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Abstract
The paper examines the sudden and irregular fluctuations of stress that are commonly observed in DEM and laboratory 
tests of slow monotonic loading of granular materials. The stresss fluctuations occur as stress-drops that are spaced in an 
irregular, random manner as the material is loaded, and occur at an average rate of about 0.05 drops per particle per one 
percent of strain. Each fluctuation is accompanied by a drop in the number of contacts and in the number of sliding contacts, 
a brief increase in the particles’ kinetic energy, a reduction in the elastic energy of the contacts, and a reduction in bulk 
volume. Stress-drops are shown to originate within small regions of the larger assembly and are likely the result of a multi-
slip mechanism. An advanced discrete element method (DEM) is used in the study, with non-convex non-spherical particles 
and an exact implementation of the Hertz-like Cattaneo–Mindlin contact model. The simulations reveal differences with 
the avalanche phenomenon of amorphous solids, in particular the different scalings of stress-drop magnitude with assembly 
size and drop frequency.

Keywords  Granular material · Instability · Micro-mechanics · Energy dissipation · Second-order work · Plasticity · Discrete 
element method

1  Introduction

The past two decades have seen an improved understand-
ing of the deformation and failure of granular materials. 
This progress has come from advanced testing and imaging 
methods, from more realistic numerical simulations, and 
from improved mathematical frameworks for interpreting 
the results of experiments and simulations. When applied to 
large-scale engineering problems, the results of these meth-
ods have typically been placed in the context of incremental 
elastoplasticity, which is applied at idealized material points 
to explain and predict the failure—both diffuse and local-
ized—of bulk specimens. In this approach, failure occurs as 

a continuous transition of a material’s stiffness that leads to a 
loss of controllability or to a bifurcation of equilibrium states 
that are available to support the applied loads. However, 
experimental studies and numerical simulations show that 
smaller failures, both micro and meso, occur throughout the 
approach toward macro-failure. These local “micro-failures” 
occur when the friction limit is attained at individual con-
tacts or as particles are suddenly rearranged after reaching 
untenable positions. Micro-failure is most directly expressed 
during triaxial compression testing as frequent and irregular 
drops in the deviatoric stress (stress-drops) [1–7], sudden 
small changes in volume during drained loading [7, 8] or 
changes in pore pressure during undrained loading, wide 
fluctuations in the number of inter-particle contacts [9], the 
emission of acoustic energy from granular materials [7, 10, 
11] and from sandstone [12], and sudden increases in the 
particles’ kinetic energy and reductions in internal potential 
energy [13–15]. The drops in stress and potential energy for 
frictional granular materials resemble similar events—ava-
lanches or bursts—that occur in amorphous, glassy solids 
[16–19], although differences with granular materials are 
revealed in the current work.
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The confined and localized failures in jammed granu-
lar materials occur while the material is strain hardening 
and prior to the peak strength and diffuse failure, which are 
reached when the otherwise small, infrequent, and confined 
failures are sufficiently numerous and organized to produce 
diffuse macro-failure [20]. This view of deformation chal-
lenges an underlying tenet of continuum elastoplasticity: that 
progress toward failure is a smooth transition of the mate-
rial state (for example, the continuous alterations of a yield 
surface and hardening modulus). The paper examines the 
non-smooth transition of stress and fabric in a 3D granular 
material during monotonic loading, using numerical discrete 
element (DEM) simulations to quantify the frequency, inten-
sity, and longevity of the frequent drops and recoveries of 
stress and to determine the micro-scale mechanisms that are 
likely responsible.

2 � Monotonic triaxial compression 
and non‑smooth behavior

We used a series of slow, quasi-static DEM simulations to 
study the evolution of stress in a granular assembly. The 
assembly was a cubical box filled with 10,648 smooth non-
convex sphere-cluster particles contained within periodic 
boundaries, with each sphere-cluster composed of seven 
overlapping, bonded spheres (Fig. 9 in “Appendix” sec-
tion). Hereafter, we refer to a sphere-cluster of seven over-
lapping spheres as a single particle. Each such non-convex 
particle can touch another particle at multiple contacts, 
thus instilling rotational restraint in a natural way, without 
resort to rotational contact springs. The particles’ shape, 
sizes, and arrangement were calibrated to simulate the 
behavior of the fine-grain poorly-graded medium-dense 
Nevada Sand (model details are described in “Appendix” 
section). The particle size range was 0.074–0.28 mm, with 
D50 = 0.165mm . The assembly was large enough to capture 
the average material behavior but sufficiently small to pre-
vent meso-scale localization, such as shear bands.

The particles interacted at contacts that were modeled 
with Hertz-type elastic springs for the normal component 
of force and with an exact implementation of the frictional 
Cattaneo–Mindlin interaction for the tangential force com-
ponent (see [21, 22] and “Appendix” section). A Catta-
neo–Mindlin model yields a more faithful representation 
of the small-strain stiffness of sands, in which stiffness is 
typically found to be proportional to the mean stress raised 
to the power of 0.4–0.6. We also conducted simulations 
with standard linear–frictional contacts, and, aside from the 
relationship between stiffness and mean stress, the results 
were qualitatively similar in all respects to those report 
with Cattaneo–Mindlin contacts. Both Cattaneo–Mindlin 
and linear–frictional models are rate-independent, such 

that the friction coefficient is independent of the loading 
rate and the rate history. As such, these models do not 
exhibit the rate-strengthening or rate-weaking that can pro-
duce stick-slip or ratcheting behaviors. The initial particle 
arrangement was isotropic with a confining mean stress 
p = −

1

3
(�11 + �22 + �33) = 100 kPa . The initial dense 

(jammed) packing had a solid fraction 0.637.
The simulations are of triaxial loading, with a compres-

sive reduction in the x1 height while maintaining a constant 
mean stress, by adjusting the x2 and x3 widths (i.e., constant-
p triaxial loading). With these conditions, any stress fluc-
tuations or local micro-scale mechanisms would be due to 
deviatoric loading alone. Figure 1 shows the results of a sim-
ulation of isobaric (drained), constant-p triaxial compres-
sion, in which the x1 width of the assembly was reduced at 
constant rate 𝜀̇11 while adjusting the lateral widths to main-
tain the constant mean stress of 100 kPa. This simulation of 
constant-p monotonic triaxial compression is the focus of the 
paper. Figure 1a shows both stress and volume change for 
the DEM simulation and for a Nevada Sand specimen tested 
in the VELACS program (the latter being specimen 69–75 
at 60% relative density [23]).

(a)

(b)

Fig. 1   a Stress and volume change of Nevada Sand and of DEM 
simulation for triaxial compression at constant mean stress of 
10,648 non-convex sphere-cluster particles (in DEM simulation, 
p
o
= 100 kPa ): the upper lines are stress; whereas, the lower lines are 

volume change. b Detail of stress for the DEM simulation
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2.1 � Non‑smooth transitions in the form 
of stress‑drops

In Fig.  1, we show the deviator stress, the difference 
−q = −(�11 − �33) between the loading and lateral direc-
tions, that is developed during drained triaxial compression 
under constant mean stress (stress is normalized by dividing 
by the pressure p, equal to the negative mean stress). The 
figure exhibits frequent irregular and abrupt changes, which 
gives the stress-strain plots a rough, raspy, and non-smooth 
appearance. This characteristic is widely reported, both in 
simulations [1–3, 5, 24] and in physical experiments [2, 7, 
11, 25, 26]. Roux and Combe [27] recognized the propensity 
for these abrupt changes as an innate attribute of granular 
materials, and they distinguished two regimes of granular 
behavior: a small-strain strictly quasi-static regime and a 
rearrangement regime at larger strains. In the strictly quasi-
static regime at small strains, behavior is relatively smooth, 
bulk deformation is largely produced by deformations at the 
contacts, and a progressive reduction in stiffness results from 
the elimination of contacts in directions of bulk extension. 
In the second, non-smooth rearrangement regime at larger 
strain, frictional slip becomes more frequent, bulk deforma-
tion is primarily attributed to rearrangements of the con-
tact network, and deformation proceeds with frequent and 
seemingly abrupt alterations of stress, which we call stress-
drops, that are caused by the rearrangements. Because these 
repetitive and abrupt stress-drops are a dominant feature of 
granular behavior, we sought a better understanding of their 
origin and effects. Similar stress-drops have also observed 
experiments and in atomistic simulations of amorphous sol-
ids that employ Lennard-Jones and other potentials for the 
atomic interactions [16, 19, 28].

In our simulations, the transition between the smooth 
and non-smooth regimes occurred at a strain of less than 
0.1%, suggesting that the strictly static regime is restricted 
to strains near the start of loading. The frequency and sever-
ity of stress-drops increases with increasing strain, although 

these aspects remain steady beyond a strain of 1%. Table 1 
summarizes various measures of frequency and severity 
for the strain ranges of 0–1% and 1–16%, and these results 
are discussed below. The table is supplemented by Fig. 2, 
which details the stress and other characteristics during a 
small period of the non-smooth rearrangement regime, for 
the range of strains −�11 of 0.61–0.66%. More than a dozen 
stress-drop episodes occurred within this small interval, 
and dotted lines in the figure delineate three such stress-
drops that will be analyzed more closely below. The detail of 
deviator stress in Fig. 2a closely resembles the experimental 
results of Michlmayr et al. [11] and of Cui et al. [7] for 
direct shear and triaxial compression tests on glass beads. 
Besides deviatoric stress, Fig. 2 details the number of con-
tacts among the particles; the relative number of fully sliding 
contacts; the number of contacts among the touching parti-
cles; the average kinetic energy of the particles; the elastic 
(Helmholtz free) energy of the assembly; and the volumet-
ric strain. The numbers of contacts and sliding contacts are 
expressed in non-dimensional form by dividing by the total 
number of particles, noting that a pair of non-convex sphere-
cluster particles can have multiple contacts.

The stress-drops were brief events and had an average 
(strain) duration of about 2.5 × 10−6 (Table 1 and Fig. 2a). 
For the small strain increments used in our simulations 
(increments d�11 of 2 × 10−9 ), an average stress-drop 
spanned more than 1200 DEM strain steps. Although brief, 
this duration indicates that a stress-drop is not a strictly 
abrupt event but has a finite duration during which a sig-
nificant rearrangement of the particles occurs. These rear-
rangements are likely triggered by a local loss of stability 
within groups of particles, described later, exhibiting nega-
tive second-order work at individual contacts [13, 29]. After 
a stress-drop is triggered, the stress continues to drop until 
a new, more stable particle arrangement is reached. The 
stress-drop is then followed by a period of stress-recovery 
in which the deviatoric stress increases more gradually than 
it had decreased during the preceding stress-drop. During 

Table 1   Characteristics of 
stress-drops during triaxial 
loading for simulations of 
10,648 sphere-cluster particles 
with mean stress p = 100 kPa

a Number of drops in range divided by 10,648 particles and by 1 or 15 percent range
b  Values of 10th and 90th percentiles

Strain range

Characteristic 0–1% 1–16%

Strain �
11

 at the first stress-drop 0.00056 –
Number of stress-drops within the strain range 320 7880
Number of stress-drops per particle per 1% straina 0.030 0.049
Mean strain duration of a stress-drop 2.3 × 10

−6
2.7 × 10

−6

Range of strain durations of stress-dropsb (0.4 − 4.4) × 10
−6 (0.4 − 6.0) × 10

−6

Mean drop in deviator stress, ⟨�q⟩ 100 Pa 170 Pa
Fraction of total strain engaged in stress-drops 7% 14%
Sum of deviator stress reductions per 1% strain 33 kPa 91 kPa
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stress-recovery, the stiffness (slope) progressively decreases 
until the next stress-drop occurs.

Between the strains of 0 and 16%, more than 8200 stress-
drops (and stress-recoveries) had occurred (Table 1). For 
this range of strains, the accumulated strain spent within 
these brief stress-drop periods accounted for a total strain 
of 0.22%, which accounts for about a seventh (14%) of the 
entire 16% range of strain. The remaining 86% of the 16% of 
strain was largely occupied in recovering from these drops in 
stress. In essence, at strains beyond 0.5%, deformation was 
largely filled by periods of rapidly declining stress and by 

periods of recovery from these stress-drops. Prior to the final 
strain of 16%, the sum of all reductions in deviator stress q 
during the stress-drop episodes was over 1400 kPa. If only 
the stress-recoveries had occurred without their correspond-
ing stress-drops, the deviator stresses would have reached 
a strength almost 10 times greater than the actual strength 
of 166 kPa. In this sense, stress-drops moderate granular 
strength and possibly reduce the amount of particle break-
age that would occur if the increase in stress was unchecked.

Combe and Roux [30] conducted stress-controlled simu-
lations, and they noted similar behavior to that of our strain-
controlled conditions, but rather than exhibiting a brief drop 
in stress, they observed that stress would periodically stall 
and then rise again through strain hardening. Combe and 
Roux characterized this repeating pattern as a “Devil’s stair-
case.” Perhaps the strain-controlled behavior in Fig. 2 could 
be called a “Sisyphus ramp.”

We sought evidence of a periodicity or regularity of 
the lags between stress-drop events, but auto-correlation 
revealed no such pattern, and the stress-drops appeared to 
occur in a random, thoroughly irregular manner. After the 
first 1% of strain, stress-drops occurred at an average rate 
of roughly 5 drops per particle per unit (100%) of strain 
(Table 1). Figure 3 shows the probability density of the 
magnitude of the drops in deviator stress. The mean drop 
in deviator stress ⟨�q∕p⟩ was greater than 170 Pa, but we 
also recorded several drops greater than 5 kPa, with the 
most severe being 10.2 kPa. The log-distribution has the 
greatest density at 20 Pa, roughly 0.02% of the mean stress. 
The mean stress in our constant-p simulation was controlled 
with a servo-algorithm that maintained the mean stress to 
less than 0.01 Pa of the 100 kPa mean stress, and the left-
most part of the distribution in Fig. 3 in likely influenced 
by this limit in resolution. The stress-drops that occur in 
plastic avalanches of amorphous solids have been analyzed 

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 2   Details of stress and other characteristics during a small inter-
val of strain, showing multiple stress-drops: a deviator stress; b num-
ber of touching particle-pairs divided by the number of particles; c 
number of contacts divided by the number of particles; d number of 
sliding contacts; e kinetic energy per unit volume, N∕m2 ; f elastic 
contact energy per unit volume, N∕m2 ; and g volume strain relative to 
the unloaded assembly

Fig. 3   Probability density of stress-drop magnitudes, �q∕p , where �q 
is the drop in the deviator stress �

11
− �

33
 (the difference in stress in 

loading and lateral directions), normalized by dividing by the pres-
sure (negative mean stress)
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in a continuum (mean-field) framework by assuming that a 
material region has weak spots that remain stuck until acti-
vated by a local stress that exceeds a strength threshold, and 
once activated, stress is redistributed to other, possibly vul-
nerable, weak spots (see [31, 32]). This mean-field theory 
leads to a proportional scaling of the probability density, 
as P(�q) ∝ (�q)−� , with the mean-field exponent � = 1.5 . 
Exponents in the range 1.2–1.5 have been observed in exper-
iments and atomistic simulations of amorphous solids [28, 
33–35] and with certain granular systems [6]. Our results 
from the loading of a densely compacted granular material 
are quite different, as the exponent � in Fig. 3 is between 0.9 
and 1.0 for the broadest range of drop magnitudes.

Figure 2b, c, d show that each stress-drop is accompa-
nied by a reduction in the numbers of total contacts and 
in the numbers of sliding contacts, and that the subsequent 
stress-recovery period coincides with a general increase in 
the numbers of contacts and sliding contacts. Because each 
particle is non-convex and can have multiple contacts with 
a neighboring particle, we make a distinction between the 
number of touching particle-pairs (Fig. 2b) and the total 
number of contacts (Fig. 2c). Note that both numbers have 
been divided by the number of particles in the assembly 
(10,648 sphere-clusters). The brief loss of contacts during 
stress-drop events is quite large, typically 10–20% of the 
number of particles (1000–2000 contacts among the 10,648 
non-convex sphere-cluster particles, for which pairs of par-
ticles can share multiple contacts). Thornton [9] had also 
noted wide fluctuations in the number of contacts, and these 
results demonstrate that a stress-drop coincides with a sub-
stantial rearrangement, breaking, and disruption of the con-
tact network, and that the subsequent recovery establishes a 
temporary stable network with more contacts.

Figure 2d, e show that each stress-drop is also accompa-
nied by a spike in the cumulative kinetic energy of the par-
ticles and by a reduction in the elastic energy stored among 
the contacts (the micro-scale computation of the two ener-
gies is described in “Appendix” section). Peters and Walizer 
[8] also found that stress-drops were accompanied by bursts 
in the kinetic energy of the particles, fed by reductions in 
the elastic energy at the contacts, and Michlmayr et al. [11, 
36] found that this kinetic energy is associated with low-fre-
quency (0–20 kHz) acoustic energy emissions. Reductions in 
internal energy have also been observed in atomistic simu-
lations of amorphous solids [19]. The increase in kinetic 
energy in our simulations reveals an intense activity of parti-
cles during stress-drops, an activity that has been associated 
with negative second-order work within the contacts [15, 
24]. Indeed, elastic energy is, in part, transferred to kinetic 
energy, but this transfer to kinetic energy is a minor destina-
tion of the lost elastic energy. The change in elastic energy 
results primarily from a large but brief increase in frictional 
dissipation that greatly exceeds the smaller increase in 

stress-work, ∫ �ij d�ij . Changes in energy during the third 
stress-drop in Fig. 2 are summarized in Table 2. The changes 
per unit of volume have been normalized by dividing by the 
mean stress p of 100kPa and by the elapsed strain |��11| of 
the drop. The sudden burst of kinetic energy is seen to be 
a minor destination of the work input. We also found that 
the increase in stress-work is predominately produced by a 
brief reduction in volume, as the volumetric work increment 
1

3
∫ �ii d�jj (i.e., compare Fig. 2d, e, f). For the drained, con-

stant pressure conditions of our simulations, each stress-drop 
is accompanied by an abrupt reduction in the assembly’s vol-
ume, evidence of a local collapse in the grain arrangement. 
Sudden reductions in granular volume were also noted by 
Cui et al. [7]. Such results differ from those of amorphous, 
glassy metals in which stress-drops are accompanied by vol-
ume coalescing and growth at a nano-scale [37].

2.2 � Micro‑scale origins of stress‑drops

These bulk measurements indicate that stress-drops (and 
stress-recoveries) play an essential role in advancing the 
macro-scale stress during strain-hardening and failure, 
which raises the question: what micro-scale mechanisms are 
responsible for these stress-drops? Answering this question 
is necessary for understanding the micro-failure processes 
that limit strength and produce bulk failure within granu-
lar materials. To this end, we analyzed 3D spatial plots of 
several particle-scale characteristics for each of the three 
stress-drops identified in Fig. 2, and for three stress-drops 
that were isolated in similar simulations with linear–fric-
tional contacts:

1.	 To determine whether a stress-drop is a diffuse weaken-
ing of material throughout the assembly or is a localized 
weakening within smaller regions of particles, we plot-
ted the locations and magnitudes of particle velocities 
during each of the six stress-drops. Only load-bearing 
(non-rattler) particles were plotted, and the mean-field 
movement was first subtracted, to obtain velocities rela-
tive to the affine background movement.

Table 2   Energy changes during the third stress-drop in Fig. 2

Energy balance requires that �ij ��ij equal the sum of changes in elas-
tic and kinetic energies and dissipation

Type Normal-
ized 
change

Stress-work, �
ij
��

ij
5.5

Elastic energy − 3.4
Frictional dissipation 8.8
Kinetic energy 0.1
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2.	 Because stress-drops are brief periods of contact sof-
tening characterized by negative second-order work 
[14, 15], we located all contacts that were undergoing 
negative second-order work, where a contact’s second-
order work was computed as the inner product of the 
changes in its force � and its movement � , as �� ⋅ �� . 
The locations of contacts with negative values and the 
magnitudes of these second-order values were plotted 
for instances before, during, and after each stress drop. 
With these plots, combined with the velocity plots, we 
could locate regions of the most intense activity and 
weakening within the assembly.

3.	 Stress-drops are accompanied by an increase in frictional 
dissipation (evident in Fig. 2e), so we also plotted the 
spatial distribution of dissipation.

4.	 A process called “force-chain buckling” has been 
hypothesized as the failure mechanism that limits gran-
ular strength in two-dimensional materials [38–40]. 
A force-chain is a sequence of particles connected by 
contacts that are part of the “strong contact” network: 
contacts with magnitudes of force greater than the 
mean contact force. Using methods described in [41], 
we identified the force-chains in our 3D assembly by 
computing the harmonic mean of the contact forces 
within the chains of contacts between each pair of load-
bearing particles (about 35 million harmonic means, 
one for each particle-pair). To determine the relation-
ship between force-chains and stress-drops, we focused 
on those particle-pairs within heavily loaded five-parti-
cle chains and plotted the most active of these heavily 
loaded particles during the six stress-drop events.

5.	 As will be seen, force-chain buckling was not a con-
vincing source of the three stress-drops in Fig. 2, and 
we investigated another candidate mechanism: contact 
sliding that might eject (or “squirt”) a particle from its 
immediate neighbors. We plotted the potential locations 
and magnitudes of this mechanism.

For each of the three stress-drop episodes that are identified 
in Fig. 2, plots of particle velocities revealed a single region 
of 300–400 highly active particles whose velocity magni-
tudes were much greater than those among particles in the 
remainder of the assembly. The region of high activity was 
in a different location for each of the stress-drop episodes, 
but we have re-centered the periodic boundaries so that 
the region of high activity is centered within the assembly. 
These isolated regions encompassed only about 3% of the 
total assembly volume. Figure 4a is a plot of velocity magni-
tudes for the third stress-drop in Fig. 2, with each sphere rep-
resenting a single particle, and its average velocity is meas-
ured during the brief 0.002% strain that elapsed during the 
drop. A sphere’s diameter is proportional to the logarithm of 
the particle’s speed (recall that the particles are themselves 

not spheres, but are non-convex sphere-clusters). The plot is 
a projection of the particles’ positions onto the x1 − x2 plane, 
noting that triaxial compression occurs in the x1 (horizontal) 
direction. Fig. 4a shows that particle activity is not diffuse 
and uniform during a stress-drop; rather, intense movement 
is localized within a small neighborhood of particles. The 
local nature of activity is emphasized with Fig. 5, which 
repeats the Fig. 4a of particle velocities but also shows pro-
jections in the x3 − x1 and x2 − x3 planes. Again, only a small 
region of activity is responsible for the stress-drop, and for 

(a) (b)

(c)(d)

Fig. 4   Spatial plots of internal activity during the third stress-drop 
that is identified in Fig.  2. Each sphere represents a single sphere-
cluster particle (subfigures a, c, and d) or a single contact (subfigure 
b), and the sphere’s diameter is proportional to the logarithm of activ-
ity: a logarithm of particles’ speeds; b logarithm of negative second-
order work in the contacts; c logarithm of changes in the most heavily 
loaded force-chains, with opacity also proportional to the logarithm 
of change; and dlogarithm of contact slip dissipation for those parti-
cles with three or more slipping contacts

(a) (b) (c)

Fig. 5   Spatial plots of particle speeds in three planes for the third 
stress-drop in Fig. 2: a x

1
− x

2
 plane, which repeats Fig. 4a; b x

3
− x

1
 

plane; and c x
2
− x

3
 plane. Each sphere represents a particle, and a 

spheres’ diameter and opacity is proportional to the particle’s speed
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this reason we resist the use of “avalanche” to characterize 
stress-drops in granular materials, a term that is commonly 
used with amorphous solids to describe an accumulation or 
cascading of atomic-scale events that lead to bulk plasticity 
[42].

Returning to the previous figure, Fig. 4b shows the loca-
tions of contacts actively undergoing negative second-order 
work (contact softening) during the same stress-drop. The 
spheres in this figure represent individual contacts, and the 
spheres’ diameters are proportional to the logarithms of the 
contacts’ negative second-order work rates. Although about 
800 contacts exhibited negative second-order work during 
this stress-drop, the figure only shows the 100 contacts with 
the greatest magnitudes (to more clearly identify those con-
tacts with the largest magnitudes of negative second-order 
work, the opacity has been reduced for the other contacts). 
Contacts with large magnitudes are located throughout the 
assembly, but the contacts with the largest magnitudes of 
second-order work are concentrated within the same region 
in which the particle velocities were largest (compare 
Fig. 4a, b). A similar coincidence was found for the other 
stress-drops, although the most active contacts were located 
in a different region of the assembly for each of the three 
stress-drops. We conclude that movement and failure are 
spatially and temporally coincident and are localized within 
a small volume of material.

In addition to Fig. 4a, b, we also plotted the spatial dis-
tribution of frictional dissipation at contacts within the 
assembly. Although contact sliding occurred throughout 
the assembly, dissipation—the product of the contact slid-
ing rates and the tangential forces—was more intense in the 
same regions having large particle velocities and large nega-
tive second-order work (i.e., the active regions in Fig. 4a, b).

For the loading periods immediately before and after a 
stress-drop, we could also find particles with large kinetic 
energy and contacts with significant second-order work, 
but the spatial distribution of these two characteristics was 
diffuse, unlike that during the stress-drop, and any modest 
spatial concentration before and after a stress-drop occurred 
in regions other than those observed during the stress-drop. 
We were surprised that the number of contacts undergoing 
negative second-order work during a stress-drop was typi-
cally smaller than the numbers immediately before or after 
the stress-drop, and fewer contacts were sliding during a 
stress-drop than before or after (see Fig. 2c). Although a 
smaller number of contacts was involved, the intensity of 
sliding and of negative second-order work among contacts 
was much greater during the stress-drops, another indica-
tion that intense movement and failure are limited to a small 
number of contacts.

We searched for a causative mechanism of the three 
stress-drops in Fig. 2. We began by looking for a spatial 

correlation between force-chain activity and the failure 
regions of 300–400 particles in which velocity, dissipation, 
and negative second-order work were concentrated. Particu-
lar attention was placed upon changes in the force-chains 
that were occurring during the initial stage of a stress-drop, 
as such changes would indicate a causative relation between 
force-chain activity and a stress-drop. As described above 
and in [41], force-chains were identified by computing the 
harmonic means of the contact forces within every chain 
of five particles. We identified the 20% of chains having 
the largest mean harmonic force and then further isolated 
the 20% of these chains that had experienced the greatest 
change in mean harmonic force during the initial stage of 
a stress-drop. This selection process produced a list of the 
most active and heavily loaded force-chains (a list of about 
12,000 five-particle chains). Of course, a single particle can 
belong to many different particle-chains, since each of our 
chains was composed of five particles. To identify the par-
ticles most acutely involved in a stress-drop—the “pivotal 
particles” within the force-chain network—we counted the 
number of chains associated with each particle (some parti-
cles were at the intersection of more than 100 heavily loaded 
and rapidly changing five-particle chains). These pivotal par-
ticles are plotted in Fig. 4c for the third stress drop in Fig. 2. 
Each sphere represents a particle and the diameter is roughly 
equal to the particle’s size. A sphere’s opacity is proportional 
to the logarithm of the number of chains with which it was 
associated, with most particles being nearly transparent.

Consistent with the results of other investigators, more 
force-chain activity occurs during a stress-drop than during 
the periods before and after a stress-drop [43]. The opaque, 
pivotal particles in Fig. 4c belong to those heavily-loaded 
force-chains that are undergoing the largest changes in force 
during the initial stage of the stress-drop. Although some of 
these particles are arranged as clusters and chains, they are 
diffusely located throughout the assembly and are not con-
centrated within or in the immediate vicinity of the failure 
region seen in Fig. 4a, b. This result, which was common 
to the three stress-drops that we investigated, suggests that 
stress-drops are not triggered by a collapse (buckling) of 
the force-chain network. Force-chain activity is coincident 
with and the consequence of stress-drops, but it is unlikely 
their cause. Rather, changes within force-chains are caused 
by of some other triggering mechanism, a mechanism that 
likely occurs within the localized failure region where par-
ticle velocities are large, frictional dissipation is intense, 
and negative second-order work is common and acute. A 
brief reduction in deviator stress—a stress-drop—results, 
of course, from reductions in the contact forces, and these 
reductions occur primarily within force-chains. However, 
the stress-drops that we investigated were likely triggered by 
another mechanism. This conclusion is supported by other 
evidence. The sudden small reduction in assembly volume 
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and the brief increase in frictional dissipation (Fig. 2e, f) 
suggest a kinematic mechanism that involves intense sliding 
and produces a brief but localized collapse (akin to a small 
implosion) of the internal particle arrangement.

One such mechanism is illustrated in Fig. 6a for a system 
of three disks. Suppose that the upper and lower particles 
are restrained from rotating while they are progressively 
compressed against the middle particle. Although the two 
contacts are initially compressed in an elastic manner as P 
increases, when the friction limit is reached at the contacts 
(i.e., when angle � ≥ tan−1 � ), the system can not support 
a sustained load P, and accelerated sliding and negative 
second-order work ensue: the system becomes unstable, P 
is reduced, and the middle particle is “squirted” to the right. 
We hypothesize that a stress-drop is produced when multi-
ple contacts around a particle reach the frictional limit and 
the particle is dislodged from its neighborhood of particles. 
This mechanism would produce rapid changes in the angles 
� similar to the “buckling” definition of Tordesillas et al. 

[40], but the current focus is on the sliding of the particles 
rather than the changes in angle—changes that can also be 
produced by rolling or by the rigid rotation of particle pairs 
[44].

Figure 4d depicts the sliding velocities of particles that 
have multiple slipping contacts. The figure is taken during 
the third of the stress-drops identified in Fig. 2. Each sphere 
in Fig. 4d represents a particle with two or more slipping 
contacts, and its diameter and opacity is proportional to the 
logarithm of the sum of the dissipation rates at the particle’s 
contacts (i.e., the inner product of contact force and con-
tact movement). A small cluster of such active particles is 
located within the failure region of intense particle activity 
and negative second-order work (cf. Fig. 4a, b). The same 
situation existed for the other stress-drops that we investi-
gated: at the start of and during a stress-drop, a few particles, 
located within the failure region, had multiple rapidly slip-
ping contacts. Similar plots taken immediately before and 
after a stress-drop are shown in Fig. 7. These plots show no 
intense activity either before (Fig. 7a) or after (Fig. 7c) the 
stress-drop had occurred within the active, failure region. 
These observations suggest that stress-drops are produced 
abruptly when multiple contacts around one or more pivotal 
particles slip, leading to the local instability of a group of 
particles and a reduction in their contact forces. A stress-
drop likely comes to an end when new contacts are formed, 
such that the unstable particles become newly buttressed 
within a rearranged system of contacts.

An example of the contact topology of rapidly moving 
particles is depicted in Fig. 6b. The two particles, labeled 1 
and 2, are the most active during the third stress-drop that 
is highlighted in Fig. 4, with both particles represented by 
the largest spheres in Fig. 4d. The contacting neighborhood 
of the two particles includes nine other particles: particle 1 
touches particles 2–8, and particle 2 touches particle 1 and 
particles 9–11. Because the particles are non-convex, some 
neighboring particles have multiple contacts. Only two of 
the eleven particles are among the “strong contact” net-
work (i.e., particles with a larger-than-average mean stress 
[45], identified as the shaded particles 5 and 8 in Fig. 6b); 
whereas, all other particles are within the weak network of 
modestly loaded particles. In the figure, solid lines represent 
slipping contacts; dashed lines are non-slipping contacts. 
Both particles 1 and 2 have multiple slipping contacts, and 
the magnitudes of contact slip are quite large, as the thick-
nesses of the lines represent the contact work rates relative 
to the median value of all contacts in the assembly. The 
work rates of the slipping contacts around these two pivotal 
particles was several orders of magnitude larger than the 
median rate.

Of the nine slipping contacts in Fig. 6b, seven were 
undergoing negative second-order work, which is akin 
to the situation depicted in Fig. 6a (the two contacts not 

(b)

(a)

Fig. 6   a Proposed mechanism of local instability, with the middle 
particle squirted to the right. b Contact topology of two rapidly mov-
ing particles during the stress-drop of Fig. 4 (the third stress-drop in 
Fig. 2). Solid lines represent slipping contacts; dashed lines are non-
slipping contacts. Line width represents a contact’s work rate relative 
to the assembly’s median rate. Red lines designate contacts that are 
not undergoing negative second-order work



Stress fluctuations during monotonic loading of dense three‑dimensional granular materials﻿	

1 3

Page 9 of 14  10

undergoing second-order work are 1–4 and 1–7, designated 
with red lines). We identified a similar situation in all of 
the stress-drops that we investigated: one or two particles 
within the localized failure zone had multiple slipping con-
tacts with movement rates of more than a hundred times the 
median rate and exhibited large negative second-order work. 
The simultaneous slipping of multiple contacts around one 
or two pivotal particles, such as the “squirted” particle in 
Fig. 6a, is a credible causative condition of our stress drops.

3 � Effects of contact model, particle shape, 
mean stress, and assembly size

The simulation results of the previous section were for a 
large dense assembly of sphere-cluster particles having Cat-
taneo–Mindlin contacts and compacted to an initial pressure 
of 100 kPa. Table 3 gives results for simulations that differ 
in various respects from the previous simulation.

All of the simulations were of triaxial constant-p loading 
conditions, and column 2 gives results for the base-case of 
Sect. 2. The table reports statistics on the drop in deviator 
stress and the change in volume during stress-drop events 
that had occurred during the medium-strain range of 2–10% 
strain. In addition to mean values, the table also give values 
for the 2% of most severe drops (the 98th percentile values). 
These results indicate the following:

•	 Column 3 gives results for an assembly that was com-
pacted to a smaller 10 kPa mean stress, a tenth of the 
base-case. Although the drops in deviator stress are 
smaller than for the 100 kPa base-case (column 2), the 
drops are a greater fraction of the compaction stress, 
indicating that stress-drops are relatively more severe 
for lower confinement stress. Note, however, that stress-
drops are less frequent and produce smaller reductions 
in volume than with a 100 kPa confinement stress.

•	 Column 4 gives results of sphere-cluster particles with a 
simple linear–frictional contact model, simpler than the 

(a) (b) (c)

Fig. 7   Spatial plots of contact slip dissipation for the third stress-
drop that is identified in Fig.  2. The sub-figures show dissipation a 
immediately before, b during, and c immediately after the stress-drop. 
Subfigure (b) is the same as Fig. 4d. In each subfigure, a sphere repre-

sents a single sphere-cluster particle and the sphere’s diameter is pro-
portional to the contacts slip dissipation for those particles with three 
or more slipping contacts

Table 3   Comparison of stress-drops for different particle shapes, contact models, confinement stresses, and densities. All statistics are for the 
range 2–10% of strain

a C–M = Cattaneo–Mindlin contact; L–F = linear–frictional contact
b Number of drops per 1% strain per particle

(1)
Measure

(2) 
Clusters 
C–M contacta 
100 kPa
dense

(3) 
Clusters 
C–M contacta 
10 kPa
dense

(4) 
Clusters 
L–F contacta 
100 kPa
dense

(5) 
Spheres 
L–F contacta 
100 kPa
dense

(6) 
Spheres 
L–F contacta 
100 kPa
medium

(7) 
Spheres 
C–M contacta 
100 kPa
dense

Mean stress-drop ⟨�q⟩ 167 Pa 27 Pa 141 Pa 247 Pa 263 Pa 213 Pa
98 pctl. stress-drop 1520 Pa 240 Pa 1300 Pa 1770 Pa 2060 Pa 1580 Pa
Mean volume strain −3.0 × 10

−6 −1.5 × 10
−6 −2.3 × 10

−6 −3.6 × 10
−6 −3.9 × 10

−6 −0.6 × 10
−6

98 pctl. volume strain −4.8 × 10
−5 −3.2 × 10

−5 −3.5 × 10
−5 −6.1 × 10

−6 −3.0 × 10
−5 −2.6 × 10

−5

Rate of dropsb 5.0 2.6 4.6 10.9 12.5 4.3
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Cattaneo–Mindlin model of column 2. The results for the 
two contact models are quite similar, although the lin-
ear–frictional model produces somewhat less severe and 
less frequent stress and volume drops. A similar result is 
also seen for sphere particles, by comparing columns 6 
and 7, with linear–frictional and Cattaneo–Mindlin con-
tacts, respectively.

•	 Column 5 is for sphere particles and shows that drops 
in deviator stress are much larger and are more frequent 
for spheres than for non-convex sphere-cluster particles 
(i.e., compared with column 4). A similar result is seen 
by comparing the sphere results in column 7 with the 
clusters of column 2.

•	 By comparing column 5 of a dense assembly of spheres 
with column 6 for a medium-to-loose assembly, we see 
that drops in stress and reductions in volume are some-
what greater for the medium assembly. The dense and 
medium assemblies had void ratios of 0.534 and 0.692, 
respectively.

To investigate the influence of assembly size on the severity 
of stress-drops, we analyzed a data-set that had been co-
prepared by the first author for a series of two-dimensional 
simulations of disk assemblies [3]. In that study, multiple 
assemblies with 64, 256, 1024, 4096, and 10,816 disks were 
loaded in biaxial compression, and as with the three-dimen-
sional simulations of the current work, plots of stress and 
strain revealed an irregular repetition of stress-drop events 
of various magnitudes. The results are summarized in Fig. 8, 
which shows the mean change of deviator stress, ⟨�q∕p⟩ , 
for the five assembly sizes, with the deviator stress normal-
ized by dividing by the mean stress. As would be expected, 
the average severity of the stress-drops is reduced with an 
increase in assembly size, although the magnitudes of the 
drops are larger than those for three-dimensional assem-
blies. The reduction with size does not occur in a linear 
manner; rather, the average drop in deviator stress is roughly 

proportional to assembly size (i.e. numbers of particles) 
raised to the power of −0.294 : mean(�q∕p) ≈ 0.533N−0.294 , 
where N is the number of disks in an assembly. This result 
is similar to that of amorphous solids, for which atomistic 
simulations demonstrate that the mean stress-drop decreases 
with increasing specimen size, but with a quite different 
exponent: in keeping with the theory of Karmakar [46] that 
predicts an exponent of −2∕3 , the atomistic simulations 
yield exponents in the range −0.61 to −0.7 [17, 18, 47].

Finally, we also investigated the occurrence of stress-
drops during purely isotropic loading. An assembly of 
spheres with Cattaneo–Mindlin contacts was isotropically 
consolidated at a constant rate of volumetric compres-
sion from a mean stress of 5.8–100 kPa. No sudden drops 
occurred in the mean stress p, and only three small changes 
in the deviator stress occurred in the course of the 0.26% 
reduction of volume. We conclude that the stress-drops 
in our simulations of resilient, non-breaking particles are 
induced by deviatoric (not volumetric) deformation.

4 � Conclusions

Micro-scale movements and forces within a granular mate-
rial are known to be irregular and complex. Individual par-
ticles move in an erratic and desultory manner; the forces 
at individual contacts tack and turn in seemingly capricious 
ways; and deviations from mean trends—of particle rota-
tions, of local strains, of individual contact forces, etc.—are 
surprisingly large [41]. Yet from this micro-scale tumult, a 
greater order is expressed at the meso- and bulk scales. For 
example, contact forces are organized into meso-scale force-
chains, movements are coordinated in vorticity patterns that 
encompass hundreds of particles, and strains are shaped into 
micro-bands and other meso-scale features. The bulk behav-
ior is even more regular, and simple constitutive forms can 
capture the primary trends of the stress-strain behavior and 
can even predict the onset of localization and failure. Even 
so, when one looks closely at the results of laboratory tests 
and of discrete simulations, the irregularities produced by 
the micro-scale ferment can be recognized, and significant 
deviations from simple constitutive descriptions are seen.

Substantial deviations from standard continuum models 
are expressed in abrupt irregularities in the stress-strain 
response. Notably, deformation during strain-hardening 
and failure is distinguished by frequent but irregular drops 
of stress. With small specimens, such of those of our (and 
most other) simulations, these stress-drops obscure the 
general stress-strain trend and obscure the characterization 
of bulk stiffness and strength characteristics. We found 
that the average frequency of stress-drops was about 5 
drops per particle per unit (100%) of strain. Moreover, a 
stress-drop is not occasioned by the general instability of 

Fig. 8   Affect of assembly size on the mean drop in deviator stress for 
two-dimensional disk assemblies (after [3]) The stress-drops are nor-
malized by dividing by the confining pressure p 
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an entire assembly, but is instead focused within a small 
cluster of a few hundreds of particles. To place these 
values in perspective, a conventional engineering test to 
determine the strength of a sand specimen with particles 
of, say, 1 mm size will contain several hundreds of thou-
sands of particles, and if we assume that the frequency of 
drops is, say, proportional to number of particles, then the 
spacing of the stress-drops in a sand specimen, each with a 
strain duration of 2 × 10−6 , would occur at strain intervals 
of, say, 1 × 10−6 , usually overlapping other stress-drops. 
When scaled from the results of our simulations, the aver-
age magnitude of a stress-drop for the laboratory specimen 
would be much less than the mean 170 Pa drop in stress of 
our simulations, and because of their rapidity and small 
magnitude, multiple drops would occur simultaneously 
in the sand specimen and all but the largest stress-drops 
would likely go unnoticed during a conventional labora-
tory test. Nonetheless, for laboratory specimens as well as 
in our simulations, granular deformation is largely occu-
pied in a sequence of stress-drops and of recoveries from 
these drops—a Sisyphus ramp toward eventual bulk fail-
ure. We also note that stress-drops much larger than those 
in our simulations have been observed in experiments with 
glass and plastic beads [2, 7, 11] and have been attributed 
to stick-slip. Our simulations employed a rate-independent 
contact mechanism, and the stress-drops result from rate-
independent slip between particles.

A stress-drop is occasioned by large changes in the num-
bers of contacts and in the numbers of sliding contacts, indi-
cating significant alterations of the particles’ arrangement. 
The most rapid particle motions during a drop are confined, 
however, to a cluster of a few hundreds of particles. Each 
rearrangement of a cluster produces a reduction in volume, 
as a local and momentary implosion of the assembly that 
can briefly counter the prevailing trend of dilation occur-
ring elsewhere in the specimen. The underlying mechanism 
of a stress-drop seems to be the sudden sliding of multiple 
contacts around a single culpable particle or cluster of parti-
cles, producing local rates of contact sliding, dissipation, and 
negative second-order work (i.e. contact softening) that are 
hundreds or thousands of times larger than the median rate.

Extensive attention has been given the similar phenom-
enon of avalanches (i.e. plastic episodes) in amorphous 
solids. Our results reveal notable differences with gran-
ular stress-drops: a different scaling of drop magnitude 
and frequency, a different scaling of drop magnitude and 
assembly size, and the spatially isolated, non-cascading 
character of granular stress-drops.
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DEM modeling details

Discrete element simulations were conducted with a cubi-
cal assembly of 10,648 particles contained within periodic 
boundaries. The simulations were intended to produce a 
modest fidelity to the bulk behavior of sands at low confin-
ing stress. Because sphere assemblies produce unrealistic 
rolling between particles and have a low bulk strength, we 
used a bumpy, non-convex cluster shape for the particles: 
a large central sphere with six smaller embedded outer 
spheres in an octahedral arrangement (Fig. 9). The use of 
non-spherical particles circumvents the need of artificial 
measures to restrain the particle rotation (for example, the 
use of rotational contact springs or the direct restraint of 
particle rotations, as in [48, 49]). Through trial and error, we 
chose the radii of the central and outer spheres so that the 
bulk behavior approximated that of Nevada Sand, a stand-
ard poorly graded sand (SP) use in laboratory and centri-
fuge testing programs [22, 23]. The particle size range was 
0.074–0.28 mm, with D50 = 0.165mm.

To create assemblies with a range of densities, we began 
with the particles sparsely and randomly arranged within a 
cubic periodic cell. With an initial low inter-particle fric-
tion coefficient ( � = 0.20 ), the assembly was isotropically 
reduced in dimension until it “seized” when a sufficiently 
complete contact network had formed. A series of 25 pro-
gressively denser assemblies were created by repeatedly 
assigning random velocities to the particles of the previous 
assembly and then further reducing the cell’s dimensions 
until it, too, had seized. The 25 assemblies had void ratios 
ranging from 0.781 to 0.586 (solid fractions of 0.561 to 
0.664). The single assembly used in the paper had void ratio 
0.690 (solid fraction 0.592) and approximates the behavior 
of Nevada Sand at a relative density of 40%. After com-
paction, the assembly was allowed to quiesce with friction 
coefficient � = 0.40 , which was then raised to � = 0.55 for 
the subsequent loading simulations.

The particles are durable (non-breaking) and interact only 
at their contacts. A Hertz, Cattaneo–Mindlin contact model 
was used in the simulations. The model is a full implemen-
tation of a Hertz–Mindlin contact between elastic–frictional 
bodies. We used the Jäger algorithm, which can model arbi-
trary sequences of normal and tangential contact movements 

Fig. 9   Sphere-cluster particle
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[21]. With the Cattaneo–Mindlin contacts, the loading simula-
tions were conducted with an inter-particle friction coefficient 
� = 0.55 , particle shear modulus G = 29GPa , and Poisson 
ratio � = 0.15 . The contact model is rate-independent, such 
that the contact force depends upon the movement history and 
not on the particles’ velocities. A special servo-algorithm was 
used for precisely maintaining constant mean stress during the 
constant-p simulations [50]. Because the shear modulus was 
much greater than the mean stress of 100 kPa, the contacts 
were relatively stiff, and the average overlap at a contact was 
about 0.1% of the particle diameter.

In Fig. 2d, e, we show the kinetic and elastic energies 
per unit of bulk volume. The energies were derived from an 
energy-audit of the assembly: the increment of stress-work, 
∫ �ij d�ij , during an increment of strain must equal the sum 
of the volume-averages of the change in elastic energy within 
the contacts, the frictional dissipation at the contacts, and the 
change in the particles’ kinetic energy. By directly comput-
ing the stress-work, the elastic energy, and the frictional dis-
sipation, as described below, we could find the change in the 
kinetic energy. The kinetic energy was also independently 
computed from the particles’ velocities and masses, and we 
found that the two values almost exactly matched, thus verify-
ing the energy balance.

The stress-work was computed in the usual manner from 
bulk measures of stress and strain (the former was computed 
from the contact forces and branch vectors by using the usual 
Navier–Love–Rothenburg equation; whereas, the strain was 
computed from the boundary displacements). Contact elastic 
energy was computed as the sum of normal and tangential 
parts. In conventional simulations, contacts are assumed to 
occur between spherical surfaces, but this approach leads to a 
bulk small-strain stiffness that increases with the means stress 
p as p1∕3 . In our simulations, we allowed for non-spherical 
contours (asperities) at the contacts, as this approach yielded a 
small-strain modulus that was proportional to the mean stress p 
raised to the power of 0.5, a common observation in geotechni-
cal practice (see [22] for details). We used a power-law type 
( z = A�r

� ) of contact profile as described by Jäger [51] with 
a profile parameter � = 1.3 . The normal elastic energy En in a 
single contact is given as

where G and � are the shear modulus and Poisson ratio of 
the particles, � is the contact indentation (one half of the 
overlap), a is the radius of the contact zone,

(1)En =
4�2Ga�2

(1 + 2�)(1 + �)(1 − �)

(2)a =

�
�

A�

√
�

� (
�+1

2
)

� (
�+2

2
)

�1∕�

and � (⋅) is the gamma function (see [51]). Note that the 
normal part of elastic energy can be directly computed from 
the accumulated indentation of the contact. The tangential 
response, however, is history-dependent and must be com-
puted in an incremental manner. For each time increment �t 
in our DEM simulations with Cattaneo–Mindlin contacts, 
we computed the increment of elastic (reversible) tangential 
displacement ��(r) and subtracted this reversible increment 
from the full tangential increment �� to find the irreversible, 
frictional tangential increment,

and then computed the inner product of the irreversible 
increment and the tangential force to find the increment of 
dissipation:

To find the incremental elastic (reversible) tangential move-
ment ��(r) in Eq. (3), which represents the response to the 
increment of tangential force �� t in the absence of micro-
slip, we used Walton’s solution for the tangential contact 
response of rough (zero-slip) surfaces [52]:

In this manner, we tracked the incremental frictional dis-
sipation of each Cattaneo–Mindlin contact so that the total 
contact frictional dissipation, the total contact elastic energy, 
the stress-work, and the kinetic energy of the assembly could 
be computed in a consistent manner.

In conducting the simulations, we intended to model 
quasi-static, rate-independent behavior. To this end, we used 
a slow strain rate (strain increments of 2 × 10−9 and mini-
mal viscous damping (2% of critical damping). The inertial 
number I = 𝜀̇

√
m∕(pd) , a relative measure of loading and 

inertial rates, was about 1 × 10−11 , signifying nearly quasi-
static loading [53]. During loading, the average imbalance 
of force on a particle was less than 0.003% of the average 
contact force (parameter � in [54, 55]). The average kinetic 
energy of the particles was less than 3 × 10−7 times the elas-
tic energy in the contacts. With the very slow strain rates of 
the simulations, doubling the strain increment from 1 × 10−8 
to 2 × 10−8 had minimal effect on the monotonic stress-strain 
response. Boundary movements were regulated so that any 
six of the stress or strain components (or any six linear com-
bination of these components) could be controlled at desired 
rates. During the constant-p (constant mean stress) triaxial 
loading, the mean stress would remain within 0.01 Pa of 
the 100 kPa target. All of these measurements indicate that 
the behavior in the simulations was nearly quasi-static and 
independent of loading rate.

The DEM simulations were done with the authors’ OVAL 
code (see [22]) and were run with a 4th generation Intel 

(3)��(i) = �� − ��(r)

(4)Contact dissipation = �
t
⋅ ��(i)

(5)��(r) =
2 − �

8G

1

a
�� t
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i7 processor on a single thread. The monotonic loading 
in Fig. 1, in which the strain was advanced to 16%, took 
60 days of compute time.
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