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Abstract In this paper, we report a set of experiments per-
formed on a novel mechanical device that allows a specimen
composed of a two-dimensional opaque granular assembly
to be subjected to quasi-static shear conditions. A com-
plete description of the grain-scale quantities that control
the mechanical behavior of granular materials is extracted
throughout the shear deformation. Geometrical arrangement,
or fabric, is quantified by means of image processing, grain
kinematics are obtained using Digital Image Correlation
and contact forces are inferred using the Granular Ele-
ment Method. Aiming to bridge the micro-macro divide,
macroscopic average stresses for the granular assembly are
calculated based on grain-scale fabric parameters and contact
forces. The experimental procedure is detailed and vali-
dated using a simple uniaxial compression test. Macroscopic
results of shear stress and volumetric strain exhibit typical
features of the shear response of dense granular materials
and indicate that critical state is achieved at large deforma-
tions. At the grain scale, attention is given to the evolution of
fabric and contact forces as the granular assembly is sheared.
The results show that shear deformation induces geometrical
(fabric) and mechanical (force) anisotropy and that princi-
pal stresses and force orientation rotate simultaneously. At
critical state, stress, force and fabric orientation reach the
same value. By seamlessly connecting grain-scale informa-
tion to continuum scale experiments, we shed light into the
multiscale mechanical behavior of granular assemblies under
shear loading.
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1 Introduction

The macro-mechanical response of granular materials sub-
jected to shear conditions has been extensively investigated
by means of laboratory testing such as triaxial tests [1,2] and
direct shear tests [3,4]. It is well-known that dense samples
exhibit a peak in shear stress followed by a strain soften-
ing behavior, whereas in loose samples no peak is observed.
However, at large shear deformation, both dense and loose
samples show a tendency to stabilize around an asymptotic
shear stress value that is uniquely related to the normal stress
and void ratio. In term of volumetric deformations, dense
samples initially contract and later dilate while loose samples
only contract. For large shear strain values, the volumet-
ric deformation of both systems reaches a constant value.
This equilibrium state where no further changes in volume
or stress state occur with increased shear deformation is con-
ceptually defined as the critical state of a granular material.
The critical state concept, first introduced by Casagrande [5]
and considerably developed by Roscoe et al. [6], has provided
a unifying approach to the fundamental understanding of the
mechanical behavior of granular materials. The existence of
a critical state has furnished a basis for the development of
continuum constitutive models within the framework of plas-
ticity theory [7–9]. Such models, known as the critical state
soil mechanics framework, constitute one of the keystones
of soil mechanics and have allowed practitioners to solve
complex geomechanical engineering problems.

However, this modeling paradigm still has many limita-
tions. Critical state plasticity models have been developed
under the assumption that granular materials deform as
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isotropic continua despite their discrete nature. Moreover,
existing models have been derived from macroscopic obser-
vations obtained in the laboratory. Therefore, they heavily
rely on the calibration of several state variables, which often
lack a clear physical meaning. Phenomenological approaches
also influence the predictive capabilities of most constitutive
models when applied outside of their predetermined realm.
As a consequence, there is currently a need to develop more
physics-based constitutive models to better understand and
accurately describe the continuum behavior of granular mate-
rials by embedding micromechanics. Significant efforts have
been made in constructing multiscale analyses that provide
a link between grain and continuum scale. Some of the most
prominent examples include the stress-dilatancy theory, orig-
inally developed by Rowe [10], the stress-induced anisotropy
[11–13], and the stress-strain-fabric relationship [14,15].

Many of these studies have been conducted using the dis-
crete element method (DEM) [16] that has emerged as an
important numerical technique to access grain-scale informa-
tion such as contact forces and kinematics. In the recent past,
DEM has been employed to micromechanically study the
shear behavior of granular materials [17–20]. Nonetheless,
DEM still has many limitations: it has a high computational
cost, is generally constrained to simple grain shapes, and
remains mainly qualitative.

Meanwhile, experimental testing remains an irreplaceable
approach for investigating the fundamental response of gran-
ular materials. Shear tests performed on quasi-2D granular
assemblies have proved their ability to provide key insights
into the micromechanics of granular materials [21–25]. Such
progress made in the field of experimental geomechanics are
intimately linked to the development of grain-scale character-
ization techniques. In recent years, Digital Image Correlation
(DIC) has been widely used to capture kinematics in granular
assemblies [26–29]. By defining the best mapping function
that relates two images, DIC provides full-field displace-
ments, strains and rotation [30,31]. Force inference has been
made possible by use of photoelasticity in assemblies of bire-
fringent disks [13,32] and recently in assemblies of opaque,
real granular materials in 2D [33–36] and 3D [37] by means
of the Granular Element Method (GEM).

This paper presents an experimental capability that fur-
nishes unique data on the mechanics of granular materials
at different scales including continuum measures of stresses
and strains and discrete measures of grain kinematics and
contact forces. A key aspect of this experimental method is a
novel apparatus allowing shear deformation at constant nor-
mal pressure of a 2D analogue granular assembly. At the grain
scale, kinematics are extracted using DIC and normal and tan-
gential contact forces are inferred with GEM, provided that
average grain strains and contact point locations are known.
We show that macroscopic results of stresses and strains
reproduce typical features of the shear response of dense

granular materials. To provide a validation process of the
experimental method, we performed a uniaxial compression.
This simpler loading condition gives us a direct comparison
between applied load and results of normal stress computed
from grain-scale quantities. In this study, we aim to improve
our knowledge of the multiscale behavior of granular mate-
rials, which is essential for developing more physics-based
constitutive models and for comparing laboratory tests with
numerical simulations such as those performed with DEM.

For completeness, the paper is organized as follows.
First, Sect. 2 presents the experimental setup and exper-
imental procedure. Section 3 showcases a validation pro-
cess of the experimental method. In Sect. 4, we give
results that connect macroscopic stresses and strains with
grain-scale information. Finally, Sect. 5 offers concluding
remarks.

2 Experimental setup

2.1 Description of the apparatus

We have designed and built a novel experimental device capa-
ble of reproducing (quasi-static) simple shear conditions over
large deformation on a two-dimensional analogue granular
assembly. A general view of our apparatus is given in Fig. 1.
In particular, Fig. 1a shows an exploded-view drawing of the
device where the three main elements are showcased: (1) the
support structure, (2) the shear cell, and (3) the linear actuator
system. The support structure is made of a 1630 mm×1270
mm 16 mm aluminum mounting plate and is directly placed
onto a stationary steel table. Z-shaped members support-
ing the shear cell, L-shaped members supporting the glass
plate, pulleys and y-axis linear guide rails are screwed to
the aluminum plate. The shear cell consists of a horizontal
deformable parallelogram (ABCD) that can undergo shear
strain and normal strain in the y-direction (tilting and elon-
gation of faces BC and AD). The points A and B are fixed
to the Z-shaped members, themselves fixed to the support
structure. The sides AB and CD are solid members that
always remain horizontal and of constant length Lx = 525
mm while the lateral sides (BC and AD) consist of slotted
members of variable length Ly . At the corners of the par-
allelogram ABCD, bearing arrangements mounted on rotary
shafts allow the sides AD and BC to rotate at a constant angu-
lar velocity about the point A and the point B respectively.
The shear angle γ between the vertical and the sides AD and
BC can be positive or negative, allowing application of cyclic
shear. The face CD of the shear cell remains parallel to the
face AB and is mounted to the linear actuator system using
bolted connections and a connector plate. The linear actu-
ator system is composed of a brushless DC electric motor
(MAXON Motor), belt drive, linear guide rails positioned in
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Fig. 1 Experimental shear
apparatus. a Exploded view
drawing. b Picture of the
experimental setup. c Schematic
depicting the state of
deformation and imposed
boundary conditions on the
shear cell
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the x-direction and a ball screw, mounted onto an aluminum
x-drive plate. A linear motion in the x-direction is gener-
ated at the connector plate when the ball screw is rotated.
This linear motion is transferred to the side CD of the shear
cell and therefore provides the shear mechanism. Kinematic
control of the shear mechanism is achieved by direct com-
mand of the speed of the DC motor using a speed controller
(MAXON Motor) in a closed loop. Thus, during a test, the
velocity of the side CD and the shear rate are kept constant.
Furthermore, as shown in Fig. 1a, b, the linear actuator sys-
tem is screwed on two y-axis linear guide rails fixed to the
mounting plate. The y-axis linear guide mechanism enables
movement of the linear actuator system in the y-direction and
thus allows the faces BC and AD of the shear cell to elongate
(or shorten). A constant normal stress σN is applied to the face
CD of the shear cell and transmitted to the granular assem-
bly using two pulley systems. On each side of the mounting
plate, a hanging mass is suspended over a pulley while the
other end of the rope is attached to the linear actuator sys-
tem. Finally, the granular assembly stands on a glass plate
and is tracked by an optical imaging system (Allied Vision
Prosilica GT4907 15.7 Megapixel CCD camera attached to
a Nikkor AF 105mm f/2.8 lens) that sits at 1.6 m above the
apparatus. Image sequences are typically acquired at a frame
rate of 7 images per second.

2.2 Measurements

Figure 1c displays the general state of deformation of the
shear cell subjected to a prescribed tilting angle γ and exter-
nal load σN . The angle γ between the vertical and the sides
AD or BC and the length in the y-direction Ly = Ly0 +�Ly

constitute the two degrees of freedom that define the config-
uration of the shear cell. As illustrated in Fig. 1c, the length
Ly0 corresponds to the length of the sides AD and BC in
the initial configuration (dashed lines) where the shear cell
is a rectangle (γ = 0) and the length �Ly is the change in
length in the y-direction. Measurements of the angle γ and
the length Ly are performed using image processing. The
limits on the dimensions of the shear cell are:

−35◦ < γ < 35◦

450 mm < Ly < 630 mm

Given that the length in the x-direction is constant (Lx =
525 mm), the component εxx of the strain tensor is equal to
zero. Therefore, the macroscopic strain state is given by the
following tensor:

ε =
[

0 εxy
εxy εyy .

]
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where the normal strain εyy = �Ly/Ly and the shear strain
εxy = tanγ /2. Owing to the precise kinematic control of the
shear mechanism, the macroscopic strain state is known at all
time. The volumetric strain is defined as εV = tr(ε) = εyy .
Simple shear tests are performed in quasi-static conditions
with a shear rate γ̇ = 0.002 s−1. In two dimensions, the
macroscopic stress state in the granular assembly is defined
by the following tensor (see Fig. 1c):

σ =
[
σxx τxy
τxy σyy

]

2.3 Material

We perform experiments on a two-dimensional analogue
opaque granular assembly composed of 400 cylinders of
height of 25 mm and of two different diameters, d1 = 20 mm
and d2 = 30 mm. The grain diameters correspond to, respec-
tively, 116 pixels and 172 pixels on the 4864 × 3232 pixels
digital images captured at each time step. We emphasize
that discs were used due to the simplicity of their manu-
facturing process. However, experiments can be carried out
on arbitrary-shaped grains since the force inference method
(GEM) does not make any assumption about grain shape
[33,34]. The grains are made of polyurethane that has a
Young’s modulus E = 50 MPa, a Poissons ratio ν of approxi-
mately 0.5, and an inter-particle friction coefficient μ = 0.6.
For an optimal use of 2D-DIC, the top face of each cylinder
is covered with suitable speckle patterns that are achieved by
spraying black and white paints. Moreover, in order to min-
imize side and end friction between the shear cell and the
granular assembly, PTFE dry lubricant is sprayed onto the
aluminum members of the shear cell. We point out that, since
the shear apparatus lays horizontally, the assembly prepara-
tion is not under gravity which does not influence the grain
orientation and the force distributions.

3 Experimental method validation

To investigate the validity of the experimental capability
presented in this paper, we performed a simple uniaxial
compression test. In Sect. 3.1, we compare the results of
macroscopic normal stress measured from the applied loads
and the normal stress computed from grain-scale quantities,
i.e. average grain stresses and contact forces. In Sect. 3.2,
the contact forces inferred from GEM are used as input to
compute an analytical stress contour distribution of σ1 − σ2

that is directly compared with measured 2D-DIC results.

3.1 Average macroscopic normal stress

A uniaxial compression test is carried out on the apparatus
described in Sect. 2.1. In this test, the shear cell remains

rectangular, such that the sides BC and AD can only elon-
gate or shorten. It follows that the shear angle γ and the
only non-zero component of the macroscopic strain tensor is
εyy = �Ly/Ly . A normal stress σN is gradually applied
to the granular assembly by linearly increasing the mass
hanging over the pulley. The granular assembly is initially
confined with a 20 lbs hanging mass, equal to an initial nor-
mal stress σ 0

N
= − 6.8 kPa. At each load step, a 10 lbs weight

is added, which corresponds to a normal stress increment of
�σN = − 3.4 kPa. A sequence of images is collected with
the image acquisition system detailed in Sect. 2.1 during the
uniaxial compression test. Captured images are processed
with image processing algorithm (i.e. Circular Hough Trans-
form [38,39]) that perform circle detections from which the
contact point locations are determined.

The 2D-DIC technique [30,31] is applied to the images
to extract full-field displacement, strain and grain rotations.
To perform this tracking, a correlation window (also called
subset) of 15×15 pixels is chosen and a step size (i.e. the
distance between neighboring calculation points) is set to 3
pixels. To determine an adequate correlation window size,
one needs to find the tradeoff between spatial resolution and
measurement error. The measurement error is evaluated by
correlating two subsequent images of the specimen with-
out applying any deformation. The values of the resulting
strain components (εxx , εyy and εxy) for different subset sizes
are then compared in order to identify suitable configura-
tions. With a 15×15 pixels correlation window, a border of
7 pixels around the edge of the grains are not correlated.
However, since the force inference method (GEM) takes the
average grain stresses as input [33,34], this data loss adja-
cent to the edges is not sufficient to compromise an accurate
force calculation. Figure 2 shows the full-field strain distri-
bution (εxx , εyy and εxy) obtained from 2D-DIC at the final
load step where the granular assembly is subjected to a uni-
axial compressive load of σN = − 54.4 kPa (hanging mass
of 160 lbs). The full-field stress distribution (σxx , σyy and
σxy) is obtained by using the full-field strains in a linear
elastic plane stress formulation. The corresponding princi-
pal stresses and are calculated at each pixel. Contour plot
of difference of principal stresses are presented in Fig. 3 for
the final load step (σN = − 54.4 kPa, hanging mass of 160
lbs). The stress contour distribution gives us a direct compar-
ison with stresses measured with photoelasticity [13,32,43].
Indeed, the isochromatic pattern obtained when a birefrin-
gent material is placed under stress is directly proportional
to the difference of principal stresses σ1 − σ2 [40]. It can
be seen from Figs. 2 and 3a that DIC measurements pro-
vide a qualitative information of the force distribution in
an opaque granular assembly. Given that the position of the
contact points and the average grain stress are known, force
inference is performed with GEM [33,34]. GEM combines
a mathematical framework with experimental data to infer
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Fig. 2 Full-field strain measurements obtained using DIC during uniaxial compression test (γ = 0 and σN = −54.4 kPa). a Strain component
εxx . b Strain component εyy . c Strain component εxy

Fig. 3 a Contour distribution
of difference in principal
stresses σ1 − σ2. b Contact force
magnitudes f obtained with
GEM superimposed on contour
distribution of difference in
principal stresses σ1 − σ2
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contact forces in granular assembly with grains of arbitrary
shape, texture and opacity. The resulting contact forces for
the uniaxial test are depicted in Fig. 3b. Figure 3b shows
that the force magnitude matches really well measured stress
contour distribution and that force chains are clearly seen to
develop. GEM provides a quantitative assessment of force
network.

The macroscopic stress response of the granular assembly
subjected to external compressive loads is studied by incorpo-
rating grain-scale experimental information in two different
ways. A first approach consists of computing the average
Cauchy stress tensor σ̄ by simply taking the arithmetic mean
of the average grain stresses σ̄ p, such that:

σ̄ = 1

Np

Np∑
p=1

σ̄ p (1)

where Np is the total number of grains. The average grain
stresses σ̄ p is obtained from average grain strains ε̄ p via
σ̄ p = C : ε̄ p. Equation (1) links the DIC grain measurements
with the macroscopic stress tensor σ̄ . An alternative approach
is to derive an expression for the average Cauchy stress tensor
σ̄ in terms of fabric and contact forces and has been presented
by Christoffersen et al. [41]:

σ̄ = 1

�

Nc∑
α=1

sym( f α ⊗ dα) (2)

where Nc is the total number of contact points, � is the total
volume of the granular assembly, f α is the contact force and
dα is the branch vector at the contact α. The previous expres-
sion provides a relationship between the macroscopic stress
tensor and the distribution of contact forces inferred with
GEM. In Fig. 4a, we present results of average macroscopic
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Fig. 4 a Comparison of applied normal stress σN with macroscopic
average stress σ̄yy inferred from DIC measurements and GEM results.
b Relative error (in percent) between applied normal stress σN (black
cross) and the measurements of macroscopic average stress σ̄yy obtained
from Eq. 1 (blue dots) and Eq. 2 (red plus sign) (color figure online)

stress in the y-direction σ̄yy for the uniaxial compression
test obtained from Eq. 1 (blue dots) and Eq. 2 (red plus
sign) that are compared with the values of applied nor-
mal stress σN (black cross). Additionally, the relative error
(in percent) between the applied normal stress σN and the
measured average macroscopic stress σ̄yy is presented in
Fig. 4b. Potential error sources are versatile and include errors
inherent to the optical measurement system, the mechani-
cal device and the material property measurements, as well
as intrinsic uncertainties of the DIC and GEM algorithms.
Figure 4b demonstrates that the relative error remains below
±15% for all load steps and that measurements obtained from
DIC (Eq. 1) does not yield more accurate results than those
obtained from the micromechanics (Eq. 2). This comparison
indicates that there is an excellent agreement between the
macroscopic applied stress and stress measurements obtained
from grain quantities. In other words, the stress state eval-
uated inside the granular assembly can reliably represent
the stress measured at the boundary. These results give a
direct link between macroscopic stress and evolution of fabric
and contact forces and, therefore, between micro and macro
scales.

3.2 Analytical stress contour distribution

By modeling the grains in the granular assembly as circu-
lar disks under in-plane loading, the stress distribution can

be derived from an analytical solution based on the classi-
cal elasticity theory [42,43]. Analytical solution of stresses
within a disk taken together with stress contour distribu-
tion visualized using photoelasticity techniques have been
previously used to infer contact forces in birefringent gran-
ular material [13,32,44]. Grains used with photoelasticity
in [13,44] are less stiff (Young’s modulus E = 5 MPa) than
the grains tested in this work (E = 50 MPa). However, both
force inference methods, photoelasticity and GEM, can be
used with materials of various stiffness as long as the optical
imaging system has a sufficient spatial resolution to accu-
rately detect deformation.

A detailed derivation of the analytical solution for a circu-
lar disk loaded by oblique concentrated forces at its boundary
can be found in [45]. Hence, given the closed-form solution
and knowing the value of the applied forces and the geometri-
cal arrangement of the assembly (position of contact points),
the analytical stress contour distribution within a disk is com-
pletely known. In this section, aiming to further validate our
experimental procedure, we take the contact forces obtained
from GEM as input to the analytical solution. In Fig. 5, the
stress distribution derived from analytical formulations are
compared with laboratory test results obtained from 2D-DIC
where a uniaxial compression of −85 kPa is applied to the
granular assembly. It can be seen from Fig. 5 that there is an
excellent correlation between the patterns of principal stress
contours as plotted from the analytical solutions and the con-
tours observed with 2D-DIC. This grain to grain comparison
gives us an indication of the accuracy of the magnitude and
direction of the contact forces obtained with GEM.

4 Micro- to macroscopic response of granular
materials under shear

Simple shear tests are carried out in order to characterize
the micro- to macroscopic response of the granular assembly
under shear. Each simple shear test begins by applying a con-
stant normal stress σN to the granular assembly. We present
here results of shear tests performed with three three different
values of σN : − 14.25, −28.5 and −42.75 kPa. The granu-
lar assembly is then sheared at a shear rate γ̇ = 0.002 s−1.
As in the uniaxial compression test, DIC measurements are
performed to extract strain fields from which stress fields
is deduced. MATLABs image processing toolbox is used to
determined grain positions and contact locations for each
acquired image so that the fabric evolution within the assem-
bly is known at each time step. The contact forces are
obtained by solving the GEM constrained optimization prob-
lem [33,34]. Figure 6 presents snapshots of the DIC results
and contact forces distribution of the shear test performed
at σN = − 28.5 kPa for three different values of shear angle
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Fig. 6 Contour distribution of DIC measurements and GEM results for shear test (σN = − 28.5 kPa) at γ = 0.075, 0.15 and 0.275. a Strain field
εxy . b Difference of principal stresses σ1 − σ2. c Contact forces inferred with GEM superimposed on difference of principal stresses σ1 − σ2

(γ = 0.075, 0.15 and 0.275). In Fig. 6, it can be seen that
different force chain patterns form at different shear strain.

The macroscopic behavior of the granular assembly under
shear is then investigated. First, macroscopic shear stress τxy
is computed using Eq. 2 given the branch vector and con-
tact force distributions. The results of such calculation for
σN = − 14.25, −28.5 and −42.75 kPa as a function of shear

strain are shown in Fig. 7a. For all σN values, the granular
material exhibits a linear elastic behavior followed by a peak
in shear stress and subsequent strain softening. The observed
stress-strain behavior is characteristic of a dense assembly
subjected to shear deformation. In Fig. 7, vertical dashed
lines indicate four distinct states of the shear behavior: (1)
initial state (γ = 0); (2) linear elastic state (γ = 0.075); (3)

123



77 Page 8 of 12 E. Marteau, J. E. Andrade

 (rad)

0

10

20

30

40

50

60

70

S
he

ar
 s

tr
es

s 
xy

 (
kP

a)

N
 = -14.25 kPa

N
 = -28.50 kPa

N
 = -42.75 kPa

0 0.05 0.1 0.15 0.2 0.25 0.3

0 0.05 0.1 0.15 0.2 0.25 0.3

 (rad)

0

1

2

3

4

V
ol

um
et

ric
 s

tr
ai

n 
V

 (
%

)

N
 = -14.25 kPa

N
 = -28.50 kPa

N
 = -42.75 kPa

(b)

(a) 1 2 3 4

σ
N

= -14.25 kPa

σ
N

= -28.50 kPa

σ
N

= -42.75 kPa

σ
N

= -14.25 kPa

σ
N

= -28.50 kPa

σ
N

= -42.75 kPa

Fig. 7 Macroscopic behavior of the granular sample subjected to shear.
a Shear stress τxy and b volumetric strain εV as a function of shear
strain γ for applied normal stress σN = − 14.25 KPa, −28.5 kPa and
−42.75 kPa. Dashed vertical lines highlight four distinct states of the
shear behavior: (1) initial state (γ = 0); (2) linear elastic state (γ =
0.075); (3) peak state (γ = 0.15); and (4) critical state (γ = 0.275)

peak state (γ = 0.15); and (4) critical state (γ = 0.275).
It is worth noting that Fig. 6 shows snapshots of the granu-
lar assembly in linear elastic state (γ = 0.075), peak state
(γ = 0.15) and critical state (γ = 0.275). In contrary to tra-
ditional laboratory experiments (such as triaxial and direct
shear tests), our experimental procedure does not rely on
boundary measurements of macroscopic stress obtained from
load cells, which are typically used to study the constitu-
tive behavior of granular materials [7–9]. As showcased by
Eq. 2, micromechanical quantities involving branch vectors
and contact forces are used as input to compute the macro-
scopic stresses. Such data incorporating micromechanics are
generally not available in 3D experiments in which stress
measurements are restricted to measurements at the bound-
ary of the granular assembly. Volumetric versus shear strain
curves obtained in experiments for three different value of
applied normal stress σN are plotted in Fig. 7b. In Fig. 7b,
we observe, once again, a typical behavior of a dense sam-
ple where the granular assembly initially contracts and then
expands (dilates) until it reaches a constant volume at large
shear deformation. The state in which the samples undergo
large shear deformations without further changes in shear
stress and volumetric strain corresponds to the critical state
of the material. These results establish a link between grain-
scale information, such as branch vectors and contact forces,
and macroscopic laboratory observations.

The stress state of the granular assembly can also be
visualized by looking at the magnitude of the normal stress
σA = n̂A · σ̄ · n̂A acting on a plane of orientation θ , defined by
the unit vector n̂A = (cos θ, sin θ). Starting from Equation
(2), the magnitude of normal stress σA can be expressed in
terms of the micromechanics as follow:

σA = 1

�

Nc∑
α=1

f α
A
dα
A

(3)

where f α
A

and dα
A

are the scalar projections of, respectively,
the force vector and the branch vector at the contact α onto
the unit vector n̂A , i.e. f α

A
= f α · n̂A and dα

A
= dα · n̂A . The

polar representation of the normal stress σA for the shear test
performed at σN = − 14.25 kPa is shown in Fig. 8a. For each
value of the angle θ ∈ [0, 2π ], the magnitude of the normal
stress σA(θ) is computed from the grain-scale quantities, i.e.
the force vectors f α and the branch vectors dα , according
to Eq. 3. In this figure, σA is plotted for different values of
shear angle γ that correspond to distinct states of the shear
behavior: initial state (γ = 0, gray curve), linear elastic state
(γ = 0.075, black curve), peak state (γ = 0.15, blue curve)
and critical state (γ = 0.275, red curve). The polar repre-
sentation of the normal stress σA given in Fig. 8a enables
a clear visualization of the evolution of principal stress val-
ues (σ1 and σ2) and principal stress orientation, defined as
the angle θp between the vertical axis and the major prin-
cipal stress σ1 axis. In the initial state (γ = 0), where the
granular sample is subjected to uniaxial compression with
σN = −14.25 kPa, we report that σ1 ≈ σN and that the
principal stress is oriented towards the vertical axis (direc-
tion of loading), such that θp = 0. As the granular sample
is sheared, the maximum principal stress value σ1 increases
until the peak and slightly decreases at critical state whereas
the minimum principal stress value σ2 only increases. Con-
currently, as qualitatively reported in [23,46], Fig. 8a reveals
that the principal stresses rotate clockwise (increase of θp)
during shear. Figure 8b complements Fig. 8a as it depicts
the evolution of the stress state (σyy , τxy) and (σxx , −τxy)
obtained from micromechanical quantities using Eq. 2 on
a Mohr diagram (normal stress σ - shear stress τ plane).
In this figure, stress states (colored circle markers) for the
four distinct states (initial, linear elastic, peak and critical
states) are highlighted and the corresponding Mohr circles
are plotted. The stress state representation given in Fig. 8b
shows stress continuity as the granular assembly is sheared.
Initially, as γ = 0, the only stress applied to the granu-
lar assembly is a compressive stress in the vertical direction
σN and the shear stress τ = 0. It follows that the principal
stresses σ1 = σyy ≈ σN and σ2 = σxx (see Fig. 8b). As the
shear angle γ increases, Fig. 8b shows that the stress compo-
nents σxx and σyy increase until the peak state is reached. For
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Fig. 8 a Polar distribution of
normal stress σA in kPa for
shear test (σN = − 14.25 kPa) at
γ = 0, 0.075, 0.15 and 0.275.
σA is computed from grain-scale
data (force and branch vectors)
using Eq. 3. b Evolution of
stress states (σyy , τxy) and
(σxx ,−τxy) in kPa on a Mohr
diagram (normal stress σ -shear
stress τ plane). Mohr circles at
γ = 0, 0.075, 0.15 and 0.275
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a dense sample, we have seen that shear causes dilation. The
top boundary of the shear cell (side CD) tends to obstruct this
dilation from happening, such that the normal stress acting
on the top boundary σCD = σyy increases. Simultaneously,
given the boundary conditions, an increase of σyy and τxy
results in an increase of σxx . In particular, as the principal
stress direction is rotated at an angle θp = 45◦ from the ver-
tical axis, we have σxx = σyy . In this case, as showcased
in Fig. 8b, the stress path presents a symmetry with respect
to the τ = 0 axis. Additionally, Mohr circle offers a use-
ful graphical technique for finding principal stresses, i.e. in
the plane where τxy = 0. Comparison between the principal
stress values obtained from the polar representation given in
Fig. 8a and from the Mohr circles in Fig. 8b demonstrates
the validity of Eq. 3 to compute principal stress values.

It can be seen from Eqs. 2 and 3 that the macroscopic
stress tensor σ̄ and the magnitude of normal stress σA is
linked to the contact forces and fabric. In order to gain a bet-
ter understanding of the macroscopic behavior of granular
materials during shear, it is therefore necessary to character-
ize the distribution of contact forces and contact orientations
at the grain scale. We emphasize that for spherical grains,
contact orientations are coincident with contact normal. Fig-
ure 9a shows a polar histogram of the probability density
function (pdf) of contact orientations P(θ ), i.e. number of
contacts within an interval �θ divided by the total number
of contact Nc times �θ . Polar histograms of average normal

forces f̄n(θ) and average tangential forces f̄t (θ) for different
values of shear angle are depicted in Fig. 9b, c. Second order
Fourier harmonic functions, as defined by [14,47], are used
to approximate the polar distributions and are represented as
dashed lines in Fig. 9. The polar histograms, shown in Fig. 9,
confirm that shear stress applied to the granular assembly
creates structural (fabric) anisotropy and mechanical (force)
anisotropy.

From the grain-scale statistics and the Fourier expansions,
we compute the angles θa and θ f that correspond to the
angles between the vertical axis and, respectively, the max-
imum value of contact orientation axis and the maximum
value of average normal forces axis. In Fig. 10, principal
stress orientation θp (black), contact orientation θa (green)
and average normal force orientation θ f (red) are plotted
as a function of the shear strain γ . In this figure, the shaded
markers represent the value of the different orientation angles
θ obtained experimentally. The experimental data are then
fitted using a smoothing spline [48]. The smoothed data is
represented by the curves. Figure 10 shows that the rotation
of principal stress occurs in the early stage of the shearing
process; for γ > 0.05, the principal stress orientation θp
remains nearly constant and θp ≈ 45? Throughout the shear
deformation, principal stress orientation θp and average nor-
mal force orientation θ f are coaxial. On the other hand, we
experimentally demonstrate that the contact orientation θa
does not generally coincide with the principal stress orienta-
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Fig. 9 Polar distribution for shear test (σN = − 14.25 kPa) at γ = 0, 0.075, 0.15 and 0.275. a Probability density function of contact orientations
P(θ). b Average normal forces f̄n(θ). c Average tangential forces f̄t (θ)
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Fig. 10 Principal stress orientation (black), contact orientation (green)
and average normal forces orientation (red) as a function of shear strain
γ . The curves are obtained by smoothing the data (shaded markers)
using a smoothing spline [48] (color figure online)

tion θp except once critical state is achieved (γ > 0.225)
and at which θp ≈ θa ≈ θ f , as previously assumed in
[14].

5 Closure

In this paper, we have described an experimental method that
furnishes a complete description of the micro-mechanical
state of granular materials: description of fabric (position of
contact points and centroids), description of grain kinematics
(displacements, rotations and strains) obtained using 2D-
DIC and description of contact forces (normal and tangential
components) obtained through GEM. We have introduced
a novel experimental apparatus capable of reproducing the
mechanical features of granular materials under shear load-
ing. In particular, it has been shown that the so-called critical
state is achieved at large shear strain. A uniaxial compres-
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sion test was proposed as a benchmark test and has been
successfully used to verify and validate the proposed exper-
imental method. Under different loading conditions, force
chains have been evidenced in an opaque granular assembly
by means of 2D-DIC and quantified by GEM. We have con-
nected macroscopic stresses to the microstructure through the
evolution of fabric and contact forces. Principal stress, con-
tact and average normal force orientations during shear have
been studied and results show coaxiality between principal
stress and average normal forces orientations while contact
orientation is lagging behind until critical state is reached.
These results may serve as a validation of DEM simulations
and enhance our understanding of the multiscale behavior of
granular materials.
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Appendix: The granular element method

In this appendix, we describe the GEM algorithm in a pseudo-
code format. Let i p and iα denote the storage indices for,
respectively, the p-th particle and the α-th contact, for α ∈
{1, . . . , Nc} and p ∈ {1, . . . , Np}. Np is the total number
of grains and Nc is the total number of contact. For more
details on the mathematical framework of GEM, see [33–
35].

Inputs: Position of contact points
x = [x1, x2, . . . , xNc ]T where xα = {xα, yα}

Average grain stress σ̄ = [σ̄ 1, σ̄ 2, . . . , σ̄ Np ]T
where σ̄ p = {σ̄ p

xx , σ̄
p
yy, σ̄

p
xy}

Surface of grains � = [�1, �2, . . . , �Np
]T

Normal unit contact vector
e = [e1, e2, . . . , eNc ]T where eα = {eα

x , eα
y }

Tangential unit contact vector
t = [t1, t2, . . . , tNc ]T where tα = {tαx , tαy }

Inter-particle friction coefficient μ

Boundary of granular assembly �

Output: Force vector f = [ f 1, f 2, . . . , f Nc ]T where
f α = { f α

x , f α
y }

Algorithm 1 The Granular Element Method (GEM)
1: Initialize
2: Construct vector bst = [b1

st , b
2
st , . . . , b

Np
st ]T

3: for p = 1 to Np do
4: Compute bpst = {�p σ̄

p
xx , �p σ̄

p
yy, 2�p σ̄

p
xy}

5: Assemble bst (i p) = bpst
6: end for
7: Construct matrices K eq , K st and B
8: for α = 1 to Nc do
9: Identify master grain p
10: Compute Kα

eq = [{1, 0}, {0, 1}, {yα,−xα}]
11: Assemble K eq (i p, iα) = Kα

eq
12: Compute Kα

st = [{xα, 0}, {0, yα}, {xα, yα}]
13: Assemble K st (i p, iα) = Kα

st
14: if α /∈ � then
15: Identify slave grain q
16: Assemble K eq (iq , iα) = −Kα

eq
17: Assemble K st (iq , iα) = −Kα

st
18: end if
19: Compute B1(α, iα) = [−eα

x ,−eα
y ]

20: Compute B2(α, iα) = [−eα
x − tαx /μ,−eα

y − tαy /μ]
21: Compute B3(α, iα) = [−eα

x + tαx /μ,−eα
y + tαy /μ]

22: Assemble B = [B1, B2, B3]T
23: end for
24: Solve optimization problem
25: for λ ∈ [0, 1] do
26: Minimize (λ||K eq f || + (1 − λ)||K st f − bst ||) with respect to

f subjected to B f ≥ 0
27: Store ||K eq f ||, ||K st f − bst || and f
28: end for
29: Find the preferred solution f

∗
corresponding to the knee point of

the (||K eq f ||, ||K st f − bst ||) curve
30: Return f = f

∗
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