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Abstract A method of modeling convex or concave polygo-
nal particles is proposed. DEM simulations of shear banding
in crushable and irregularly shaped granular materials are
presented in this work. Numerical biaxial tests are con-
ducted on an identical particle assembly with varied particle
crushability. The particle crushing is synchronized with the
development of macroscopic stress, and the evolution of
particle size distribution can be characterized by fractal
dimension. The shear banding pattern is sensitive to parti-
cle crushability, where one shear band is clearly visible in
the uncrushable assembly and X-shaped shear bands are evi-
dent in the crushable assembly. There are fewer branches of
strong force chains and weak confinement inside the shear
bands, which cause the particles inside the shear bands to
become vulnerable to breakage. The small fragments with
larger rotation magnitudes inside the shear bands form ball-
bearing to promote the formation of shear bands. While there
are extensive particle breakages occurring, the ball-bearing
mechanism will lubricate whole assembly. With the increase
of particle crushability the shear band formation is sup-
pressed and the shear resistance of the assembly is reduced.
The porosity inside the shear bands are related to the particle
crushability.
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1 Introduction

Granular materials, e.g., sand, gravels, and rockfill materials,
are often used in the construction of large civil engineering
structures, such as railways, pilings, embankments and dams.
Shear band or strain localization is commonly observed when
granular materials are subjected to conventional triaxial com-
pression. This phenomenon is significant for assessing the
stability of civil engineering structures. Shear band forma-
tion and evolution are examined using true triaxial tests [1,2],
ring shear tests [3], plane strain extension [4], and static
and cyclic torsional shear tests [5,6]. Advanced experimental
techniques, such as X-ray computed tomography stereopho-
togrammetry and particle image velocimetry, are also used to
investigate the micro-scale information associated with strain
localization [7–11]. These experimental works have revealed
that shear band formation is influenced by several factors,
including porosity, inherent and stress-induced anisotropy,
particle size and shape of the material, and the level of con-
fining stress.

In parallel with the experimental studies, another major
contribution to this field comes from discrete element mod-
eling, which provides richer information and deeper insight
into the microscopic behavior of granular materials that is not
obtained by conventional experiments [12–18]. The overall
response of granular materials has been recognized as the
result of various micromechanical processes, namely parti-
cle sliding, particle rolling, and particle breakage. Particle
breakage was not considered in previously published DEM
investigations of shear bands [12–18]. Additionally, particle
shape is generally modeled by bonded discs or spheres [19–
21] or by employing the rolling resistance model to provide
the mechanism of particle anti-rotation [13,17,22,23].

To contribute toward the understanding of shear band for-
mation and its associated microstructural evolution, discrete
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element modeling of irregularly shaped, crushable particle
assembly is presented. The role of particle crushability in the
shear banding of granular materials is explored. In depth anal-
yses of the particle scale information inside and outside the
shear bands are presented, including the accumulated particle
rotation, void ratio distribution, particle breakage behavior,
friction mobilization, and force chains. Attempts are made
to link shear banding to microstructural evolution.

2 DEM modeling particle shape and particle
breakage

2.1 Particle shape

Alonso-Marroquin [24] used Minkowski sum of a polygon
with a sphere to generate complex shapes, including non-
convex bodies. Wang et al. [25] utilized X-ray tomography
imaging to obtain three-dimensional data set of grains and
reproduced real particles for DEM simulation. Indraratna et
al. [26] imported different elevations of a selected ballast
into AutoCAD and converted the group of circles represent-
ing a single ballast into a “Block”. Using their subroutines
a real ballast was generated in the DEM simulation. Yan et
al. [27] created an arbitrary convex polyhedron whose sur-
faces were extracted as the ballast particle surfaces. Then
spheres were filled into the space enclosed by these surfaces
with a hexagonal close packing to generate an irregularly
shaped ballast. However it is an extremely time-consuming
work to prepare the numerical sample by the above method,
which need obtain the particle shape information of numer-
ous grains. A time-saving method was proposed by Zhou et
al. [28]. They generated convex polyhedral particles from
scalene ellipsoids to reflect the complex geometric features
of rockfill grains. In this paper, the convex or concave poly-
hedral particles are generated from circles (see Fig. 1). To
ensure that the shapes of the granules are sufficiently ran-
dom, the vertices of the particles are uniformly distributed
over the interval [nmin, nmax] as follows:

n = nmin + (nmax − nmin)rand (1)

where rand is a uniformly distributed random number in the
interval [0, 1].

The polar coordinate is used to determine the position of
each vertex of the polygon as follows:

θk = 2π [1 + (2rand − 1)δ]/n (2)

where θk is the angle corresponding to the kth edge, and the
absolute value of the constant δ is less than 1. Because the
sum of θk is not equal to 2π , θk should be modified so that
the polygons are closed.
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Fig. 1 Irregular polyhedral particle
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The position of the polygon vertex is calculated as:
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xk = x0 + r(1 + λgrand) cos(θ ′
k)

yk = y0 + r(1 + λgrand) sin(θ ′
k)

θ ′
k =

k∑
i=1

θi

(4)

where x0, y0 are the central coordinates of the circumcircle of
polygons. grand is a random number drawn from a normal
distribution, with a mean of 0 and a standard deviation of
1.0. The absolute value of the constant λ is less than 1. If
λ is equal to 0, a convex polygon is obtained. Otherwise, a
concave polygon will be generated.

There are two ways to generate irregularly shaped grains
in DEM modeling: (a) the ‘clump’ composed by overlapping
particles is used to model the particle shape [19–21,29–
32], and (b) a hexagonal close packing agglomerate without
initial overlap is generated within the surface of the irregu-
larly shaped grain [33–36]. Representing grains generated by
the latter method are composed of bonded disks or spheres,
which each bond can be envisioned as a kind of glue joining
the two disks or spheres and transmit a force or a moment. In
this paper, a novel generation method of irregularly shaped
particles is proposed. The random polygons are generated via
Eq. (4) and discretized into the finite element mesh. This step
is easily realized and the grid size of polygons can be well
controlled in the FEM software ANSYS. The information
of the polygon including the area and centroid coordinate
of every internal grid are obtained by the APDL (ANSYS
Parametric Design Language). Finally, each finite element is
replaced by a disc with the same area and centroid coordi-
nate and the clump is created by grouping the discs within the
same surface of the irregularly shaped grain (see Fig. 2). The
clumps consist of rigid bodies of overlapping disks but inter-
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Fig. 2 Particles with different numbers of vertices: a finite element meshes and b DEM clumps

nal contacts are ignored in the Itasca software (PFC2D). The
motion of a clump is determined by the resultant force and
moment vectors acting upon it. Its motion can be described
in terms of the translational motion of a point in the clump
and the rotational motion of the entire clump. The numerical
problems encountered in the papers of Bagi and Kuhn [37]
do not appear here.

2.2 Particle breakage criteria

In the two-dimensional DEM, the stress tensor at an area Ap

of a particle is generally defined as [38]:

σi j = 1

Ap

∑
c⊂Nc

f cj d
c
i (5)

where Nc is the total number of contacts, f cj is the con-
tact force, dci is the branch vector joining the centers of
two contacting particles, and σi j is the stress tensor acting
throughout the area. If the particle has more contact points
with its neighbors, the induced stress will be lower due to the
even distribution of stresses [39].

The stress concentration induced by a large compressive
force at the particle contact is the origin of fracture initiation
and propagation, which causes surface erosion or bulk frac-
ture [40,41]. Lobo-Guerrero and Vallejo [42] split a particle
with coordination numbers that were less than or equal to 3
if the induced tensile stress exceeded the strength threshold,

which is similar to the Brazilian test. Tsoungui et al. [40]
deduced that the fracture of a grain that is subject to an arbi-
trary set of forces may occur when the shearing stress exceeds
the critical stress. de Bono and McDowell [20] assumed a par-
ticle would break when the octahedral shear stress was greater
than or equal to its strength. To capture both the shear frac-
ture modes of the rock aggregate, the Mohr–Coulomb model
is used as the particle breakage criteria. The grain is assumed
to split along the direction of the largest contact force act-
ing upon it when the stresses calculated by Eqs. (5) and (6)
fulfill the fracture criteria, and the generated fragments are
treated as new independent grains (see Fig. 3). The breakage
mechanism is equivalent to the grain fracture under diametric
compression. Fragment spawning is repeated if the fragment
stresses satisfy the fracture criteria:

⎧⎨
⎩

τ = σmax−σmin
2 ≤ τ f

σmax,min= σxx+σyy
2 ±

√(
σxx+σyy

2

)2 + σxyσyx
(6)

where τ f is the shear strength of the particle, which satisfies
the Weibull distribution.

In assuming that the shear strength of a particle of size d0

is τ 0
f , the size effect described by a power function [39] is

applied to the particle of size da , which leads to:

τ af = τ 0
f

(
d0

da

)k

(7)
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Fig. 3 Contact forces acting on
the grain and the produced
fragments after failure 1P
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Fig. 4 Specimen in the DEM simulation and forces applied on flexible boundary. a DEM sample after isotropic compressed and b forces applied
on membrane balls

where k is the hardening parameter. τ af is the characteristic
shear strength and a value of the Weibull distribution, such
that 37% of random strengths are larger.

3 Numerical sample and input parameters

Biaxial tests are performed on a polydisperse assembly of
2918 polygonal particles by a commercial DEM code (Itasca
PFC2D). Each particle is represented by a clump of balls. The
2918 clumps consist of 44,074 balls, and the vertices of the
particles range from 5 to 9 with λ equal to 0. The equivalent
particle diameter, d∗, ranges from 9 to 21 mm, which gives
a mean grain diameter d∗

50 of 16 mm, where d∗ is defined
as the diameter of a circle with an area equal to the irregu-
larly shaped particle. The floppy boundary was realized by
connecting the grains on the sides of the packing by line seg-
ments in the simulations of Astrom and Herrmann [43] and
Alonso-Marroquin and Herrmann [44,45]. The “side grains”
consisted of all the grains on a side of the packing that can
be connected by a chain of line segments whose angles to

the vertical never exceed some predefined maximum angle.
The external pressure was installed by applying the force on
the side grains. Gu et al. [19], Jiang et al. [22] and Wang et
al. [46] generated frictionless particles in the lateral bound-
aries of sample. These particles were bonded and could rotate
freely at the contact without breakage to simulating the flex-
ible boundary. The membranes of Bono and McDowell [47]
and Iwashita and Oda [23] are adopted in this paper. Ini-
tially, the polygonal particles are randomly generated in a
rectangle of 600 mm×1200 mm with stiff walls. The sample
is isotropic compressed until the desired confining pressure
is reached. Then the side particle with 1/3 diameter of the
smallest sample particle are generated along lateral walls
[47]. Two end particles in the linked particles are fixed on
the top and bottom boundaries in the vertical direction, but
are completely free in the horizontal direction [23]. The con-
tact bond model is installed between the side particles and
high strength is assigned, which makes the flexible bound-
ary only transmit a force without break. After the lateral
walls deleted, the sample is isotropic compressed again to
obtain the desired confining pressure (see Fig. 4a). Finally,
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Table 1 Summary of DEM modeling parameters

Shear
stiffness

Friction
coefficient

Density (g/cm3) Confining pressure (MPa) d0 (mm) Hardening parameter Weibull modulus Initial void ratio

ks = kn 0.5 2.65 1.00 16.00 0.3335 4.53 0.67

Fig. 5 Stress–dilation–strain behavior of assemblies with different crushability: a deviatoric stress and b volumetric response

the sample is subjected to shearing deformation by applying
a constant velocity of 50 mm/s to the top and bottom walls
of the sample while maintaining a constant confining stress
[38]. Note that the constant stresses on the lateral bound-
aries are obtained by applying forces to the center of the
membrane balls (see Fig. 4b), and the forces are updated
step-by-step [19]. The force on the flexible boundary parti-
cle can be calculated via Eq. (8). A modified linear contact
model is used, and the normal contact stiffness of the particle
kn varies according to kn = k0r , where k0 = 105 KN/m2 and
r is the radius of the particle [19]. The Weibull distribution
and the size-dependent law of particle strengths are based on
the sandstone block crushing tests [39]. The input parameters
in DEM simulations are listed in Table 1.

{
fx = (r cos θ + r cos β)σ3

fy = (r sin θ + r sin β)σ3
(8)

4 Numerical simulation results

4.1 Effect of crushability on the mechanical behavior of
granular materials

Four different biaxial tests under a confining pressure of 1.0
MPa are conducted with different particle strengths to inves-
tigate the effect of crushability on the mechanical behaviors
of granular materials. The results comprise one simulation
with unbreakable particles and three simulations with break-
able particles, which possess different characteristic shear

strengths τ 0
f of 2.0, 2.5, and 3.0 MPa with d0 = 16 mm.

Figure 5 shows the macroscopic responses of the numerical
biaxial tests in terms of the deviator stress and volumetric
strain versus axial strain. The results show that the simulated
stress–strain–dilation responses are typical of those observed
in laboratory tests. The macroscopic responses of assem-
blies with lower particle crushability are marked by notable
post-peak strain softening and less contraction. By increasing
the particle crushability, the strain softening becomes milder
and completely disappears in τ f = 2.0 MPa. This behav-
ior is clearly a result of excessive particle breakage, which
has an opposing effect on the dilative mechanism and sup-
presses the mobilization of the assembly dilation [46]. Other
10 samples for each strength are prepared by changing the
initial random number of the survival probability of grains.
Results with different crushability are presented in Fig. 6.
The crosses are the average values. The top and bottom bars
represent ± one standard deviation. The results show that
the peak deviatoric stress is related to the crushability. The
samples with τ 0

f = 2.0, 2.5 and 3.0 MPa have mean peak
deviatoric stresses of 2.49, 3.07 and 3.28 MPa, respectively.
Their standard deviations are 0.125, 0.137 and 0.061.

Figure 7 shows the evolution of the accumulated frac-
tion of broken fragments during loading with a characteristic
shear strength of 2.5 MPa. Each dark cyan bar is the total
number of broken particles that occur in every 0.5% of axial
strain. The particle breakage process is synchronized with the
development of macroscopic stress. Particle crushing contin-
ually occurs during loading. This observation is consistent
with previous experimental results [48].
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Fig. 6 Peak deviatoric stress of numerical simulations

Fig. 7 Evolution of broken particles with axial strain

Turcotte [49] found that the fragment size distributions
for a wide range of crushed materials satisfy a fractal con-
dition and that the fractal dimension D is approximately 2.5
for materials subjected to pure crushing. A fractal defines
a simple power law relation between finer mass and size,
which can quantify the variation of particle size distribution
after particle breakage [50]. Figure 8 shows the particle size
distributions (PSDs) and fractal dimension D for all simula-
tions at 20% axial strain. Figure 9 presents fractal dimension
of numerical simulations. The mean fractal dimensions are
2.645, 2.697 and 2.715, and their standard deviations are
0.009, 0.015 and 0.013. As illustrated in Fig. 9, the varia-
tion of fractal dimension is related to the particle breakage.
As the particle shear strength ranges from 2.0 to 3.0 MPa,
the final PSDs yields fractal dimensions between 2.645 and
2.715, while the initial fractal dimension equals to 2.903.

4.2 Effect of crushability on shear banding

Of particular interest in the current study is the shear banding
of assemblies with different crushability. It has been found

Fig. 8 Particle size distributions at the end of shearing for assemblies
with different crushability

Fig. 9 Fractal dimension of numerical simulations

that the shear band inclination of angle θ , with respect to
the minor compressive principal stress, varies between the
limits θR ≤ θ ≤ θC , where θR and θC are given by Roscoe
and Coulomb formulae [51]:

θC = π

4
+ ϕ

2
θR = π

4
+ ψ

2
(9)

where ϕ is the friction angle and ψ is the dilatancy angle.
Particles within the shear bands have much larger rota-

tion magnitudes compared with the remaining particles in the
assembly. Therefore, particle rotation is a good descriptor of
the distribution of strain localization. Figure 10 displays the
deformed specimen geometries and the contours of particle
rotations at 15% axial strain. The dashed blue line denotes
the Roscoe inclination angle, and the yellow line represents
the Coulomb inclination angle. As indicated by Fig. 10,
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f 2.0 MPaτ = f 2.5 MPaτ = f 3.0 MPaτ = uncrushable
Fig. 10 Contours of particle rotations of different crushable assemblies at 15% axial strain

f 2.0 MPaτ = f 2.5 MPaτ = f 3.0 MPaτ = uncrushable
Fig. 11 Local porosity contours with different crushable assemblies at 15% axial strain

the inclination angle predicted by the Roscoe formulae is
in better agreement with the numerical results. The shear
banding pattern is sensitive to the particle crushability. One
shear band is clearly visible in the uncrushable assembly,
whereas the lateral membrane boundaries deform severely
to locally ‘wrap’ around the ends of the shear bands. This
result is a clear indication of strong dilation associated with
strain localization. However, this phenomenon is substan-
tially reduced or completely absent in the medium to high
crushable granular assemblies. With the increase of particle
crushability, two major shear bands form an ‘X’ configura-
tion, but these X-shaped shear bands are not symmetrical in
most cases. For example, the right shear band is more dom-
inant in the assembly with 3.0 MPa shear strength, but the
left and upper shear bands fail to form a connected shear
zone.

Figure 11 displays the local porosity contours of differ-
ent crushable assemblies at 15% axial strain. The zones
near the shear bands have a greater local porosity than
the remaining parts of the assembly, which is consistent
with the rotation distribution. As shown in Fig. 11, the
porosity increases with increasing particle shear strength,
which is more obvious inside the shear bands. The greater
local porosity inside the shear bands is caused by the rota-
tion of irregularly shaped particles. Figure 12 shows the

number of fragments increases with increasing crushabil-
ity. This finding indicates a strong link between particle
breakage and local porosity. The highly crushable particles
inside the shear bands are more vulnerable to breakage,
and the rotation of small fragments cannot induce strong
local dilation. For the assembly with the shear strength
of 2.0 MPa, the lateral membrane boundaries deform to
shrinkage while the boundaries become bulgy with increas-
ing particle shear strength. Due to massive grains crushing
into small fragments, the X-shaped distribution of local
porosity becomes less evident and the distribution of larger
particle rotation magnitude fails to connect shear zone for
the highly crushable assembly. As pointed out by Wang
and Yan [46] and Ma et al. [52], the extensive amount
of particle breakage prevents the formation of a shear
band.

To quantify particle sliding, the friction mobilization index
Im = ∣∣ f ct

∣∣/(μ f cn
)

at each contact is considered, where μ

is the inter-particle friction coefficient, and f ct and f cn are
the normal and tangential forces at contact c, respectively
[53]. The average friction mobilization index IM is defined
as

〈∣∣ f ct
∣∣/(μ f cn

)〉
, where the average is taken of all the con-

tacts. Figure 13 displays the evolution of the average friction
mobilization indices of the contact network inside and out-
side the shear bands. No obvious difference occurs in the
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Fig. 12 Fragment distribution
with different crushable
assemblies at 15% axial strain

f 2.0 MPaτ = f 2.5 MPaτ = f 3.0 MPaτ =

Fig. 13 Evolutions of average friction mobilization of different crushable assemblies. a Uncrushable. b τ f = 2.0 MPa. c τ f = 2.5 MPa. d
τ f = 3.0 MPa

IM of subnetworks of the uncrushable assembly, whereas
the IM of subnetworks outside the shear bands are greater
than those inside the shear bands of crushable assemblies.
This result indicates that the weakening of friction mobi-
lization outside the shear bands is likely responsible for the
macroscopic strain softening [52] and the particle sliding
inside the shear bands is less severe due to intensive particle
crushing.

4.3 Micromechanical analysis of formation of shear
bands

Only the assembly with a characteristic shear strength of 2.5
MPa is considered in this section. Particle scale information
was investigated to quantify the microstructural evolution
inside and outside the shear bands. Figure 14 shows the con-
tours of particle rotations at different strains. The distribution
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ε1=3% ε1=6% ε1=9% ε1=12% 

Fig. 14 Contours of particle rotations at different strains

εa=3% εa=6% εa=9% εa=12% εa=15% 

 

Fig. 15 Particle breakage density distributions at different strains

of rotation is slightly uniform at the beginning of shearing.
Then, potential shear bands emerge along the diagonals of
the specimen. The distribution of particle rotation is local-
ized at two major shear bands, and the X-shaped shear bands
are clearly visible at 9% axial strain. With further shearing,
part of these localized regions begin disappearing.

The particle breakage density is defined as the fragment
number in a square of size d∗

50. The particle breakage density
distribution at different strains is presented in Fig. 15. Most
particle breakage occurs near the loading walls at the early
stage of shearing, and the particle breakage inside the shear
bands gradually becomes more severe, which is consistent
with the results of Wang et al. [46]. Figure 16 illustrates the
evolution of strong force chains. The normal contact force
is generally uniform at the start of shearing, but column-like
force chains form with increasing shear strain. The columnar
force chains, which are initially oriented along the loading
direction, gradually collapse and result in the formation of
vaulted force chains. The force chains can be divided into four
zones when X-shaped shear bands are formed. Most contact
forces near the flexible membranes are less than fmean +2 f0
( fmean is the average of the normal force of the assembly
and f0 is equal to ( fmax − fmean)/10), whereas most contact

forces near the loading walls are greater than fmean + 2 f0.
There is minor branching inside the shear bands, which
causes the chain network to become vulnerable to collapse
after the shear bands have formed. Particle breakages coin-
ciding with shear band formation are readily comprehensible
because of the large induced stress due to poorly-distributed
stresses within the shear bands.

It has been demonstrated that there exist constructions of
spherical grains that fill a two- or three-dimensional space
but which can rotate as a ball bearing without shear stiff-
ness [54,55]. The simulation of Åström and Timonen [56]
shows that ball-bearing grains do not appear if fragmentation
is forbidden while such grains are abundant and strongly
localized in shear band if breakage is allowed. Figure 17
compares the average translational velocity and rotational
velocity of the fragments and all particles. The average trans-
lational velocity of crushed particles is less than that of all
particles, whereas the fragments have larger rotational mag-
nitudes compared with the remaining particles. This finding
indicates that small fragments spawning from parent parti-
cles inside the shear bands will lubricate the assembly. As
shown in Figs. 14 and 15 the particle breakage also coin-
cides with the formation of shear bands. It can be concluded
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ε1=3% ε1=6% 

max mean
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meanf
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Fig. 16 Evolutions of the strong force chains

that the fragments with large rotation will form a microscopic
pockets of rotating bearings which significantly promotes the
formation of shear bands [56]. While there are extensive par-
ticle breakages occurring, the ball-bearing mechanism will
weaken whole assembly. This will suppress the shear band
formation and reduce the shear resistance of the assembly.

5 Conclusion

Discrete element modeling of irregularly shaped granular
materials has been developed. The simulations presented in
this paper have demonstrated that it is possible to model the

formation of shear bands in crushable and irregularly shaped
granular materials. The effects of crushability on the mechan-
ical behavior of granular materials and shear banding are
investigated. The micro-mechanism of shear band formation
is revealed. The primary findings from this qualitative study
are the following:

1. With increasing particle crushability, the peak deviatoric
stress decreases and the strain softening becomes milder.
Particle crushing continually occurs during shearing and
is synchronized with the development of macroscopic
stress. The evolution of PSD can be characterized by a
fractal dimension. As the particle shear strength ranges
from 2.0 to 3.0 MPa, the final PSDs yields fractal dimen-
sions between 2.645 and 2.715, while the initial fractal
dimensions equal to 2.903.

2. Particle rotation is used to identify the onset and develop-
ment of shear bands. The inclination angle of shear bands
can be predicted by the Roscoe formulae. The shear band-
ing pattern is sensitive to particle crushability. One shear
band is clearly visible in the uncrushable assembly. With
increasing particle crushability, two major shear bands
form an ‘X’ configuration. The zones of greater porosity
are consistent with the rotation distribution. The particles
inside the shear bands are more likely to rotate, and parti-
cle breakage inside the shear bands is more severe. With
high crushability, the particles inside the shear bands are
more vulnerable to breakage, and the small fragments
prevent large voids from fully developing.

3. The force chains can be divided into four zones by the
Roscoe inclination lines after the formation of shear
bands. Due to poorly-distributed stresses, the particles
inside the shear bands are more vulnerable to break-
age. The small fragments with larger rotation magnitudes
inside the shear bands form ball-bearing to promote the
formation of shear bands. While there are extensive parti-
cle breakages occurring, the ball-bearing mechanism will

Fig. 17 Evolutions of average translational velocity and rotational velocity
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lubricate whole assembly. With the increase of particle
crushability the shear band formation is suppressed and
the shear resistance of the assembly is reduced.
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