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Abstract
The effects of strain gradient on the mechanical behavior of granular materials have attracted attention from many research-
ers. In this paper, the effects of the first shear strain gradient in granular materials are focused on. Granular assemblies with 
various particle radii and porosities are built through a two-dimensional discrete element method (2D-DEM) simulations. 
The results indicate that the macro shear stress is insensitive to the first shear strain gradient at low strains, but is indeed 
affected at high strains; the third order stress conjugated with the first shear strain gradient is sensitive to the first shear strain 
gradient in all deformation cases; the third order work done by the third order stress and the ratio of it versus the total work 
are affected by the first shear strain gradient; the evolutions of the invariants of the third order stresses present severe change 
of the local relative vertical displacement of particles, which lead to localization occurrence. Based on DEM simulations, it 
is found that only the effect consideration of the first shear strain gradient on the macro shear stress is not sufficient, whereas 
the effect on work should also be taken into account and the third order work as a part of strain energy cannot be ignored, 
which is falsely classified as a portion of the accumulated energy dissipated by frictional sliding.

Keywords First shear strain gradient · Macro shear stress · Third order stress · Third order work · Granular materials

List of symbols
A(t)  Shape parameter of the primary term of 

displacement
B(t)  Shape parameter of the quadratic term 

of displacement
c  Ratio of B(t) versus A(t)
�12  Macro shear stress
�221  Third order stress which is conjugated 

with the first shear strain gradient
W1  Second order work, the integral of the 

macro shear stress times the macro 
shear strain in total volume

W2  Third order work, the integral of the 
third order stress times the first shear 
strain gradient in total volume

W   Summation of W1 and W2

�  Ratio of W2 versus W
F1 , F2 , F3 , F4 , F5  Five invariants of the conjugated 

stresses

1 Introduction

Due to the corresponding discontinuous nature, the 
mechanical behaviors of granular materials are signifi-
cantly complex; therefore the experiments are quite dif-
ficult to be conducted. To describe the mechanical behav-
iors of granular materials [1–3], many effective methods 
have been developed such as the Distinct Element Method 
(DEM) proposed by Strack and Cundall [4]. Also, to 
simplify the granular material constitutive relation, the 
granular material was regarded as a simple material in 
many researches. The concept of simple material was 
defined by Noll [5, 6], where the stress at one point of this 
material had a simple connection with the strain and the 
corresponding history at that point. This simple relation 
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constituted this material different from other materials. 
Based on the Noll concept, Kuhn [7, 8] verified that a 
granular material was not a simple material, whereas the 
stress at one point not only depended on the strain and the 
corresponding history, but also the strain gradients, where 
a relationship with the high order quantity of deformation 
gradient had been established.

The strain gradient effects were first proposed by Mind-
lin [9], where the potential energy–density was considered as 
a function of strain as well as its first and second gradients. 
Consequently, a quite generalized simplification theory that 
contained only the strain and the corresponding first deriva-
tive was put forward. Subsequently, many researchers, such 
as Fleck et al. [10, 11], Yang et al. [12] and Gao et al. [13] 
improved and enriched this theory, afterwards, Yang and Misra 
[14] presented a second gradient stress–strain damage elas-
ticity theory to simulate shear bond localization based upon 
the method of virtual power, and then Placidi et al. [15] pro-
vided analytical solutions of identifying all the constitutive 
parameters of the 2D solids characterized by a strain energy 
dependent on the first and second gradient of the displace-
ment. For granular materials, the strain gradient effects had 
been postulated and many gradient-dependent constitutive 
formulations had already been proposed, where the granular 
material was considered as a continuum at the macro scale, 
indifferently to the constitutive formulation. Chang and Gao 
[16] reported the displacement and rotation fields by continu-
ous polynomial functions and various classes of continua, 
including the High-gradient continua and the First-gradient 
continua. In order to describe the evolutions of mechanical 
quantities realistically in granular materials, Chang and Kuhn 
[17] further utilized the virtual work concept to obtain expres-
sions of conjugate forces, which were conjugated with various 
strain gradients. Consequently, the effects of strain gradient on 
the strain localization were investigated [18]. Voyiadjis et al. 
[19] proposed a constant internal length scale to describe the 
shear band thickness. Hattamleh et al. [20] discovered that 
the gradient term diffused the concentration of plastic strains 
within shear band. Following, Kuhn [8] verified the softening 
effect of the first shear strain gradient and the hardening effect 
of the second shear strain gradient on the macro stress under 
high strain. Subsequently, the strain gradient effects on the 
localizations of granular materials were studied [21], which 
were mainly focused on the relationship of macro stress and 
strain. Recently, Misra and Poorsolhjouy [22, 23] obtained 
higher-order elastic constants for grain assemblies by intro-
ducing higher gradients, and presented a method to identify the 
macro and microscale constitutive coefficients from discrete 
simulation which consider the first and second displacement 
gradients. By contrast with the research of macro stress and 
strain, the effects of various strain gradients on the work were 
not deeply discussed, where the higher order term contribution 

to the energy was ignored, which might have led to a non-
conservation of energy.

In this paper, the effects of first shear strain gradient on the 
mechanical behaviors of granular materials are investigated. 
Non-uniform displacement patterns are applied to granular 
assemblies and the displacement fields are assumed as con-
tinuous polynomial functions. The variations of macro shear 
stress and the conjugated stress under various strain gradi-
ent loads are mainly focused on, subsequently the porosity 
and particle radius of the granular assemblies are changed to 
study the effects of various gradients on mechanical behaviors. 
Through the analysis of macro shear stress and conjugated 
stress, as well as the work and invariants versus the macro 
shear strain, the effects of the first shear strain gradient on 
mechanical behaviors of granular materials can be demon-
strated, possibly constituting a qualitative analysis method for 
granular materials.

2  Homogenization

2.1  From discrete particles to continuum field

Granular materials are known as a collection of particles with 
various sizes and shapes, where voids exist among particles. 
Consequently, the granular materials are a discontinuum sys-
tem with particles and voids, which display discrete veloc-
ity and displacement, but the stress is a continuum concept. 
Therefore a connection between the discrete displacement 
system and the continuous force system must be made.

To develop a continuum mechanics model for the behav-
ior of a particle assembly, it is desirable to view the discrete 
system as an equivalent continuum system. Therefore, the 
displacement and rotation of discrete particles are defined 
as macro-scale continuum fields, which utilize a polynomial 
expansion [24, 25]. The detailed expressions are as follows:

where ui represents the displacement and rotation of an arbi-
trary point in an assembly, ui stands for the rigid displace-
ment of an assembly, respectively. uij and uijk can be utilized 
to describe the deformation characteristics; uij is the macro 
strain, uijk  is the strain gradient, respectively. The coordi-
nates xj are measured from the centroids of volume V .

Following, to obtain the expressions of the virtual work, 
the virtual displacement and rotation must be provided; the 
expressions are as follows as Eq. (2).

(1)ui(X) = ui + uijxj +
1

2
uijkxjxk

(2)𝛿ûi(X) = 𝛿u0
i
+ 𝛿u0

ij
xj +

1

2
𝛿u0

ijk
xjxk
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The concrete meanings of �u0
i
 , �u0

ij
 , and �u0

ijk
 are the same as 

the ui , uij and uijk , which can be utilized as the virtual defor-
mation characteristics.

2.2  Principle of virtual work

For a granular material system, a principle of virtual work in 
a discrete system could be obtained following the approach 
by Chang et al. [24, 25]. By multiplying the each equilibrium 
equations of interior and boundary particles, the virtual work 
can be obtained as follows. The second term of Eq. (3) will 
always be zero, by introducing the supplementary independent 
virtual displacement �ub

i
 of the boundary contact points them-

selves, superior stress expressions can be obtained.

where f nb
i

 represents the contact force of a peripheral parti-
cle, n and m represent the internal particles, b represents the 
external contact, f nm

i
 represents the contact force of inner 

particles.
Subsequently, the virtual work can be divided into two 

parts. The first part is an external virtual work associated with 
the boundary displacements and the second part is an internal 
virtual work associated with the internal deformation. The cor-
responding expressions are as follows:

Substituting Eq. (2) into Eqs. (4), (5) and (6), the expres-
sions of the virtual work, including �u0

i
 , �u0

ij
 and �u0

ijk
 , can be 

obtained. Since the interior and exterior virtual works must be 
equal for an arbitrary selection of the macro strains,the follow-
ing equivalences among the force sums can be obtained.

where f c
i
 is the contact force of particles, lc

j
 is the branch 

vector which connects the reference points Xm and Xn of 
particles, Jc

lj
 is a quadratic parameter which is related to Xm 

and Xn.

(3)

�Wd =
1

V

∑

n

(

∑

b∈B

f nb
i
+
∑

m∈V

f nm
i

)

�un
i
+

1

V

∑

b∈B

(f b
i
− f b

i
)�ub

i
= 0

(4)�Wd = �Wd
E
− �Wd

I
= 0

(5)�Wd
E
=

1

V

∑

b∈B

f b
i
�ub

i

(6)�Wd
I
= −

1

V

∑

n

∑

m∈V

f nm
i

�un
i
+

1

V

∑

b∈B

f b
i
(�ub

i
−�un

i
)

(7)

1

V

∑

b∈B

f b
i
xb
j
=

1

V

∑

c∈V∪B

f c
i
lc
j

1

V

∑

b∈B

f b
i
xb
j
xb
k
=

1

V

∑

c∈V∪B

f c
i
Jc
jk

Based on the virtual macro strain of a representative vol-
ume element, the expression of virtual work can be written 
as follows, where the macro stress is conjugated with the 
macro strain.

2.3  Invariants of third order stresses

Based on the symmetry of third order stresses � ijk=� jik , five 
invariants exist [26–32],

3  Simulation models and methods

3.1  Simulation models

The particle flow code (PFC) numerical simulation as a 
discrete element method (DEM) is constantly used in the 
research of basic physical and mechanical properties of 
granular materials [4, 33–35]. In this paper, the PFC2D is 
utilized to simulate the strain gradient effects on the mechan-
ical properties of the granular materials. The modeling box 
of a granular assembly is 0.2 × 0.2 m, six granular assem-
blies are built. The particle radius and porosity are two vari-
ables in model building, while the other quantities are the 
same. Two particle radii are utilized. One radius is the radius 
of all particles of 0.001 m, whereas the other radius is the 
radius range of 0.0008–0.001 m. Moreover, three porosities 
are utilized as 0.11, 0.172 and 0.21. Furthermore, the contact 
model of the particles is linear, the stretch stiffness and shear 
stiffness are 1e7 N/m, the friction coefficient is 0.5, whereas 
no rolling resistance is included in the contact mechanism. 
The parameters are chosen on an empirical basis [33–35], 
as listed in Table 1. The particles are initially assembled and 
compacted into an irregular arrangement, but macroscopi-
cally isotropic.

(8)

𝛿w = �̄�ji𝛿u
0

ij
+

−
∑

kji𝛿u
0

ijk

�̄�ji =
1

V

∑

c∈V∪B

f c
i
lc
j
, lc
j
= xm

j
− xn

j

−
∑

kji =
1

2V

∑

c∈V∪B

f c
i
Jc
jk
, Jc

jk
= xm

i
xm
j
− xn

i
xn
j

(9)

F1 = �
2

111
+ �

2

222
+ �

2

112
+ �

2

221
+ 2�112�222 + 2�111�221

F2 = �
2

111
+ �

2

122
+ �

2

211
+ �

2

222
+ 2�111�122 + 2�211�222

F3 = �
2

111
+ �

2

122
+ �

2

211
+ �

2

222
+ 2

(

�
2

112
+ �

2

221

)

F4 = �
2

111
+ �

2

222
+ �

2

112
+ �

2

221
+ 2�112�211 + 2�122�221

F5 = �111�211 − �111�112 − �122�112 − �122�222 + �211�221 + �222�221
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3.2  Methods

Different from Kuhn’s algorithm [7], the displacement loading 
instead of the force loading is directly utilized to form a non-
uniform displacement field in this paper as showed in Fig. 1, 
and the common boundary condition instead of the periodic 
boundary condition is used. The effects of first shear strain 
gradient on the mechanical behavior of the granular material 
during the shear testing are discussed.

In the tests of constrained deformation, all particles of an 
assembly are slowly and progressively generated shear defor-
mation through a sequence of horizontal displaced shapes U1 
as showed in Fig. 2:

Table 1  Parameters of simulations and material properties of granu-
lar assemblies

Parameters Values

Geometrical size 0.2 × 0.2 m
Radii of particles 0.001 m and 0.0008–0.001 m
Initial porosity 0.11, 0.172 and 0.21
Particle density 1400 kg/m3

Local damping 0.7
Normal spring constant 1e7 N/m
Tangential spring constant 1e7 N/m
Friction coefficient 0.5

Fig. 1  Deformation diagram of granular material under displacement load application, from (a) to (b), then to (c)

Fig. 2  a simulated model in PFC 2D; b displacement pattern applied to granular material in PFC 2D
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whereA(t) and B(t) are two shape parameters, U1 is prede-
termined through the change of the former. Following, the 
horizontal shear strain �(x2, t) and the first shear strain gradi-
ent �(x2, t) are calculated as follows:

In the simulations, the values of A(t) and B(t) are 
advanced in small steps until the required values are 

(10)U1 = A(t)x2 +
1

2
B(t)x2

2

(11)

�(x2, t) =
�U1

�x2
= A(t) + B(t)x2

�(x2, t) =
�2U1

�x2
2

= B(t)

satisfied. The A(t) has a required value, through setting the 
constant ratio c of B(t) versus A(t) , which are set as 0, 1, 3, 
5, 7 and 10, then the required value of B(t) can be obtained. 
Consequently, the mechanical behaviors of various assem-
blies under various displacement patterns are discussed.

4  Results and discussion

Six granular assemblies are simulated to observe the 
mechanical behaviors through PFC2D. The evolution pro-
cesses of the macro shear stress versus the macro shear strain 
in the simulations are observed. Consequently, the values 
of the work and the invariants can be calculated through 
Eqs. (8) and (9). The results are analyzed from three aspects: 
one aspect is the macro shear stress and the third order 
stress, the second aspect is the work and the third aspect 

Fig. 3  Macro shear stress and third order stress versus macro shear 
strain curves under six displacement patterns of ratio c , set as 0, 1, 3, 
5, 7, 10 for a, b assembly of porosity of 0.11; c, d assembly of poros-

ity of 0.172; e, f assembly of porosity of 0.21, granular assemblies 
with the radius of 0.001 m
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is the invariants. Following, the effects of first shear strain 
gradient on the mechanical behavior of the granular material 
can be presented.

4.1  Evolution of macro shear stress and third order 
stress

Figures 3 and 4 present the evolutions of the macro shear 
stress �12 and the third order stress �221 versus the macro 
shear strain under six displacement patterns of the ratio c , set 
as 0, 1, 3, 5, 7 and 10. Figure 3 presents the characteristics 
of granular assemblies with the radius of 0.001 m and Fig. 4 
presents the characteristics of the granular assemblies with 
the radius of 0.0008–0.001 m. No matter what the granular 
assembly is, the same phenomenon can be observed.

Under low strains, the macro shear stress is insensitive to 
the first shear strain gradient, but the first shear strain gradi-
ent effect on the third order stress is apparent, for which, as 
the first shear strain gradient increases, the third order stress 
increases when the same macro shear strain is achieved. 
These results are in accordance with the predictions of the 
theory in Ref. [5]. The integral of the first shear strain gradi-
ent in total volume is zero under low strains, which means 
that the shear strain gradient does not contribute to the shear 
strain, while the values of the shear strain are the same under 
different displacement patterns. Therefore, the evolution 
curves of the macro shear strain are insensitive to the first 
shear strain gradient under low strains.

Under high strains, when the macro strain exceeds a cer-
tain value as shown in Figs. 3 and 4, the macro shear stress 
is sensitive to the shear strain gradient. The third order stress 

Fig. 4  Macro shear stress and third order stress versus macro shear 
strain curves under six displacement patterns of ratio c , set as 0, 1, 3, 
5, 7, 10 for a, b assembly of porosity of 0.11; c, d assembly of poros-

ity of 0.172; e, f assembly of porosity of 0.21, granular assemblies 
with the radius of 0.0008–0.001 m
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also changes significantly under different displacement pat-
terns. When the deformation gradually increases to exceed 
the low strains range, the initial configuration no longer 
overlaps with the current configuration, the integral of the 
shear strain gradient in total volume is not zero under low 
strains and the macro shear stress will be different when the 
same macro shear strain is achieved. This demonstrates that 
the macro shear stress value is related to the macro shear 
strain and the first shear strain gradient. The granular mate-
rial is not a simple material. The representative volume ele-
ment behaves as a higher order continuum, even though each 
point within the representative volume element is a classic 
continuum.

As shown in Fig. 4, as the first shear strain gradient 
increases, the change of the macro shear stress is increasingly 
apparent. The stress change ratio ( (�c=cur

12
− �

c=0

12
)∕�

c=0

12
 ), 

can be observed in Fig. 5. As the first shear strain gradi-
ent increases, the stress change ratio is not monotonous, 
but fluctuant. Adversely, when the first shear strain gradi-
ent increases, the effect on the macro shear stress is quite 
apparent, even reaching − 27% (see Fig. 3a), in which minus 
(−) means that the first shear strain gradient has a softening 
effect on the macro-stress, when the first shear strain gradi-
ent increases to a certain extent.

For granular assemblies with different porosities and 
particle radii, the trend impact is the same, but the effect 
extent differs. When assemblies are enforced to the same 
displacement pattern of the ratio c set as 10, as the porosity 

increases, the stress ratio for the assembly with the radius 
of 0.001 m decreases from − 27.7 to − 22.6%, as well as 
subsequently to − 15%, while the stress ratio for the assem-
bly with the radius of 0.0008–0.001 m decreases first from 
− 21.5 to − 14.4%, subsequently increasing to − 20%. This 
is related to the microstructure of assemblies and requires 
further research.

4.2  Work evolution

The concept of the work is significantly important in 
mechanics, since it explains the energy in granular materi-
als. A linear contact model defines three energy partitions in 
the PFC, which are the strain energy, the slip energy and the 
dashpot energy. The strain energy is defined as the energy 
stored in the springs, the slip energy is defined as the accu-
mulated energy dissipated by frictional sliding, whereas the 
dashpot energy is defined as the accumulated energy dis-
sipated by the viscous dashpots. In this paper, a linear con-
tact model is used, where only two energy partitions exist 
because the dashpot quantity is set to zero.

Chang et al. [15] obtained the expression of virtual work 
in granular materials; consequently the expression of work 
could be obtained when the virtual displacement is the actual 
displacement. If the quadratic term of displacement could 
not be ignored, the first shear strain gradient will exist. The 
expression of the work is made up of two parts, which are 
the second order work and the third order work. The second 

Fig. 5  The stress ratio versus 
ratio c curves under six 
displacement patterns for a 
assembly with the radius of 
0.001 m; b assembly with radii 
of 0.0008–0.001 m
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order work is the integral of macro shear stress times the 
macro shear strain in total volume, where the third order 
work is the integral of third order stress times the first shear 
strain gradient in total volume.

For all assemblies, the same phenomenon is observed, 
as presented in Fig. 6. Under low strains, when the same 
macro shear strain is achieved, as the first shear strain gradi-
ent increases, the second order work W1 has not change, the 
third order work W2 increases, while the ratio � increases. 
Under high strains, when the same macro strain is achieved, 
as the first shear strain gradient increases, the second order 
work decreases, the third order work increases and the ratio 
� also increases. By contrast, the tendency of the total work 
differs from various assemblies.

As described in Sect. 4.1, the effects of first shear strain 
gradient on the macro shear stress and the conjugated 
stress are different, which cause the different tendencies 

of the second order work, the third order work and the total 
work. As presented in Fig. 6, for one assembly in the same 
displacement pattern, the ratio � displays a downtrend. 
When the gradient is low, the ratio � is low under all defor-
mation processes, which can be ignored. Adversely, when 
the gradient becomes higher, the ratio � becomes higher 
which cannot be ignored. The reason is that in the calcula-
tion equation of the macro stress and the conjugated stress, 
the macro stress is related to lc

j
 , and the conjugated stress 

is related to Jc
j
 , which lead to the tendency decrease of 

ratio � under the entire deformation process.
When the same macro shear strain is achieved, as the 

first shear strain gradient increases, all quantities includ-
ing the second work, the third work, the total work and the 
ratio � highly change. Figure 7 shows the tendencies of 
different assemblies when the ratio c is set to 10. Although 
the ratio � presents a downtrend in the entire deformation 

Fig. 6  Work and ratio � versus macro shear strain curves under six displacement patterns of ratio c , set as a 0; b 1; c 3; d 5; e 7; f 10, assembly 
with same radius of 0.001 m and porosity of 0.11
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process, the effect on the work cannot be ignored, when 
the final strain is achieved, as the porosity increases, the 
ratio � for the assembly of 0.001 m increases from 10.9 
to 16.4%, the ratio � for the assembly of 0.0008–0.001 m 
increases from 10.6 to 19.1%, where the change of ratio � 
is different from the macro shear stress.

4.3  Evolution of third order stresses invariants

In Sect. 4.1, the evolution of the third order stress �221 is 
described, which is conjugated to the second derivation 
of the displacement U1 to the x2 orientation, not reveal-
ing the local relative vertical displacement under differ-
ent displacement patterns. Consequently, the other third 
order stresses should be considered, while the invariants 
( F1,F2,F3,F4,F5 ) of third order stresses are introduced to 
describe the evolution of the local vertical relative verti-
cal displacement. The invariants of third order stresses 
are quadratic invariants, because � ijk is equal to � jik , the 

third order stresses have six independent stresses, which 
form five invariants.

Figure  8 presents the changes of five invariants, for 
which, the change tendencies are the same under different 
displacement patterns, which fluctuate upwards and down-
wards, but as the first shear strain gradient increases, the 
amplitude of invariants variation increases. Also, the fluctua-
tion is increasingly abrupt. Through analysis, the fluctuation 
has a close relationship with the third order stresses, includ-
ing all �112 , �122 and �222 , for which, the changes also 
fluctuate. This is interpreted that the local relative vertical 
displacement tremendous change of an assembly produces 
the localization of particles.

Under a displacement pattern with gradient, the locali-
zation is quite apparent in all granular assemblies. As pre-
sented in Fig. 9, the vertical displacement change is big, 
which leads to the upward and downward movement of 
particles and produces the localization phenomenon. Since 
the displacement pattern controls the horizontal displace-
ment and sets free the vertical displacement, the type of 

Fig. 7  Work and ratio � versus macro shear strain curves under same displacement patterns of ratio c , set as 10 for assembly of: a–c same radius 
0.001 m; d–f 0.0008–0.001 m; and porosity of a, d 0.11; b, e 0.172; c, f 0.21
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localization is shear deformation. For an assembly, the first 
shear strain gradient is higher, the centralization of locali-
zation is easier, which cause the changes of the third order 
stresses under different displacement patterns. When the 
porosity or the particle radius of an assembly changes, the 
same phenomenon can be observed, but the macro shear 
strain of the localization initiation differs.

5  Conclusions

DEM simulations are carried out to investigate the effects 
of first shear strain gradient on the mechanical behaviors 
of different granular assemblies with various porosities and 
various particle radii. The important conclusions are sum-
marized as follows.

(1) For all assemblies, when the first shear strain gradi-
ent increases, the conjugated stress �221 increases, the 

macro shear stress �12 has no apparent change under 
low strains, but it changes apparently under high 
strains. When the first shear strain gradient exceeds one 
certain value, the gradient has a softening effect on the 
macro shear stress �12 . Moreover, for assemblies with 
different porosities or particle radii, the same change 
tendencies can be observed, but the extent of the effects 
will differ.

(2) For all assemblies, the change tendency of ratio � ver-
sus macro shear strain has a downtrend in the entire 
deformation process, but when the same macro shear 
strain is reached, as the first shear strain gradient 
increases, the values of the third order work W2 and the 
ratio � increase. This is interpreted as the effects of the 
first shear strain gradient on the third order work could 
not be ignored. For assemblies with different porosity 
values or particle radii, the extent of the effects will 
differ.

Fig. 8  Invariants versus macro shear strain curves under five displacement patterns of ratio c , set as a 1; b 3; c 5; d 7; e 10, assembly with same 
radius of 0.001 m and porosity of 0.11
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(3) For all assemblies, the invariants of the third order 
stresses explain the local relative vertical movement of 
particles. When the first shear strain gradient increase, 
the change amplitudes of F1 , F2 , F3 , F4 and F5 increase, 
which reveals that the local relative vertical displace-
ment of particles are very acute and generates central-
ized localization. When the assembly has different 
porosities or particle radii, the extent of the effects will 
differ.

In summary, when the same macro shear strain is reached, 
the effects of the first shear strain gradient effect on the macro 
shear stress are not apparent under low strains, by contrast, as 
the first shear strain gradient increases, the third order stress 
�221 , the third order work W2 and the ratio � increase. From the 
view of work analysis for the mechanical behaviors in granu-
lar materials, it is necessary to consider the first shear strain 
gradient effects through the third order work classification into 

strain energy (not sliding energy). Therefore, the third order 
work as a part of strain energy and effects of the first shear 
strain gradient on the mechanical behaviors of granular materi-
als cannot be ignored.
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