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Abstract Granular materials transmit stress via a network of
force chains. Despite the importance of these chains in char-
acterizing the stress state and dynamics of the system, there
is no common framework for quantifying their properties.
Recently, attention has turned to the tools of network science
as a promising route to such a description. In this paper,
we apply a common network-science technique, commu-
nity detection, to the force network of numerically-generated
packings of spheres over a range of interparticle friction coef-
ficients and confining pressures. In order to extract chain-like
features, we use a modularity maximization with a recently-
developed geographical null model (Bassett et al. in Soft
Matter 11:2731–2744, 2015), and optimize the technique to
detect sparse structures by minimizing the normalized con-
vex hull ratio of the detected communities. We characterize
the force chain communities by their size (number of parti-
cles), network force (interparticle forces), and normalized
convex hull ratio (sparseness). We find that the first two
are highly correlated and are therefore largely redundant.
For both pressure P and interparticle friction μ, we observe
two distinct transitions in behavior. One, for μ � 0.1 the
packings exhibit more distinguishability to pressure than
at higher μ. Two, we identify a transition pressure P∗ at
which the frictional dependence switches behaviors. Below
P∗ there are more large/strong communities at low μ, while
above P∗ there are more large/strong communities at high
μ. We explain these phenomena by comparison to the spa-
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tial distribution of communities along the vertical axis of the
system. These results provide new tools for considering the
mesoscale structure of a granular system and pave the way
for reduced descriptions based on the force chain structure.
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1 Introduction

For more than half a century, it has been common to visualize
the heterogeneous force transmission in granular materi-
als [2–4]: these patterns have come to be known as force
chains. It has been less clear, however, how best to provide
a mesoscale description of this network of interparticle con-
tacts. A better understanding of the important length scales
over which intermediate structures are present would provide
new routes to connect particle-scale properties to bulk prop-
erties. In this paper, we take the growing field of network
science as our inspiration [5]. Network techniques can be
applied to such varied systems as social networks, neural sys-
tems, or airline route maps: anything which can be reduced to
a network of nodes and the edges (links) that connect them.
In the sphere packings studied here, the packing, along with
its interparticle forces, is abstracted as a force network. This
network comprises two parts: (1) a set of nodes, one for each
particle in the system and (2) a set of edges connecting those
nodes, with one edge (weighted by the normal contact force)
for each interparticle contact.

The use of network science techniques has attracted sig-
nificant attention in the past few years, particularly as a way
to extract the “backbone” of the system, as well as to iden-
tify the particles that are most important for stabilizing the
system. Ultimately, it would be possible to follow the evo-
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lution of those networks under loading. By considering the
entire network [1,6–9] it is possible to extract statistics about
the degree of connectivity among the particles, and how that
influences the bulk response.

One approach has been to define the main network based
on a set of rules about how particles in a force chain should
be connected. For example, Peters et al. [10] and Zhang et
al. [11] define the backbone by setting a threshold value
for contact forces and the angles between particles, while
Kondic et al. [12] use a topological invariant called the zeroth
Betti number [13] to characterize the size of connected clus-
ters. A disadvantage of these approaches is that thresholding
strictly removes the weak interparticle contacts from con-
sideration, even though these forces are thought to play an
important role in providing lateral stability [14]. To avoid
automatically removing all weak forces, it is possible to use
community-detection techniques [15,16] that allow for opti-
mized partitioning into clusters without a hard threshold. For
example, Navakas et al. [17,18] and Bassett et al. [9] iden-
tified force clusters which have stronger interparticle forces
within each cluster than between them. However, the force
chain communities detected in this way take the form of
compact domains rather than sparse networks. Therefore,
the communities obtained using this earlier method do not
seem to provide the best mesoscale description of the force
network, either to explain sound propagation [19] (observed
to be along force chains) or the changing network of con-
tacts under flow [20] (they form a giant component of broken
links).

Recently, Bassett et al. [1] recognized that community-
detection algorithms which depend on a random null model
miss an important aspect of granular materials: that grains
are geographically constrained to be connected only to their
neighbors. By working with a new null model that respects
these geographic constraints, the detected communities take
the form of the expected sparse (branched, chain-like) struc-
tures. This new geographical null model, when applied
to either simulated (frictionless) or laboratory (frictional)
packings of disks, was able to successfully distinguish the dif-
ferent force chain morphologies of the two distinct datasets.

In this paper, we adapt this new technique to perform a
similar community detection in simulations of 3D granular
packings, and examine how these communities system-
atically change as a function of confining pressure and
interparticle friction. By using simulations, we can test the
methods in a controlled environment where it is possible to
generate many independent realizations. Increasingly, such
data is becoming available in 3D granular experiments [21–
23], in the form of normal contact forces measured from the
macroscopic deformations of soft particles.

The community detection method consists of two steps,
modularity maximization to partition the network into clus-
ters (communities), and selecting a resolution parameter

which controls the total number and shape of these clusters.
To perform the maximization, we use the same geographic
null model as in Bassett et al. [1], allowing us to incorporate
contact information. In selecting a resolution parameter, we
found that the previous technique [1] was inadequate for 3D
systems. Therefore, we developed a new figure of merit to
quantify the degree of sparseness within the communities,
based on the convex hull of the constituent particles.

When the process is complete, each packing is partitioned
into a set of communities. We observe that these communities
typically have sparse, branching form, with many interstitial
communities consisting of only a few weak-force particles.
We characterize the ensemble of communities by their size,
strength, and degree of sparseness, as a function of both
interparticle friction and pressure. Both friction and pres-
sure influence the network properties of force chains, and we
observe transitions in community properties as a function of
both parameters.

2 Simulation methods

We perform our numerical simulations using the discrete
element model LAMMPS (Large-scale Atomic/ Molecular
Massively Parallel Simulator) [24] maintained by Sandia
National Labs. This open-source software is based on a fast
parallel algorithm [25] for molecular dynamics. Our sim-
ulations contain N = 3000 bidisperse spheres of mass m
poured from above, half of diameter d and half of diameter
1.4d. The simulation cell has lateral dimensions 15d × 15d
(periodic boundary conditions in both directions) and height
26d (open at the top, closed at the bottom) with grav-
ity acting downwards. To model a hard, frictional granular
material, we use a Hertzian contact model with a normal
elastic constant Kn = 2 × 105 and a tangential elastic
constant Kt = 2

7 Kn . (These values approximately corre-
spond to ruby spheres [26] of centimetric size, determined
by re-dimensionalizing with appropriate physical and mater-
ial parameters.) We vary the interparticle friction coefficient
over seven values μ = 0, 0.01, 0.03, 0.1, 0.3, 1, 3 to exam-
ine the dependence of our results on interparticle friction.

2.1 Preparation protocol

We mimic experimental protocols in which particles are
poured into a box from above, and then compressed via a
uniform pressure. Our numerical pouring method, adapted
from Silbert et al. [27], mimics pouring particles through a
sieve (to prevent the formation of a conical heap) by generat-
ing particles at random positions at the top of the simulation
volume and allowing them to fall downward under the force
of gravity. We select a very low packing fraction φi = 0.005
for this insertion region, so that the resulting mean coordi-
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P=0 P=10-6 P=3×10-5(A)

(B)

Fig. 1 a Sample particle configurations generated using LAMMPS,
with small particles (diameter d) shown in blue and large particles
(1.4d) shown in yellow. In subsequent steps, we apply pressure from
above using a flat slab. b Corresponding normal force networks, with
bar thickness proportional to the normal force magnitude (color figure
online)

nation number c̄ = 5.5 is independent of the choice of φi

[28]. After inserting all particles into the container, we allow
the kinetic energy to dissipate until it is less than 10−8 mgd
(where g is the gravitational acceleration) [27].

2.2 Compression protocol

For each such initial packing, we apply pressure by gener-
ating a massless slab (size 15d × 15d × 2d, FCC lattice, as
shown in Fig. 1) at the top of the packing. From this ini-
tial state (compressed by gravity, but no additional pressure)
we apply an increasing series pressures (P = 0, 10−6, 3 ×
10−6, 10−5, 3 × 10−5, 10−4, measured in units of Kn) to the
upper surface of the resulting packing. The magnitude of the
non-dimensionalized confining pressure is just below those
reported in recent experiments on softer particles [29]. After
the kinetic energy of the system has again dissipated under
the same criterion as in the preparation protocol, we record
all position and force measurements. This process repeats for
each successive pressure value, recording all particle posi-
tions and interparticle forces at each step. Sample normal
force networks are shown in Fig. 1.

2.3 Testing friction-dependence

For each of the 7 values of μ, we perform 20 independent
simulations starting from different random initial conditions.
We use a bootstrap-like process (sampling with replacement)
to confirm that this is sufficient for reliable statistics. In
a few places, noted within the text, the fluctuations were
large enough that this criterion was not satisfied. In all of

our analyses, we consider only the normal component of the
interparticle forces, as is currently measured in experiments
[21–23]. This simplification also allows us to directly com-
pare both frictionless and frictional packings. In total, this
amounts to 7 × 20 = 140 different simulations runs. Each
of these 140 runs provides data at 6 values of P , via the
compression protocol.

3 Community detection

Community detection [16] is a common problem in network
science, with a goal of locating clusters of nodes which are
more strongly connected to each other than to nodes in other
communities. In many cases, these individual communities
form quasi-independent subunits of the network. In our gran-
ular systems, our goal is therefore to partition the granular
packing into communities of particles which have high inter-
particle forces internally (locally stiff) and low interparticle
forces in their connections to other communities. We build
on the work of Bassett et al. [1,9], which utilizes the open
source network analysis tool GenLouvain (Version 2.0)
from NetWiki [30] to implement the modularity maximiza-
tion method [31] of community detection.

The network analysis begins from a representation of the
normal force network (Fig. 1b) as an N × N weighted adja-
cency matrix W. Each element Wi j is the normal contact
force between particle i and particle j : zero for particles not
in contact, and fi j/ f̄ for all non-zero interparticle forces
(scaled by the mean normal force f̄ for the whole packing).
The modularity Q of a network is a scalar value calculated
from

Q =
∑

i, j

[
Wi j − γ Pi j

]
δ(ci , c j ) (1)

where γ is a resolution parameter, Pi j is the expected weight
of an edge due to a specific null model (to be chosen by the
user), ci and c j are the (numbered) community assignments
for particle i and j , and δ is the Kronecker delta function.
If particles i, j are assigned to the same community, then
δ(ci , c j ) = 1, otherwise δ(ci , c j ) = 0. The optimization
process adjusts the community assignments for fixed γ and
fixed null model. As developed in Bassett et al. [1], we utilize
a physically-motivated geographic null model in which par-
ticles connect to a community through their direct neighbors:

Pi j =
{

1, Wi j �= 0,

0, Wi j = 0.
(2)

We chose not to use the more common Newman–Girvan null
model [31] which allows for arbitrary connections between
particles [9,17] because in 2D packings of disks, the geo-
graphic null model has been shown to successfully generate
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communities with chain-like morphologies [1] (rather than
compact domains).

Because modularity maximization (finding the largest
value of Q) is an NP-hard problem, the published methods
[30] use a greedy heuristic algorithm. To test the stability of
this method, we run this algorithm 100 times on the same
force network and find that the fluctuation of maximal value
of the modularity Q is within 1%. In addition, we observe that
the 15 largest communities consist of the same core group of
particles: 70% of the same subset of particles are included in
90% of the iterations. We additionally find that fluctuations
in Q are not accompanied by fluctuations in the morphology
of the detected communities (to be quantified in Sect. 4.2).

The choice of resolution parameter γ controls the total
number of communities identified, and also their morphol-
ogy. For γ < 1, optimizing Q favors large communities,
while for γ > 1 small communities dominate. To select the
optimal value of γ , we seek a figure of merit which quan-
tifies the extent to which the detected communities take on
a chain-like character: branched and sparse. We found that
the technique used by Bassett et al. [1] for 2D packings was
ineffective in 3D systems. We therefore define a new figure
of merit, the normalized convex hull ratio Hc

Hc = Vp

Vhull
(3)

where Vp is the total volume of particles in the community
and Vhull is the volume of the convex hull of the community.
Sparse communities will have lower values of Hc. To calcu-
late Vhull, we discretize each sphere as a 7×7 matrix of points
and determine the convex hull using the Matlab boundary
function. Figure 2 shows example convex hulls.

Figure 3 shows two examples of intermediate-size com-
munities, shown in isolation to make them more visible. Note
the chain-like structures dominating the communities, pro-
viding a sparse structure with a low hull ratio. The interstices
of such communities can be filled either by smaller com-
munities, or by intercollated communities which are also
branched. Therefore, we use the term “sparse” to collectively
refer to all of these properties.

For each packing, we calculate the mean hull ratio H
by averaging the measured Hc weighted by the number of
particles in each community, excluding communities which
contain only one particle. To determine the optimal value
of γ to use in our analysis, we measure how H changes
as a function of γ across a range of pressures. As shown
in Fig. 4a, there is a clear minimum value of H which is
approximately consistent across different values of P . Our
choice of γ is further guided by examining histograms of
the community size at different values of γ ranging from 0.5
to 2.2. We find that for γ < 1.0, the community-detection
algorithm places the majority of the particles into a single

Fig. 2 Five example communities (γ = 3) and their convex hulls, for a
packing at with μ = 0.3 and P = 10−4. Only communities containing
more than 10 particles are shown

Fig. 3 Examples of two medium size communities. Resolution para-
meter γ = 1.1. μ = 0.3. P = 10−4

(very large) community. For γ > 1.4, the size-distributions
become narrower, with most communities being very small.
This behavior is illustrated by the examples in Fig. 4b, and
neither situation is useful for the characterization of network
properties. Between γ = 1.0 and 1.4, we observe that the
histograms are qualitatively consistent with each other, but
that choosing a low value of γ from this range is best at
capturing system-scale network features. Therefore, in the
analysis below we utilize γ = 1.1 in all cases.

The effect of changing γ can be understood by examining
the contribution each community makes to the modularity
Q. As previously defined [1], the network force

σc =
∑

i, j∈C
[Wi j − γ Pi j ] (4)
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Fig. 4 a Average hull ratio H as a function of resolution parameter
γ for various pressures, with μ = 0.3. b Community detection results
from selected pressures and γ (0.4, 0.8, 1, 1.2, 3). The color scale for
each packing ranges from zero (deep blue) to its maximum value of σc
(red); many blue particles are of similar color, yet do not belong to the
same community. The list of σmax from low γ to high γ at P = 0 is:

1.7 × 106, 2.4 × 106, 1.9 × 106, 6.5 × 105, 7.5 × 104. The list at P =
3 × 10−6 is: 1.4 × 106, 2.3 × 106, 7.0 × 105, 4.8 × 105, 9.0 × 104. The
list at P = 10−4 is: 9.0×105, 1.6×106, 8.0×105, 6.8×105, 1.6×105.

For clarity, communities with only 1 particle are hidden (color figure
online)

is the contribution to Q (Eq. 1) from only the particles located
in a particular community C . Its value increases due to both
the normal forces in the community being large, and from
the size (number of nodes) Sc in the community.

In Fig. 4b, the individual communities are colored by their
particular network force σc. Here, we qualitatively explain
these results. For small γ , the Wi j term dominates the sum in
Eq. 1, If γ is small enough that Wi j −γ Pi j is mostly positive,
then Q is maximized by making δ(ci , c j ) nearly always 1
(putting many particles in the same community). For larger
γ , the null model Pi j will have more influence on the chosen

communities, and the particular geometry and interparticle
forces matter. If γ is large enough that Wi j − γ Pi j is always
negative, then the optimal Q is zero by letting all δ(ci , c j ) be
zero. In that case, the optimum value of Q is obtained when
each community contains only a single particle.

For the special case where γ = 1, contact forces between
particles (Wi j ) are directly compared with the average con-
tact force (Pi j , the geographic null model) in the system. The
modularity Q is increased when more particles with multiple
contact forces greater than f̄ are included in the same com-
munities (force chains in our sense). The choice of γ = 1 is
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μ=0 μ=0.01 μ=0.03

μ=0.1 μ=0.3

μ=1 μ=3

0

σmax

Fig. 5 Community assignments at all 7 values of interparticle friction
μ and P = 10−4. Color indicates the network force σc of each com-
munity. The color scale for each packing ranges from zero (deep blue)
to its maximum value of σc (red). The list of σmax from μ = 0 to 3 is:
3.0×105, 4.7×105, 4.6×105, 6.5×105, 6.0×105, 2.1×106, 2.2×106.

Note that blue particles are all small communities of similar strength,
not a single large community. Single-particle communities are hidden
for clarity (color figure online)

similar to finding force chains by thresholding at a minimum
force, often set to be f̄ . However, in contrast with threshold-
ing methods, the modularity maximization method is flexible
rather than binary: an edge is not kept or discarded from a
community based on a strict threshold.

4 Results

Using these community detection methods, we describe how
the force chain network changes as a result of both interparti-
cle friction μ and confining pressure P . For each community,
we consider three properties: its size Sc, network force σc
(community strength), and hull ratio Hc (community mor-
phology). In all cases, community-detection is performed at
fixed resolution parameter γ = 1.1, chosen as a compromise
value for the whole parameter regime (see Sect. 3 for details).

4.1 Community size and strength

To illustrate the methods, we first examine sets of 20 configu-
rations, all with P = 10−4, performed for all seven μ values.

103 104 105 106

σc

100

101

102

103

S c

Fig. 6 Scatter plot of community size Sc and network force σc, with
each point representing a single community. Data is from a single sim-
ulation with μ = 0.3 and P = 10−4, and the solid line is a least squares
fit to the logarithm of the data points: Sc ∝ σ 0.748±0.005

c (exponent
reported with 95% confidence interval.) Similar results were observed
for all values of μ, P

In Fig. 5, sample community assignments are shown. At low
values of μ (top row), small communities dominate, while at
large values of μ, there is typically a single large community
near the top and many smaller and weaker communities at
the bottom. (Typicallly, many low-σc communities all have
similar values of σc and thereby appear (by color) to be the
same community, although they are not. These communities
contribute little to the optimization of Q by Eq. 1, and are
not part of the backbone we are seeking to identify.) This
μ-dependence is similar to prior work on the effect of fric-
tion coefficient μ on jamming properties of packings [32]
in which the bulk packing fraction and coordination number
gradually decrease as μ increases from 0 and they saturate
when μ is larger than 1. This saturation is also reflected in
the cumulative distribution figures we examine below.

As shown in Fig. 6, we observe that Sc and σc obey
an approximately linear relationship on a log-log scale, as
illustrated by the solid trendline. For all values of μ and P
examined, a fit to this exponent gives a relationship consis-
tent with Sc ∝ σ

3/4
c . Since the mean pressure was already

normalized in writing the weighted adjacency matrix W, we
do not expect a trend in the magnitude of σc.

4.1.1 Friction-dependence

To understand the friction-dependence, we consider the com-
plementary cumulative distribution function (CCDF) of both
Sc and network force σc as a function of μ at fixed P . As
shown in Figs. 7 and 8, both quantities show similar behav-
ior, as expected given the strong correlation show in Fig. 6.
For large μ, we observe an approximately exponential dis-
tribution (see dashed lines in Figs. 7, 8 for a comparison).
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Fig. 7 Comparison of the complementary cumulative distribution of
community size Sc as a function of μ, where each plot represents the
average over 20 simulations at each P . The dashed line in the P =
P∗ = 10−5 plot provides a comparison to an exponential distribution
of the form CCDF ∝ e−Sc/s , with s = 123
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Fig. 8 Comparison of the complementary cumulative distribution of
network force σc as a function of μ, where each plot represents the
average over 20 simulations at each P . The dashed line in the P =
P∗ = 10−5 plot provides a comparison to an exponential distribution
of the form CCDF ∝ e−σc/λ, with λ = 5.8 × 105

Remarkably, the steepness of the distribution as a func-
tion of μ has opposite trends at low and high pressure:
For P � 10−5, the CCDF steepens as μ increases (fewer
large/strong communities), while for P � 10−5, the CCDF
instead steepens as μ decreases. Thus, P∗ ≈ 10−5 represents
a transition value between two distinct behaviors. Below, we
will explore how the heterogeneity of forces (shown illustra-
tively in Fig. 5) causes this effect.

4.1.2 Pressure-dependence

Figures 9 and 10 show the same CCDF data, rearranged
to highlight P-dependence at fixed μ. This configuration
highlights the existence of a low-friction regime distinct
from the frictional regime, with a transition near μ∗ ≈ 0.1.
For μ < μ∗, the CCDFs become much steeper as P is
increased. This indicates that the system’s forces are becom-
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Fig. 9 Comparison of the complementary cumulative distribution of
community size Sc as a function of P , where each plot represents the
average over 20 simulations at each μ. The dashed line in the μ = 0.3
plot provides a comparison to an exponential distribution of the form
CCDF ∝ e−Sc/s , with s = 356 The final plot shows how the mean
community size 〈Sc〉 changes as a function of pressure, for different
values of μ

ing more homogeneous at high pressure, as expected [33,34].
In contrast, simulations performed at μ > μ∗ (the fric-
tional regime) show only weak pressure-dependence, with
the large-σc tails fluctuating. This may be due either to insuf-
ficient statistics, or to changes in the heterogeneity of the
system, to be discussed in the next section. In addition, sys-
tems under higher P are more sensitive to the coefficient of
friction in their formation of communities of different sizes.

These CCDFs of Sc and σc are similar to those observed
in a previous study of force chains in 2D systems [1] using a
similar community-detection technique. There, the commu-
nity size distribution was also exponential (see dashed lines),
and here we found that the network force was exponential
as well. In addition, both studies saw that communities are
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Fig. 10 Comparison of the complementary cumulative distribution of
network force σc as a function of P , where each plot represents the
average over 20 simulations at each μ. The dashed line in the μ = 0.3
plot provides a comparison to an exponential distribution of the form
CCDF ∝ e−σc/λ, with λ = 7.2 × 105

more compact at high pressure. This pressure-dependence
is in contrast to the work of Navakas et al. [17], in which
it was observed that community size increases as pressure
increases. A key distinction between the two studies is the
choice of null model: they used the standard Newman–Girvan
null model [31,35] rather than a geometric null model [1],
resulting in domain-like communities.

4.1.3 Network homogeneity

We have observed that there is a transition in community
size and strength for both pressure (P∗ ≈ 10−5) and friction
(μ∗ ≈ 0.1), and that this effect appears to be connected to the
homogeneity of the force network. To examine this in more
detail, we consider the vertical gradient in the community size
Sc and its relationship to the relative importance of horizontal
versus vertical forces.

Figure 11 shows the spatial distribution of average com-
munity size 〈Sc〉 as a function of the vertical position z within
the sample, for each pair of (μ, P) parameters. Averages
are calculated on the particle-scale: within horizontal slice
of thickness d, we average the Sc of all particles whose
centers are within that bin. We observe that the plots fall
into three distinct types: negative slope (colored red, largest
communities at the bottom), an almost vertical distribution
(colored yellow, community size evenly distributed), and

Fig. 11 Vertical distribution of average community size 〈Sc〉 at all val-
ues of μ and P settings, averaged over all 20 simulations. All axis
scales are the same. Background colors indicate the slope of the plot:
red for negative slope, blue for positive slope, and yellow for uniform
community size (color figure online)

positive slope (colored blue, largest communities at the top).
As expected from Fig. 6, the corresponding plot for σc is very
similar (not shown).

Note that the most homogeneous communities approxi-
mately correspond to the P∗ = 10−5 transition visible in
Fig. 7, suggesting that spatial gradients are important. For
μ > μ∗, the largest pressures used were able to reverse the
gradient, moving the largest gradients from the bottom to
the top of the packing. Note that these two kinds of gradi-
ents distinguish the similar-width distributions at P = 0 and
P = 10−4 in Fig. 9 when μ > μ∗. This non-monotonic
dependence of heterogeneity on pressure was unexpected.

To understand how this effect arises, we consider the
relative importance of horizontal and vertical normal inter-
particle forces as a function of z. As done for 〈Sc〉, we
calculate the particle-scale average of the horizontal and ver-
tical components of the vector normal force f . As shown in
Fig. 12, the interparticle forces mostly increase with depth
(i.e. have negative slope), as would be expected for gravi-
tational loading (no additional external pressure). However,
due to the periodic boundary conditions in the lateral direc-
tion, the forces cannot saturate due to the Janssen effect [36].
This gravitation-loading regime approximately (P < P∗)
corresponds with the red-shaded plots in Fig. 11, and is also
visible in the middle column of Fig. 4b, where a big, strong
community forms at the bottom part of the packing. In con-
trast, for P > P∗ the forces are more spatially homogeneous;
similar effects have been seen by Makse et al. [33,34]. For
high P and μ, the vertical and horizontal forces first become
more uniform with depth, but eventually develop an excess
of horizontal forces at the top of the packing; this is echoed
by the blue-shaded plots in Fig. 11. This high-force regime
also corresponds to the large communities shown in the bot-
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Fig. 12 Vertical distribution of average (vertical, horizontal compo-
nents of the) normal force f at all values of μ and P settings, averaged
over all 20 simulations. All axis scales are the same

tom row of Fig. 5. In the intermediate regime between these
two extreme cases, we observe that the community-size dis-
tributions are quite homogeneous (the yellow-shaded plots
in Fig. 11). This regime does not precisely correspond with
the most homogeneous force distributions shown in Fig. 12,
suggesting that community-detection is sensitive to small
changes in the interparticle forces.

4.2 Community morphology

While visual inspection of force chain morphology is possi-
ble in 2D systems, it is harder to observe such changes within
3D systems (see Fig. 1). To address this difficulty, we turn to
the geographical null model (Eq. 2) to detect the communi-
ties of particles which form the backbone of the system; the
characteristics of these communities then provide a means to
quantify changes in the force chain network. For morphol-
ogy, the key characteristic is the hull ratio Hc (Eq. 3), which
measures the degree to which the communities are sparse. In
this section, we characterize how Hc changes as a function
of μ and P . As shown in Fig. 13, we observe that the largest
communities are also the most sparse (low Hc). An exception
to this trend occurs when a large, strong community forms at
the top of packing (the blue-shaded plots in Fig. 11), which
is not sparse.

Figure 14 shows the complementary cumulative distribu-
tions of hull ratio Hc, organized by pressure. Because �90%
of the communities contain only a single particle, we have
assigned these communities the arbitrary value Hc = 0, and
excluded them from calculations of the average hull ratio
(including in Fig. 4). This causes the maximum value of
the CCDF (at Hc = 0) to be at 0.1 or lower, instead of 1.
For P � P∗, we observe that the cumulative distributions
are sensitive to μ; below P∗, they are μ-independent. In

Hc
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S
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Fig. 13 Scatter plot of hull ratio Hc as a function of community size
Sc for a single simulation at P = 10−4 and μ = 0.3. Values of Hc > 1
are possible because we approximate spheres as polyhedra in finding
the convex hull
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Fig. 14 Comparison of the complementary cumulative distribution of
hull ratio Hc as a function of μ, where each plot represents the average
over 20 simulations at different P . Low Hc values correspond to sparse
communities, while high Hc values correspond to dense communities

the μ-dependent regime, we see that larger frictional forces
contribute to finding more chain-like communities (low Hc).
Conversely, it is also true that for high μ, the CCDF of Hc

is more sensitive to P than at low μ. This is consistent with
studies in two dimensions [1], where the community shape
for a frictionless packing was less sensitive to pressure than
in frictional packings.

5 Conclusions

In this paper, we have shown that community detection meth-
ods can be successfully applied to 3D granular materials.
We define a new quantity, the hull ratio, which characterizes
the degree of sparseness within a community. This quantity
allows us to optimize the community detection process by
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identifying a resolution (γ = 1.1) where we detect the spars-
est communities. This resolution is in approximate agreement
with observations in 2D granular systems [1], where they
identified γ = 0.9, and is sensible given the normalization
of the weighted adjacency matrix W.

For packings generated over a range of interparticle
friction μ and pressure P , we characterize the detected com-
munities in terms of their size, network force, and hull ratio.
The first two are found to be largely redundant, and all three
depend on μ and P . We find that, as in 2D systems [1], the
size and strength exhibit approximately exponential distri-
butions. Using these measures, we observe that there is a
transition in community size and strength for both the pres-
sure (P∗ ≈ 10−5) and friction (μ∗ ≈ 0.1). In addition, this
effect appears to be connected to the homogeneity of the
force network.

It is our hope that this technique will prove useful for inves-
tigating the statistical properties of force chain networks,
by identifying the most important communities of particles.
While we have not included tangential forces in this study, we
anticipate that they will play an important role in addressing
questions of mechanical stability.
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