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Abstract The Smoothed Particle Hydrodynamics (SPH) is
a particle-based, Lagrangian method for fluid-flow simula-
tions. In this work, fundamental concepts of this method are
first briefly recalled. Then, the ability to accurately model
granular materials using an introduced visco-plastic consti-
tutive rheological model is studied. For this purpose sets of
numerical calculations (2D and 3D) of the fundamental prob-
lem of the collapse of initially vertical cylinders of granular
materials are performed. The results of modeling of columns
with different aspect ratios and different angles of internal
friction are presented. The numerical outcomes are assessed
not only with respect to the reference experimental data but
also with respect to other numerical methods, namely the
Distinct Element Method and the Finite Element Method.
In order to improve the numerical efficiency of the method,
the Graphics Processing Units implementation is presented
and some related issues are discussed. It is believed that this
study corresponds to a new application of SPH approaches
for simulations of granular media and results reveal the inter-
est of this method to capture fine details of processes of such
complex problems as waves—seabed interactions.

Keywords Granular flow - Lagrangian methods - Smoothed
Particle Hydrodynamics - Landslides
1 Introduction

Problems involving large granular media deformations are
active research in the fields of geomechanics and natural
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hazard management. Particular attention is paid to under-
stand the processes and to learn how to predict the run-outs
of rock and debris avalanches or landslides which can be very
destructive. Therefore, the accurate modeling of such flows
is invaluable.

In order to simulate flowing granular media, many
researchers derived the semi-empirical depth-averaged mod-
els, see [1-5]. The main disadvantage of such models is
inability to accurately model high but narrow stacks of gran-
ular materials. This drawback implied a need to develop
more detailed computational models for granular material
dynamics. One of the most widely used methods to simulate
such problems is the Distinct Element Method (DEM) [6].
The first application of DEM to model granular flows was
proposed in [7]. Further improvements have been described
in [8—12]. Nowadays, the DEM method is widely accepted
as an effective approach for modeling granular and dis-
continuous materials. Even through the DEM approach is
computationally expensive, this approach is easy to be writ-
ten in a parallel manner. Despite many advantages of DEM,
there is one relevant disadvantage—this approach is designed
to discrete materials modeling, therefore the introduction of
a new physics can be very complex. For example, to model
interactions of granular material with fluid-flow, the coupling
with another CFD method is necessary. One of the alternative
methods which allow to deal with multi-physics is the Finite
Element Method (FEM), see [13] for details. To the best of
our knowledge, the first application of FEM to model the
granular material collapse was proposed in [14]. The authors
used the continuum approach based on an elasto-plastic
model. The main disadvantage of FEM is the grid-based
nature of this method. When large deformations occur, the
FEM approach suffers from grid distortions. However, in
the last decade, many so-called meshless methods have been
developed.
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One of the most mature and commonly used approach
is the Smoothed Particle Hydrodynamics method (SPH). In
the early stage it was developed to simulate some astro-
physical phenomena at the hydrodynamic level [15]. The
main idea behind the SPH method is to introduce kernel
interpolants for flow quantities in order to represent fluid
dynamics by a set of particle evolution equations. Due to its
Lagrangian nature, for multiphase flows, there is no neces-
sity to handle (reconstruct or track) the interface shape as
in the grid-based methods. Therefore, there is no additional
numerical diffusion related to the interface handling. For this
reason and the fact that the SPH approach is well suited
to problems with large density differences, free-surfaces
and complex geometries, the SPH method is increasingly
used for hydro-engineering and geophysical applications, for
review see [16,17]. The first attempts to model the granu-
lar materials using the SPH approach was presented by Bui
et al. [18,19]. The authors decided to use an elasto-plastic
(Drucker—Prager) constitutive model. Despite good results
compared with the experimental and numerical data, authors
reported a serious tensile instability problem resulting in clus-
tering of SPH particles. Further improvements to this model
has been recently proposed in [20] by introduction the dif-
fusion term with variable diffusion coefficient (function of
stress and strain rate) and in [21] by adding the MLS cor-
rection, see [22] for details. The main reason for introducing
these improvements was to reduce the non-physical pressure
pulsations that need to be stabilized in (non-viscous) SPH
by an artificial viscosity, see [16] for details. Another consti-
tutive model was proposed by Ulrich et al. [23], where the
granular material is treated as a fluid with a variable viscos-
ity (a visco-plastic rheological model), however, the authors
have not presented any validations of this approach.

In the present work, the ability to model granular mate-
rials using the SPH method and the visco-plastic model is
studied. For this purpose, it was decided to perform a set
of numerical calculations (in 2D and 3D) of the fundamen-
tal problem of the collapse of initially vertical cylinders
of granular materials. The obtained results were compared
with other numerical (DEM and FEM) and the experimen-
tal data. On of the drawbacks of the mesh-free methods is
much lower numerical efficiency compared with the grid-
based approaches. However, similarly to the DEM method,
the SPH approach numerical implementations present a high
degree of spatial data locality and significant number of inde-
pendent calculations, therefore the code can be easily written
in a massively parallel manner. In recent years new tech-
niques allowing numerical simulations to be performed using
Graphics Processing Units (GPU) have been developed. The
massive parallel capability of modern GPUs allows simula-
tions of large systems to be performed using cheap desktop
computers. For the purpose of this study, it was decided to
implement the SPH method using GPU programming tech-
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niques. Some issues related to the GPU computations are
discussed.

The paper is organized as follows: in Sect. 2 the brief
introduction to SPH is presented; in Sect. 3 the visco-plastic
rheological model of granular materials is introduced; in
Sect. 4 the implementation on GPU is discussed; then in
Sect. 5 the obtained numerical results are presented. In order
to validate the model, the following criteria are taking into
account: the granular deposit evolution (Sect. 5.2), run-out
distances (Sect. 5.3), the energy contribution (Sect. 5.4), the
inclination of the failure plane (Sect. 5.5) and the pressure
distribution (Sect. 5.6). The numerical efficiency is discussed
in Sect. 5.7. The last part of this paper is “Appendix” in which
we study the convergence of the proposed model.

2 SPH formulation

The full set of governing equations for incompressible vis-
cous flows is composed of the Navier—Stokes (N-S) equation

du 1 1
—=——Vp+—(Vu-Viyu+g, ey
dt 0 0

where o is the density, u velocity, ¢ time, p pressure,
the dynamic viscosity and g an acceleration (gravity in this
work); the continuity equation

dQ _ o=const

= _—pV.-
dt ev-u

V.u=0, @

and the advection equation (Lagrangian formalism)

dr_

= 3)

where r denotes position of the fluid element.

The governing equations can be expressed in the SPH
formalism in many different ways. In general, two SPH
approximations: integral interpolation and discretization,
lead to the the basic SPH relation

(A) (r) =D~ Acp) W (r = rp, ), “

b

where A is a physical field (for the sake of simplicity we con-
sider a scalar field only), W is a weighting function (kernel)
with parameter £ called the smoothing length, while €2 is the
volume of the SPH particle. There are many possibilities for
the choice of W (r, /). The kernel shape is the main reason
for the appearance of the tensile instability resulting in par-
ticle clumping [24]—the process from which the results in
[18] suffer. In [25] the authors performed series of fluid-flow
simulations and showed that using the Wendland kernel [26]
in the form
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W(r,h)=C

4
(()1—6]/2) 2qg+1) for g <2, )

otherwise,

where ¢ = |r|/h and the normalization constant is C =
7/47h? (in 2D) or 21/16zh> (in 3D), the tensile insta-
bility (observed also in granular matter modeling by [18])
does not appear. Therefore, in this work, we decided to
use the kernel in the form of Eq. (5). For more details
how the choice of the kernel and the smoothing length
affect results see [25]. It is important to note here that the
SPH basic approximation, Eq. (4), is common also in other
numerical particles-based approaches, e.g. Moving Particle
Semi-implicit Method (MPS) [27]. The SPH method differs
from other methods in aspect of approximation of differentia-
tion operator. Assuming the kernel symmetry, nabla operator
can be shifted from the action on the physical field to the
kernel

(VA) (r) = z A(rp) VW(r —rp, h)<2p. (6)
b

It is important to note that although different SPH formu-
lations can be obtained from the same governing equations,
some of them may not be applicable for certain types of flows,
see [28]. One of the most common SPH form, enabling accu-
rate calculations in the widest number of types of flow, is the
N-S pressure term proposed by Colagrossi and Landrini [29]

\Y%
<—”> == PG, W, %
Q a b QaQb

where V, Wy, = V,W(r, — rp, h). In the present work, we
decided to perform calculations of pressure term using this
variant. The corresponding (variationally consistent [30,31])
continuity equation takes a form

do mp
— ) = E —_ -VoWup, 8
<dt >a Qa - b Ugp aWWab ( )

where u,, = u, — up. The viscous N-S term, because of
the efficiency requirements, is expressed as a combination of
the finite difference and the SPH approach (as in the MPS
approach [27])

, Ma + b Yap - VaWap (h)
Qalb ”3;, +n?

=>'m

a b

<l Vu-V) U> Ugp,
0

C))

where n = 0.014 is a small regularizing parameter used to
avoid NaN's when divide by the numerical zero. Because SPH
is a Lagrangian approach, the particle advection equation
completes the system

dr,
dt

u,. (10)

In the present work, we decided to use the most com-
mon method of implementing the incompresibility—Weakly
Compressible SPH (WCSPH). It involves the set of govern-
ing equations closed by a suitably-chosen, artificial equation
of state, p = p(p). Following the mainstream, we decided
to use the Tait’s equation of state

-G -] w
14 Qo

where ¢ is the initial density. The sound speed ¢ and a
parameter y are suitably chosen to reduce the density fluc-
tuations down to 1%. In the present work we set y = 7 and
c at the level at least 10 times higher than the maximal fluid
velocity. It is worth noting that two alternative incompress-
ibility treatments exists: Incompressible SPH (ISPH) where
the incompressibility constraint is explicitly enforced though
the pressure correction procedure to satisfy V-u = 0 [25,32—
35] and Godunov SPH (GSPH) where the acoustic Riemann
solver is used [36]. In the present work, the boundary condi-
tions are fulfilled applying the ghost-particle method [25,32].

To assure the stability of the SPH scheme several time step

criteria must be satisfied:
1
oh? h\2
, 8t<0.125(—) ,
/‘Lmax g

(12)

h
8t <0.125——,

Umax

8t <0.125

where umax and pumax are respectively the maximal particle
velocity and the maximal particle viscosity in the domain.

3 Granular material modeling

In order to simulate the granular materials using the SPH
approach, we decided to adopt the visco-plastic rheologi-
cal model first used in SPH by Ulrich et al. [23]. Equations
that predict the shape of the general flow curve need at
least four independent parameters. A common example is
the Cross [37] equation

1o — J .
o = (Ky)", (13)
- o0

where 1o and p refer to the asymptotic values of viscosity,
while K and m are constant. The shear strain rate, y, can be
defined as

y = voeiéi, (14)
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where

o 1 fou Bu 5

In the case of the granular phase, (1o corresponds to the vis-
cosity of solid (low values of y, elastic limit), while
is the viscosity of grains above elastic limit (high values of
). Therefore, we may assume that u << g, which reduces
Eq. (13) to the Sisko [38] model

= oo + = oo + Koy (16)

_Ho
(Ky)m
Assuming n = 0, we get

K>
"= Moo + 7 (17

which is commonly known as the Bingham model [39]. With
some simple redefinition of parameters Eq. (17) can be writ-
ten as

T = oY + Tyield, (18)

where 7 is the shear stress, Tyjelq is the yield stress. In this
model, the material behaves as a solid body until the shear
stress exceeds the yields stress (reaching the critical state)
and large deformations may occur. One of the commonly
used models is the Mohr—Coulomb failure criterion [40], in
which the shear strength of soil is expressed as a combination
of adhesion and friction components

Tyjeld = € + 0y tan @, (19)

where c is the cohesion, ¢ is the internal friction angle, while
oy, is the normal stress. However, it is important to note that
c and ¢ are not fundamental properties of material. Both
depend on the effective stress [41]. However, for the purposes
of the present study, it is sufficient to assume that ¢ and ¢ are
fundamental material constants.

Assuming that o, = p, the final form of the granular
material model takes the form

M < Msolids
M = Wsolid,

" {uoo+(c+ptan¢)/a>, 0,

Mesolids

where [isoliq 1S introduced, due to numerical efficiency rea-
sons, to avoid extremely high values of viscosity, which may
lead to extremely small time steps (due to CFL).
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4 Graphics processor unit implementation

The modern desktop CPUs, such as Intel i7-4790K, have
4 physical cores (8 virtual cores via hyper-threading) with
the base frequency about 4 GHz. For comparison, the mod-
ern desktop GPUs, such as Nvidia GeForce GTX 980, have
more than 2 - 103 cores with the base frequency about 1 GHz.
Therefore, the advantage of using GPU accelerators for HPC
is obvious. The GPU cards were designed to accelerate the
creation of images in a frame buffer to stream them onto a dis-
play, therefore the double precision was not needed for such
atask. Due to this, most of the desktop GPUs are built to sup-
port mainly the single precision calculations. There is a possi-
bility to run tasks in double precision, but, it results in a signif-
icant drop of performance. It is important to note that for the
most applications of the SPH approach the numerical errors
related to the used approximations are much higher than
the truncation errors, therefore, many researchers decided
to perform the SPH calculations using GPUs with the single
precision, see [42-45]. However, since in our case the kine-
matic viscosity of a granular material can change the value
more then 5 orders of magnitude during a simulation, the
single precision is not enough. The influence of the floating
point number precision on the results is presented in Fig. 1.

The problem of the double precision floating point num-
bers in the SPH modeling on GPU has been recently
discussed in [46,47]. To avoid this problem the authors pro-
posed to use such techniques as the cell relative coordinates
(to avoid problems in domains of high aspect ratios) or the
compensated algorithms like Kahan sum (to sum over large
numbers of values). Unfortunately, none of the proposed
algorithms could correct the problem of strongly inhomoge-
neous viscosity in domain. Therefore, in the present work, to
avoid inaccuracies, we decided to perform calculations using
the double precision explicitly. The influence on the numer-
ical efficiency is discussed in Sect. 5.7. For details about the
GPU implementation see [43].

5 Numerical results
5.1 Introduction

The numerical experiments were performed by releasing ini-
tially vertical columns of granular material, see Fig. 2. The
initial height, Hp, was defined by the initial radius ro = 9.7
cm and the aspect ratio parameter

Hy
=

a

2

The material density o was 2.6 g cm ™. The angle of repose
¢ was 30° (except Sect. 5.5). The material was chosen as



Smoothed particle hydrodynamics modeling of granular column collapse

Page50f13 3

(a)
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Single precision

(b)

y [cm]
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x [em]

Double precision
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Fig. 1 2D granular collapse velocity fields [cm s~ atr = 0.35s (@ = 0.55—for details, see Sect. 5.1); the SPH simulations obtained with: a

single precision and b double precision floating point numbers

Ho

e

o

5L

Fig. 2 Initial configuration in 3D

non-cohesive, ¢ = 0. These are properties of dry sand used
in the experiment of Lube et al. [48].

Initially the granular column is placed in the middle of the
base of the rectangular domain of edges (5L, 5L, L) in 3D
or (5L, L) in 2D, where L = 1.8Hj is the domain height.
For a < 0.9 we have chosen L = 10 cm, while for others
L =1.2H,.

The SPH simulations were performed for different aspect
ratios and different numerical resolutions (for the conver-
gence analysis see “Appendix”). In 2D: a = 0.35-9.3,
L/h = 16-64 and h/Ar = 2. In 3D: a = 0.35-9.3,
L/h = 16-32 and h/Ar = 1.5625 (lower than 2D due to
the efficiency reasons). In both cases, we decided to use the
Wendland kernel (to avoid problems with the tensile instabil-
ity). The speed of sound was s = 1000 cms™!. The parameter
oo in Eq. (20) was chosen as a viscosity of water (at 20°C),
0.01g cm~ ! s7!. The viscosity of solid usolig Was chosen as
2000 gcm™! s~!. Due to the efficiency reasons, see Eq. (12),
the value of j150]ig 1S suitably lowered compared with the real
soil. The side effects of such proceedings are negligible. The
calculations were performed using the double precision float-
ing point number with the single precision calculations used
only to benchmark the numerical efficiency in Sect. 5.7.

5.2 Shape evolution

The simplest technique to check whether the proposed model
gives the correct results is to compare the calculated profile
shapes with other numerical and experimental data. In 2D, as
areference data we decided to choose the DEM calculations
obtained by Utili et al. [12]. The obtained results, for aspect
ratios: @ = 0.93 and a = 5.91, are presented in Fig. 3.

For a = 0.93 the SPH results show good agreement
with the reference data. In the case of higher aspect ratio,
a = 5.91, the SPH calculations slightly differ from the DEM
calculations. There are two reasons of this discrepancy: not
quite well chosen parameters of the rheological model and
two different flow regimes for @ = 0.93 and ¢ = 5.91.
In the first regime (lower a) most of the internal parts of
deposit remain undisturbed throughout the motion. In the lat-
ter case, almost the entire column deforms which causes that
the impact of the unsuited viscosity (underestimated (i) 1S
more visible. Direct measurements of the rheological para-
meters should help to obtain more accurate results.

The performed simulations gave very realistic results.
Using the SPH approach, we were able to reproduce the typ-
ical for a < 0.74, see [48], circular discontinuity on the
surface of the column which separates an outer (slumping)
region from a non-deformed inner part of the deposit. For the
column of a = 2.75 the calculated shape evolution of the col-
umn agrees very well with the experimental data presented
in detail in [48] (Fig. 4).

5.3 Run-out distances

One of the most relevant validation criteria for the numerical
model is to try to reproduce the scaling laws for the run-out
distance. The experimental data for the three-dimensional
column was first proposed by Lube et al. [48]:

a<1.7,

a>1.7.

oo — 10 [ 1.24a, 22)

ro 1.6a'/2,
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t/T=0.048
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0.0
1.0

t/T=0.096
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1.0,

t/T=0.144

0.8F

0.6

y/7o

0.4F

0.2¢
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z/7y

a=5.91

t/T=0.12

y/7o

t/T=0.24
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t/T=0.36

y/ro
w

0 1 2 3 4 5 6
z/7y

Fig. 3 The evaluation of profiles for different initial aspect ratios, a, of granular columns (2D); the SPH results compared with the DEM reference

data [12] (solid lines)

Slightly different results were obtained by Lajeunesse et al.
[5] for semi-circular (half of column) initial configuration:

Too — 10 {a, a <3, (23)

ro

Many more empirical and numerical experiments were
performed for granular collapses of the two-dimensional
columns. Lube et al. [49] were releasing a granular columns
confined between two vertical walls. The authors obtained
the following scaling:

a < 2.3,

24
a>2.3. @4

Foo =10 _ 1.2a,
ro 1.94%/3,

Independently Lajeunesse et al. (2005) obtained a similar
result:

Foo — 10 ~ [a, a <3, (25)
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The two-dimensional numerical experiments were performed
by Staron and Hinch [8] who obtained the relation:

oo — 10 {Z.Sa, a <2, 26)

o 3.254%7, a>2.

Many other authors including Zenit [11], Utili et al. [12] who
used the DEM approach and Crosta et al. [14] who performed
FEM simulations obtained fairly consistent results for the
run-out distance.

The obtained results of the relation between the normal-
ized run-out distance and the initial column aspect ratio for
2D and 3D cases are respectively presented in Figs. 5 and
6. As the reference data we decided to plot two- and three-
dimensional experimental solution obtained in Lube et al.
[48,49].

Here we show that in the case of 2D columns the
normalized run-out distances for higher aspect ratios are
slightly overestimated when compared with the experimental
data [49]. In the present SPH approach, we obtained:
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a = 0.55

a=2.75

t=0ms

t=60 ms

t =350 ms (final deposit)

Final deposit (Lube et al., 2004)

(c) 852 ms

Fig. 4 For the 3D model, it was decided to compare the SPH results
with the experimental data by Lube et al. [48]. For validation purposes
we have chosen two different aspect ratios: @ = 0.55 and a = 2.75.
The results are presented in Fig. 4. The evolution of granular material

a < 2.3,
a>2.3.

Foo — 10 1.22a,
—_ —~ 27
ro 1.57a*/3, @7

However, in general, the results show a good agreement with
the reference data.

t=0ms

column for different initial aspect ratios: a = 0.55 and 2.75; the SPH
results compared with the experimental photographs by Lube et al. [48]

In the case of 3D columns, we obtained somewhat less
accurate results compared with the reference data [48]. The
SPH results appear to be underestimated. One reason of such
abehavior is smaller numerical resolution compared with the
2D simulations. The obtained scaling law is:

@ Springer
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12

e e SPH 2D, L/h=32

m m SPH 2D, L/h=64
10+ — SPH 2D, Eq. (27) =
- - Lube et al. (2005) -

(Too - TO)/TO

I

0 2 4 6 8 10 12
a

o

Fig. 5 The non-dimensional incremental run-out distance as a func-
tion of the aspect ratio for two-dimensional results; the SPH solution
compared with two- [49] and three-dimensional [48] experimental data

e e SPH 3D, L/h=16
= m SPH 3D, L/h=32 -
5H — SPH 3D, Eq. (28) 7

-~ Lube et al. (2004) -

Fig. 6 The non-dimensional incremental run-out distance as a func-
tion of the aspect ratio for three-dimensional results; the SPH solution
compared with two- [49] and three-dimensional [48] experimental data

a<1.7,

28
a>1.7. (28)

Foo =10 0.72a,
ro 1.024373,

In both 2D and 3D cases we obtaining the scaling laws by
fitting to the highest resolution SPH results.

5.4 Energy contribution

The potential energy of the column at any time is
Ep =) magha. (29)
a
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where A, is the height of the particle a. The column kinetic
energy can be calculated from

1
Ey = 3 ;mauﬁ (30)

Due to the viscosity, or (in the scale of a single grain)
non-elastic collisions between grains, a part of the poten-
tial energy does not transform into the kinetic energy, but it
gets dissipated

Eqis(t) = Ep(0) — Ep (1) — Ex(1). €1V

At the beginning, the entire energy is accumulated as
the potential energy. As time passes, particles start to fall
downwards with the potential energy being transformed into
the kinetic energy and some heat (dissipation). Figure 7,
left shows the energy evolution of the granular column for
the aspect ratio a = 3.26. In this plot the SPH results are
compared with the DEM simulations obtained in [12]. In
both models the kinetic energy exhibits a peak at about
t/T = 1. The obtained results show small discrepancies
between SPH and DEM, however these differences can be
minimized adjusting the minimal and maximal viscosity in
the considered rheological model.

In order to validate the SPH approach for different values
of the aspect ratio, we decided to compare the total dissi-
pated energy for different values of a calculated using the
SPH method with the DEM simulations [12]. The obtained
results are presented in Fig. 7, right. Both SPH and DEM
models give similar relation between the dissipated energy
and aspect ratio. Small overestimation of the SPH results is
also observed in Fig. 7, left.

5.5 Inclination of the failure plane

According to the Rankine’s theory of earth pressure [50], the
inclination of the failure plane to the horizontal, 6y can be
approximated as:

L4

0 = 45°
f +2

(32)
In order to check whether the SPH approach can correctly
predict the relation (32), we decided to perform three simula-
tions of granular column collapse with different values of the
internal friction angle ¢ = 20°, 30°, and 40°. It is important
to note that values 20° and 40° correspond to the extreme
values observed in nature.

To visualize the inclination angle of the slope failure plane,
we decided to plot the velocity fields using the spectral color
map, see Fig. 8. The presented results were obtained for the
collapsing column of the aspect ratio a = 0.55 at t = 40
ms. In order to compare the SPH results with the theoretical
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Fig. 7 (Left) energy evolution for the granular column of the aspect ratio a = 3.26; (right) total energy dissipated during the flow as a function of
the aspect ratio; energy normalized by the initial potential energy; the SPH result compared with the DEM reference data [12]

predictions (32), we decided to define the failure plane as
a surface with the arbitrary chosen velocity equal to 10% of
maximal value. Particles that move with the velocity between
9.5 and 10.5% of maximal value are marked in black. The
obtained failure angles agree well with the relation (32).
However, we observed two issues. The first is the lower accu-
racy of the failure angles for the smallest value of the internal
friction angle. The second is a small systematic decline of the
6 ¢ values for vary late time steps. One of the reasons of these
issues is the definition of the failure plane, which is arbitrary
chosen. However, in the SPH method the physical fields are
smoothed in the range of &, which makes it ambiguous to
define the failure plane. The other reason, but only for the lat-
ter issue, is a decrease of the height of the deposit caused by
lowered pig01ig (compared with reality) due to the numerical
efficiency, see Sect. 5.1. Similar test performed for different
values of aspect ratios show no vital differences in relation
between 6 and ¢.

5.6 Pressure distribution

Figure 9a presents the pressure field calculated for the 2D
granular collapse test case witha = 0.55 (the velocity field is
presented in Fig. 1). The obtained result shows very high den-
sity fluctuations in the range from —2kPa to 5kPa, while the
highest expected value is about 1.15kPa. This non-physical
pressure fluctuations result from both the use of the weakly
compressible approach and the reduced amount of particles
under the kernel hat in the regions near the free-surface. In
order to remove the observed non-physical pressure pulsa-
tions, we decided to filter out the particles with negative
pressures and those with the pressure exceeding the values

which correspond to the density increase of 5%, see Eq. (11).
The results are presented in Fig. 9b. The application of the
filter revealed that the pressure fluctuations affect only the
regions near the free-surface. The internal part of medium
is free from any non-physical pulsations including the short-
length-scale noise described in [21]. The reason of absence
of the mentioned instability is the stabilizing role of the vis-
cosity which reaches very high values in the regions with low
shear rate strain, see [16,20,21].

5.7 Numerical efficiency

For the performance analysis we decided to use the Nvidia
GeForce GTX980 GPU (2048 cores, 1126 MHz clock, 4
GB of memory). Figure 10 presents the measured Frames
(time steps) Per Second (FPS) as a function of the num-
ber of particles in the domain. In 2D, the use of the double
precision floating numbers decreases the computational time
twice. In double precision the calculations took from about
4 min for about N = 4 - 103 particles up to about 2 h for
N = 2.5-10°. In 3D, the use of the double precision num-
bers decreases performance by factor of 3. For the lowest
used resolution (N = 2.5 - 10%) simulations took about 1
h, while for the highest resolution (N = 1.5 - 10%) about
75 h (double precision). It is important to note that the used
GPU is based on the Maxwell micro-architecture in which
the double precision performance is 1/32 of the single pre-
cision performance. Therefore, the main reason of observed
decrease of the performance with double precision in 3D
(compared with the single precision) is much larger num-
ber of interactions under the kernel hat (larger number of
simple math operations). The difference between the double
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Fig. 8 Active failure state of the granular sample; the results obtained
for three different internal friction angles: a 20°, b 30° and ¢ 40°; the
black markers indicate position of particles that move with the velocity
between 9.5 and 10.5% of maximal value

and single precision performance should be much smaller
using the Kepler micro-architecture (eg. Nvidia Tesla K80
or Nvidia GeForce 700 series) where the double precision
computations are only 4 times less efficient. The numerical
efficiency can be further improved by using more than one
GPU.

6 Conclusions

In the present work, the ability to model granular materi-
als using the SPH method and the visco-plastic model has
been studied. For this purpose, a set of numerical calcula-
tions (in 2D and 3D) of the fundamental problem of the
collapse of initially vertical cylinders of granular materi-
als has been performed. In order to validate the proposed
model, the granular deposit evolution, the run-out distances,
the energy contribution and the inclination of the failure plane
were compared with the analytical, experimental and other
numerical data. The obtained results showed good agree-
ment with the reference data. All the inaccuracies that we
observed during simulations were caused mainly by two fac-
tors: not perfectly matched parameters of the used rheological
model or too low numerical resolution (limited hardware
resources). In order to reduce the effect of particle cluster-
ing (the tensile instability)—the problem signalized in [18],
we decided to suitably choose the kernel function which sig-
nificantly reduces this problem. In fact, the tensile instability
was not observed in the obtained results. Taking advantage of
GPU efficiency, it was possible to run computationally heavy
simulations on the cheap desktop computer. The performed
analysis showed that the single precision of floats is not
enough to correctly perform simulations with the used rhe-
ological model. The double precision calculations increase
the computational effort on GPU, but, the obtained numerical

25

x [cm]

Fig. 9 2D granular collapse (a = 0.55) pressure fields [kPa] at = 0.35s; a the results obtained directly from the presented SPH approach, b the

pressure field subjected to the filtration of non-physical pulsations
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Fig. 10 Number of frames per second as a function of the SPH particles

results for 7/ Ar = 2, b three-dimensional results for 7/ Ar = 1.5625

efficiency is still very high. It is important to note here that for
dry granular materials the methods such as the DEM allow
for much more accurate and efficient calculations. However,
when we consider complex debris flow constituted of rocks
and mud, for which it may be difficult to define the interac-
tion between solid particles, the continuum methods, such as
the introduced SPH, appear to be much more useful. Another
advantage of the SPH approach is its ability to model com-
plex multi-phase flows involving eg. fluid-granular phase
interactions. This work is an intermediate step in a com-
plete project which aims at simulating the interaction of sea
waves and currents with a seabed. The satisfactory results
obtained for the dynamics of dry sand with the simple rhe-
ological model are an encouragement to pursue along that
direction.
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Appendix: Convergence

Although the convergence of the SPH method has been stud-
ied in many papers, e.g. [51,52], the systematic analysis
of the SPH convergence was missing for many years. It
was assumed that the SPH convergence is possible in limit
N — oo and i — 0. But, this was the basis for criticism
of this method. However, the recent empirical verification by
Zhu et al. [53], clearly shows that the numerical convergence
can be obtained with SPH. However, the required computa-
tional cost does not scale with number of particles as O (N)
(expected from mesh-based codes), but rather as O (N 3/2y
(similar to Monte Carlo algorithms). It is important to note
that the formal convergence of the SPH approach is possible
only in the jointlimit N — oo, — 0and N, — o0, where
Nyp is a number of particles under the kernel hat. However,
in our simulations we decided to keep 7/ Ar = const, which
implies N, = const.

In order to assess the maximal smoothing length # which
gives us accurate solution, we decided to perform the basic
convergence analysis. For this analysis, we decided to mea-
sure the error of the run-out distance (L 1-like norm)

ref

Ert(roo) = 2012 (33)

ref
T'so

As the reference solution for the error estimation, the result
of the calculation with the smallest value of % (the highest
resolution) has been chosen. The values 2/Ar = 2 in 2D
and 2/ Ar = 1.5625 in 3D have been chosen to get the best
balance between the accuracy and efficiency, see [25,54].
The obtained results for a = 0.55 are presented in Fig. 11,
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Fig. 11 Left the error of the run-out distance calculation, see Eq. (33) as a function of number of particles; right histograms of the distance between
the nearest particles (L/h = 128 in 2D and 24 in 3D); the results obtained for the aspect ratio a = 0.55; h/Ar = 2.0 (2D) and 1.5625 (3D)

left. In both 2D and 3D solution, the error (33), smoothely
decreases when increasing number of particles in the system.
In our simulations we considered a constant value of 4/Ar,
however, it is important to note that for further increase of
resolution it may also be necessary to increase this parameter.

Another common stability issue of the SPH method is a
particle clustering phenomena, see [24,25,53]. When the par-
ticle clustering occurs, the volume associated with particles
can not be calculated accurately what significantly reduces
the resolution of SPH. In order to verify whether the pre-
sented results do not suffer from the particle clustering, it
was decided to calculate the histogram of distances to the
nearest neighbours r,,;, normalized by the initial particle
spacing Ar, see Fig. 11, right.

The obtained results show that since the maximum number
of particles is shifted to r,,;, / Ar = 0.6—1.0, particles do not
move in clusters. This behaviour is thanks to the properties
of the Wendland kernel, see [25] (Fig. 7) and [53] (Fig. 1)
for reference.
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