50% of coarse–fine contacts. Furthermore, a major 
fraction of fine–fine contacts are located in the weak force 
network.

For the studied range of fine content, the coarse particles 
constitute primarily the solid skeleton to resist the shear 
loading, leaving the fine particles under lower stresses. 
Interestingly, the role of the fine particles is more impor-
tant in carrying the mean stress than in carrying the devia-
toric stress. At a high fine content, the fine fraction suffers a 
marked softening phase after the peak state.

Fig. 16   Four categories of 
micro-structure for granular 
gap-graded soils

f th
c,3f th

c,2f th
c,10% 100%

fc

(i) (ii) (iii) (iv)
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Based on this study, a classification of binary mixtures 
into four limiting categories of micro-structure was pro-
posed. The particularity of the proposed classification is that 
it considers the importance of the coarse–fine contacts in 
the micro-structure. When fine content exceeds a threshold 
value (about 30% in our simulations), these contacts over-
take the coarse–coarse contacts in carrying the shear stress.
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