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Abstract We study the impact fragmentation of disordered
solids by means of a discrete element model focusing on the
velocity and mass-velocity correlation of fragments. Simula-
tions are performed with plate-like objects varying the plate
thickness and the impact velocity in broad ranges. Depending
on the impact velocity the breakup process has two different
outcomes: at low velocities the sample gets only damaged,
to achieve fragmentation, where no large residues survive,
the impact velocity has to surpass a critical value. In the
fragmented phase the velocity components of fragments are
power law distributed with a stretched exponential cutoff,
where the impact velocity and plate thickness mainly control
the standard deviation of the distributions. Mass velocity cor-
relation is only pointed out for thin plates, while it disappears
for three-dimensional bulk samples. In the damage phase of
thin plates the mass and velocity of fragments proved to be
strongly correlated, however, in the fragmented phase corre-
lation occurs in the vicinity of the critical velocity and it is
limited to the large fragments only. The correlation function
decays as a power law with different exponents for small and
large fragments in good agreement with recent experimental
findings. We show that the mass-velocity correlation origi-
nates from the spatial dependence of the mass and velocity
of pieces inside the fragmenting body.
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1 Introduction

Energetic loading of solid bodies such as explosion, colli-
sion, or impact leads to sudden disintegration into a large
number of pieces [1,2]. Such fragmentation processes are
abundant in nature, from the collapse of rock walls through
the pyroclastic activity of volcanic eruptions to the breakup
of glaciers [3] several geological examples can be mentioned
[4]. In particular, the impact induced fragmentation of solids
plays a crucial role in the evolution of asteroids in the Solar
system: during their history asteroids have undergone a large
number of collisions with different energies ranging from
crater creation to a high degree of shattering [5]. Breakup
processes are also exploited by the industry, i.e. the con-
trolled fragmentation of heterogeneous brittle materials has
a high importance in mining and ore processing where a cer-
tain degree of size reduction has to be achieved with moderate
energy costs [2,4].

During the past decades research on fragmentation mainly
focused on the statistics of fragment sizes/masses which
revealed that these quantities are power law distributed with
universal exponents [6–15]. Recently, it has been pointed out
that the shape of fragments obeys also scaling laws with a
high degree of robustness [16–18]. However, it often occurs
that to infer the consequences of fragmentation events, more
detailed information is needed about the fragments going
beyond the description of their size, mass, and shape. For
instance, the time evolution of fragment clouds after aster-
oid impacts can only be determined based on the velocity of
the created pieces [5]. Similar problem occurs at the sudden
collapse of rock walls or landslide triggered rock avalanches
[19,20] where knowledge on the velocity of fragments is
essential to quantify the secondary fragmentation of pieces
and to estimate the run-out distance and destruction power
of the avalanche [19,20].
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A large number of laboratory experiments have been per-
formed on various types of heterogeneous materials using
high speed imaging techniques to determine the speed of
fragments [21–24]. Some experiments revealed a power law
correlation of the mass and velocity of fragments, i.e. the
average velocity of fragments was found to decrease as a
power of their mass [21–23]. However, other studies found
weak or even no correlation [24,25] and pointed out the prob-
lem of incomplete experimental information caused by the
missing fragments, not captured by imaging, which bias the
results [25].

In the present paper we study the impact fragmentation of
disordered solids based on a three-dimensional discrete ele-
ment model with the aim to analyze the velocity distribution
and the correlation of the mass and velocity of fragments.
Realistic simulations allow us to overcome the limitations of
experiments providing access to all details of the fragment-
ing system. In order to understand how the geometry of the
sample affects the velocity of the generated fragments, sim-
ulations were carried out for the breakup of plate-like solids
embedded in the three-dimensional space varying the thick-
ness of the sample from quasi two-dimensional thin plates
to three-dimensional bulk. Analyzing the spatial arrange-
ment of fragments we could also get an insight into the
origin of the mass-velocity correlation of fragments. Our
results provide a possible explanation for recent experimen-
tal findings on the fragmentation of heterogeneous brittle
materials.

2 Discrete element simulation of impact
fragmentation

Recently, we have worked out a discrete element model
of heterogeneous materials in three dimensions [26,27].
The model has been successfully applied to investigate the
compressive failure of sedimentary rocks [26,27] and frag-
mentation processes due to impact [15]. Here we briefly
review the main ingredients of the model construction focus-
ing on the specific features relevant for the present study.

In the model the sample is represented as a random pack-
ing of spherical particles with a uniform distribution of the
diameter d in a narrow interval Δd around the average 〈d〉
with Δd/ 〈d〉 = 0.05 [15]. Cohesive interaction is provided
by beams which connect the particles along the edges of
a Delaunay triangulation of the initial particle positions. In
three dimensions (3D) the total deformation of a beam is cal-
culated as the superposition of elongation, torsion, as well
as, bending and shearing [28]. Cracks are formed when over-
stressed beams break according to a physical breaking rule.
The breaking condition takes into account the stretching and
bending of beams [29–31]

(
εi j

εth

)2

+ max(Θi ,Θ j )

Θth
≥ 1, (1)

where the two parameters εth and Θth control the relative
importance of the corresponding breaking modes. In Eq. (1)
εi j denotes the axial strain, while Θi , and Θ j are the bend-
ing angles of the beam ends between particles i and j . The
interaction of contacting particles which are not connected
by beams is described by the Hertz contact law [28]. In the
model there is only structural disorder present: the breaking
thresholds εth and Θth are constants, however, the physical
properties of beams are determined by the random particle
packing. The energy stored in a beam just before breaking is
released in the breakage giving rise to energy dissipation. At
the broken beams along the surface of the spheres cracks are
generated inside the solid and as a result of the successive
beam breaking the solid falls apart. The time evolution of
the fragmenting solid is obtained by solving the equations
of motion of the individual particles until the entire system
relaxes meaning that no beam breaking occurs during some
hundreds of consecutive time steps and there is no energy
stored in deformation.

In the present study we use the model to investigate the
impact induced breakup of plate-like bodies. The overall lay-
out of the samples is the same as in Ref. [15]: plate-like
samples were constructed with a rectangular basis of side
length L and height H . All simulations were carried out with
the linear extensions L = 30 varying the sample height in
the range H = 3–15 measured in units of the average particle
diameter 〈d〉. For the microscopic parameters of the model,
i.e. for the elastic parameters of the particles, beam element
the same values were used as in Refs. [15,26,27], which rep-
resent a random heterogeneous material with quasi-brittle
macroscopic response.

Impact loading was realized in such a way that a single
surface particle was selected in the middle of one of the side
walls of the sample, which together with its contacting neigh-
bors got an initial velocity v0 pointing towards the center of
mass of the body. This loading condition provides a good
representation of impact loading where a stopper prevents
the penetration of the impactor into the target [24,32,33],
or the explosion of a contact charge is applied to generate a
stress pulse on the surface of the sample [34]. In the present
study a large number of simulations were carried out varying
the impact velocity v0 in a broad range from damaging the
sample around the impact point to a high degree of shattering.

Fragments are identified in the final state of the time
evolution as clusters of particles connected by the surviv-
ing beam elements. To characterize individual fragments we
determined their mass mi and velocity vector vi in the final
state, furthermore, their position r0

i in the initial state inside
the original body. The mass of a fragment is simply obtained
as the sum of the mass mp

j of its particles of index j
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Fig. 1 (Color online) Time evolution of the fragmentation process of
a plate of thickness H = 5. Beams are colored according to their defor-
mation so that the elastic wave is visible in (a) then the solid gradually
breaks up in (b) and (c). Particles of different fragments have randomly
selected colors. In (d) the body is reassembled to have a better view on
the spatial arrangement of fragments and on the structure of cracks. The
coordinate system used in the calculations is illustrated in (a) where the
x (red), y (green), and z axes are aligned with the impact velocity and
with the edges of the body, while the origin is fixed to the impact site

mi =
ni∑
j=1

mp
j , (2)

where ni denotes the number particles of fragment i . The
center of mass position r0

i and velocity vi of fragments are
calculated as

r0
i =

∑ni
j=1 m

p
j r

p0
j

mi
, (3)

vi =
∑ni

j=1 m
p
j v

p
j

mi
, (4)

where rp0
j and vp

j are the position of particle j in the initial
state and its velocity in the final state of the process, respec-
tively.

A representative example of the impact induced break-
up of a sample of H = 5 is shown in Fig. 1 for an impact
velocity where a high degree of shattering is achieved. In
Fig. 1d the final reassembled sample is presented where all
particles are put back to their position inside the original
body where the fragment positions r0

i are determined. This
representation of the data facilitates to observe the spatial
structure of cracks. We carried out simulations to determine
the speed c of the compression wave of the model material
so that in the following the velocity values will be presented
in a dimensionless form utilizing the value of c.

3 Damage and fragmentation

When studying the velocity distribution of fragments the
degree of breakup is crucial, hence, here we briefly sum-
marize the most important findings on this subject relevant
for the present study. It has been pointed out for the dynamic
breakup of solids that increasing the imparted energy the
system undergoes a phase transition [35]: at low values of
the imparted energy the solid body suffers only damage, i.e.
mainly small sized fragments are created together with a large
residue comparable to the original body. To achieve breakup
the imparted energy has to surpass a critical value above
which even the largest fragment gets significantly smaller
than the initial sample. This damage–fragmentation transi-
tion has been found under various types of loading conditions
from projectile impact, through explosion generated breakup
to the collision of macroscopic bodies [36–38]. The transi-
tion occurs at a well defined critical point showing strong
analogy to continuous phase transitions [10,13,14,31,35].

Recently, we have demonstrated the damage–
fragmentation transition for the impact induced breakup of
plate like objects [15] studied also in the present paper. Ana-
lyzing the behavior of the average mass of fragments as a
function of the impact velocity v0, we determined the critical
value vc of v0 at which fragmentation first occurs. Simula-
tions revealed that vc increases as a power law of the plate
thickness

vc ∼ Hα, (5)

where the exponent was obtained as α = 0.2 [15]. The pre-
cise value of the critical impact velocity falls in the range
vc/c= 0.19–0.23 as H increases from 3 to 15 [15].

In the fragmented phase v0 > vc the mass distribution of
fragments proved to be a power law

p(m) ∼ m−τ (6)

in agreement with experimental findings. However, the value
of the exponent τ is not universal in the sense that for low
plate thickness the value of τ proved to increase from τ = 1.7
to τ = 2.4 above the critical point as the impact velocity
increases. For three-dimensional bulk solids realized in our
model at high plate thicknesses, a unique exponent τ = 2.4
is obtained [15]. Our computer simulations revealed that an
underlying transition in the structure of the crack pattern in
responsible for the observed non-universality. For thin plates
embedded into the 3D space the crack pattern of the frag-
mented phase of breakup has essentially two types: when the
impact velocity v0 falls close to the critical point the inter-
ference pattern of elastic waves generates a two dimensional
crack pattern which has a high degree of regularity. At higher
impact velocities cracking in the bulk of the plate gets acti-
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vated which leads to a disordered three dimensional pattern.
The regular two-dimensional crack pattern and the disordered
three-dimensional one favor a lower and a higher value of the
mass distribution exponent. The gradual transition between
the two limits is controlled by the impact velocity in the frag-
mented phase. For more details see Ref. [15].

In the present paper we investigate the velocity distribution
of fragments, furthermore, the relation between the velocity,
spatial position and mass of fragments both in the damage and
fragmented phases at different plate thicknesses. The thick-
ness dependent critical velocity of damage-fragmentation
transition will be utilized from Ref. [15].

4 Velocity distribution of fragments

The center of mass velocity of fragments is determined in the
final state of the fragmentation process where the cloud of
fragments is expanding without further breaking. The coor-
dinate system used in the calculations is illustrated in Fig. 1
where the x axis is aligned with the impact velocity. Due
to momentum conservation the system has symmetry with
respect to the y and z axes of the coordinate system.

The probability distribution p(vy) of the y component of
the fragment velocity vy is presented in Fig. 2a at the small-
est plate thickness considered H = 3 for several values of
the impact velocity v0 in the fragmented regime v0 > vc. All
distributions are peaked at vy = 0 and are symmetric func-
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Fig. 2 (Color online) a Probability distribution p(vy) of the velocity
component vy for the lowest plate thickness H = 3 at several values of
the impact velocity v0 in the fragmented phase v0 > vc of the system,
wherevc/c = 0.19.bRescaling the two axes with the standard deviation
σvy good quality data collapse is obtained. c The data collapse is shown
on a semi-log plot. The bold line represents the best fit obtained with
the functional form Eq. (8). d The standard deviation as a function of
v0. The straight line is drawn to guide the eye

tions about the zero average
〈
vy

〉 = 0 as it is expected. As
the impact velocity v0 increases the functional form of p(vy)
remains the same, however, the distributions get broader. In
order to quantify the increasing scatter of the velocity com-
ponent vy , we calculated the standard deviation σvy of the

distributions as σvy =
√〈

v2
y

〉
− 〈

vy
〉2. It can be observed in

Fig. 2b that rescaling the distributions p(vy, v0) with the cor-
responding value of the standard deviation σvy all the curves
corresponding to different impact velocities v0 can be well
collapsed on a master curve. The quality of collapse is bet-
ter seen in Fig. 2c where semi-log representation is used.
The good quality data collapse implies that the distributions
p(vy, v0) depend on the impact velocity through the standard
deviation in the form

p(vy, v0) = σ−1
vy

Φ(vy/σvy ), (7)

where Φ(λ) denotes the scaling function. The velocity v0

dependence of σvy is illustrated in Fig. 2d for the entire range
of impact velocities including also the damage phase of the
system. In the fragmented regime σvy is found to increase lin-
early with the impact velocity σvy ∼ v0, while in the damage
phase a more rapid increase is evidenced.

The master curve in Fig. 2c obtained by the scaling analy-
sis can be well fitted with the functional form

Φ(λ) = A
1

B + λμ
exp

(−(λ/λ∗)β
)
, (8)

which is a power law of exponent μ for intermediate values
of the scaling variable λ = vy/σvy followed by a stretched
exponential cutoff. The additive parameter B regularizes the
shape of the distribution in the vicinity of λ = 0, while the
exponent β controls the shape of the cutoff. It can be observed
in Fig. 2c that Eq. (8) provides a good description of the
numerical data, best fit is obtained with the parameter values
μ = 1.7, β = 3.1, A = 0.12, B = 0.1, and λ∗ = 2.15.

The distribution p(vz, v0) of the z component of the frag-
ment velocity has a similar behavior (see Fig. 3), i.e. a
symmetric functional form is obtained peaked at zero veloc-
ity. Varying the impact velocity v0 the distributions p(vz, v0)

change in the same qualitative way and obey the same scaling
structure as p(vy, v0) (see Fig. 3c).

Increasing the plate thickness essentially the same qual-
itative behavior is obtained for p(vy, v0) and p(vz, v0) as
we have seen above for H = 3, however, the thickness
affects the standard deviations σvy and σvz . As an exam-
ple, the inset of Fig. 4 presents the velocity dependence v0

of the standard deviation σvy for each thickness H consid-
ered. It is interesting to note that in the fragmented phase
of the system σvy linearly increases with the impact velocity
v0, and it decreases with increasing plate thickness H . The
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Fig. 3 (Color online) a Probability distribution p(vz) of the velocity
component vz for the plate thickness H = 3 at several values of the
impact velocity v0 in the fragmented phase of the system.bGood quality
data collapse is obtained by rescaling the two axes with the standard
deviation σvz of the velocities. c The functional form of Eq. (8) well
describes the master curve. d The standard deviation linearly increases
with v0 in the fragmented phase
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Fig. 4 (Color online) Inset standard deviation σvy of the velocity com-
ponent vy of fragments as a function of the impact velocity v0 for all
thicknesses H considered. Main panel rescaling σvy with a power ξ of
H good quality data collapse is obtained

main panel of the figure demonstrates that the standard devi-
ations obtained at different thicknesses H can be collapsed
by rescaling along the vertical axis with an appropriate power
of H . The good quality collapse implies the functional form

σvy (v0, H) ∼ v0

H ξ
, (9)

in the fragmentation regime, where the exponent giving best
collapse in Fig. 4 is ξ = 0.36. The data analysis revealed
the same behavior for the standard deviation σvz of vz , how-
ever, with a higher value of the exponent ξ = 0.5 implying
a stronger dependence on the plate thickness H . The higher
exponent ξ is caused by the fact that the z axis is directed
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Fig. 5 (Color online) Probability distribution of vx for the lowest H =
3 and highest H = 15 plate thicknesses presented in the left and right
columns, respectively. a, d shows the complete distributions, b, e the
distribution of the primary ejecta, while c, f present the distributions for
the complementary data set

along the changing linear extension of the sample, while
along the y direction the extension of the system is fixed
and it has a greater value than in the y direction.

The distribution of the x component vx of fragment veloc-
ities has a more complex behavior. Figure 5a, d presents
p(vx , v0) for the lowest and highest plate thicknesses H = 3
and H = 15, respectively. In both cases the same qualitative
behavior can be observed, i.e. the distributions are asym-
metric with a non-zero average value which increases with
the impact velocity v0. Note that the positive x direction is
aligned with v0 pointing into the sample. Hence, fragments
with negative values of vx are back-scattered, while the ones
with positive vx move forward along the impact direction.
Due to the conservation of linear momentum only a small
fraction of the total mass of the body is comprised in the
back-scattered fragments so that they are mainly single par-
ticles, i.e. powder in the model (see also Fig. 1). The source
of the asymmetric form of the distributions p(vx ) is that large
mass fragments move forward vx > 0, however, they have
a significantly lower number than the back-scattered powder
particles although they comprise the major fraction of the
entire mass.

An interesting feature of the distributions is that for back-
scattered fragments vx < 0 a hump emerges, which implies
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Fig. 6 (Color online) Standard deviation σvx of vx as a function of the
impact velocity for all thicknesses considered. Except for the smallest
thickness H = 3 the straight line gives a good approximation of the
data in the fragmented phase

the emergence of a characteristic value of vx . The hump
gets less pronounced with increasing impact velocity. Care-
ful sorting of the fragments according to their spatial position
revealed that the hump is formed by back-scattered fragments
which originate from a small volume about the impact site.
These are those fragments which are ejected immediately
after the initial impact without further interaction with the rest
of the system. The velocity distribution of this primary ejecta
is presented separately in Fig. 5b, e where a nearly Gaussian
shape is obtained at lower impact velocities v0 which then
broadens as v0 increases. The corresponding distribution of
the complementary set, including all fragments except for
the primary ejecta, is shown in Fig. 5c, f, where the func-
tional forms are consistent with the distributions of vy and
vz except for the asymmetry.

Increasing v0 the distributions get broader so that the stan-
dard deviation σvx increases linearly with the impact velocity
σvx ∼ v0 except for the smallest thickness H = 3, as it is
illustrated in Fig. 6. Note that the value of σvx only slightly
changes with increasing thickness, above H = 5 it is practi-
cally constant.

5 Spatial dependence of fragments

To better understand the dynamics of the breakup process
and how the velocity and mass of fragments are determined,
it is instructive to analyze the spatial dependence of frag-
ment properties. Since in the damage phase the number of
fragments is rather limited, here we focus on the fragmented
phase only.

5.1 Spatial dependence of fragment masses

We have shown earlier that for thin plates close to the critical
point of fragmentation essentially a two-dimensional crack

x

y

z

Fig. 7 (Color online) Fragments in a reassembled sample of thickness
H = 5 at an impact velocity slightly above the critical point. The major
fragments are highlighted with randomly assigned colors while the pow-
der particles are made translucent gray. Except for the destructive zone
around the impact point, the regular crack pattern can be inferred

structure emerges which is determined by the interference
pattern of elastic waves generated by the impact loading [15].
In order to obtain quantitative information on how this crack
pattern determines the spatial extension and mass of frag-
ments, we determined the average mass of fragments as a
function of their center of mass position inside the original
body. For this purpose particles of the fragments were placed
back to their original position inside the initial sample and
then the center of mass coordinates (x0, y0) of fragments
were determined using Eq. (3). Then both coordinates x0

and y0 were binned and the average mass 〈m〉 of fragments
with coordinates falling in a bin was calculated. As a rep-
resentative example Fig. 7 presents the final reassembled
configuration of a fragmented plate where the individual frag-
ments are colored. The regularity of the crack pattern can
easily be inferred by the naked eye.

Figure 8 presents the average fragment mass 〈m〉 in a thin
plate H = 3 as function of the y0 coordinate for several
impact velocities in the fragmented phase of the system. It
can be observed that for all impact velocities the curves have
distinct maxima and minima which is caused by the regu-
larity of the crack pattern. The minima of 〈m〉 correspond to
spatial regions where mainly small sized fragments occurred,
i.e. where powder (single particles) or small fragments are
created by the abrasion of the surface of big fragments due
to their relative velocity. However, the maxima of the curves
indicate those regions where no extensive cracking occurs.
Note that the vertical axis is rescaled with a power γ of
the impact velocity v0 resulting in a good quality data col-
lapse except for the lowest impact velocity. The data collapse
implies that the average mass of fragments at a given location
y0 has the scaling structure

〈m〉 (y0/L , v0) = v
−γ
0 Φ(y0/L). (10)
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Fig. 8 (Color online) Average mass of fragments as a function of the
y0 coordinate of their center of mass position in the original body for
the plate thickness H = 3. Along the vertical axis the data is rescaled
with the impact velocity v0 which results in a good quality collapse of
the curves

The value of the scaling exponent γ providing best collapse
is γ = 0.8. The sharp maximum of the curves close to the
edges of the sample at y0/L ≈ ±0.45 are generated by the
fragments of the detached boundary layers. The position of
the detached zone practically does not change with the impact
velocity because it is determined by the wave length of the
compression wave in the body. The height of the detachment
peaks in Fig. 8 decrease with v0 because the detached layers
break up into smaller and smaller fragments.

Considering the position dependence of the average frag-
ment mass along the direction of impact, again local maxima
and minima can be observed in Fig. 9, however, the curves
do not show such a regular pattern what has been observed
for the y0 dependence. In the vicinity of the impact point
the sample is completely shattered into powder (single parti-
cles) except for the detached boundary layers perpendicular
to the impact direction. The detached corner pieces which
are significantly larger than the surrounding powder parti-
cles are responsible for the small hump close to the sample
surface at x0/L ≈ 0.1. Along the impact direction the aver-
age fragment mass increases until it reaches a maximum at
x0/L ≈ 0.6–0.8 where the majority of the large fragments
are located (see also Fig. 7). This maximum gets gradually
shifted towards the edge of the sample with increasing v0

since the shattered zone at the impact site spans deeper into
the sample. The strong peak at x0/L ≈ 0.92 opposite to the
impact point is caused again by a surface layer detached due
to the interference of the outgoing and incoming (reflected)
tensile waves after impact. With increasing impact velocity
the sample gets more and more shattered, hence, the first
and the second peaks of the curves move in the opposite
directions, while the detachment zones hardly change. This
non-homogeneous spatial variation of cracking has the con-
sequence that for the function 〈m〉 (x0/L , v0) no such scaling
structure exists as Eq. (10) for the y0 dependence.
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Fig. 9 (Color online) Average mass of fragments as a function of the
x0 coordinate of their center of mass position in the original body for
the plate thickness H = 3. No scaling collapse can be achieved

At higher plate thicknesses H the x0 dependence of the
average fragment mass remains practically the same, while
along the other two coordinate axes y0 and z0 the local
maxima gradually diminish since the crack pattern looses
it regularity with increasing H .

5.2 Spatial dependence of fragment velocities

In order to clarify how the spatial position of the fragments
inside the original body determines their final state velocity,
we calculated the average value of the velocity components
of fragments as a function of their center of mass coordi-
nates inside the original sample as it has been presented for
the mass of fragments. Figure 10 presents the average of
the absolute value of the y component of fragment veloci-
ties

〈|vy |〉 as a function of y0 for the lowest plate thickness
H = 3 at several impact velocities. The zero linear momen-
tum of the system in the y direction has the consequence that
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Fig. 10 (Color online) The absolute value of the velocity component
vy of fragments as a function of the center of mass position y0 inside the
original body for the plate thickness H = 3 at several impact velocities.
The data is rescaled along the vertical axis with a power of the impact
velocity. Best collapse is achieved with the exponent γ = 0.8
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Fig. 11 (Color online) The velocity component vx of fragments as a
function of the center of mass position x0 inside the original body for
the same plate thickness and impact velocities as in Fig. 10. For the
exponent γ = 0.8 was used to obtain best collapse

the corresponding velocity component
〈|vy |〉 is a symmetric

function with respect to the y0 = 0 axis. It can be observed
that fragments along the symmetry axis have zero velocity
component vy = 0, and

〈|vy |〉 increases monotonically with
the distance from the axis. Deviation from this generic trend
occurs for the lowest impact velocities v0/c < 0.33, where
a local minimum is formed close to the symmetry axis and
another one in the detachment zone close to the sample sur-
face. In Fig. 10 the value of

〈|vy |〉 is rescaled with a power γ

of the impact velocity to obtain collapse of the curves belong-
ing to different values of v0. The good quality data collapse
shows the validity of the scaling form

〈|vy |〉 (y0/L , v0) = v
γ
0 Φ(y0/L), (11)

where γ = 0.8 was used for the exponent in the figure. The
scaling structure expresses that at a given location inside the
body the velocity of fragments increases proportional to v

γ
0

when changing the impact velocity. Note that the scaling
function Φ(y0/L) has no dependence on v0, it solely com-
prises the spatial dependence of the velocity components.

The momentum conservation implies the same overall
behavior for the z component of the velocity of fragments
as what we have presented for the y component.

For the x component of the fragment velocity we present
the average 〈vx 〉 in Fig. 11 as a function of x0 without taking
the absolute value since no symmetry is expected. It can
be observed that close to the sample surface x0/L ≈ 0 the
value of 〈vx 〉 is negative which shows that the majority of
fragments is back-scattered. Going inside the sample 〈vx 〉
is a monotonically increasing function of the position along
the impact direction, however, about the middle of the sample
the average velocity component remains close to zero for a
relatively broad range of x0. The highest positive value of
〈vx 〉 is reached by the fragments which are detached from
the sample surface opposite to the impact point, however,

the fastest fragments are the back-scattered powder particles
at the impact site. Figure 11 also demonstrates that 〈vx 〉 has
the same scaling structure Eq. (11) as the y component and
even the same value of the exponent γ = 0.8 was used to
achieve best collapse in the figure.

Increasing the plate thickness the overall behavior of the
spatial distribution of the fragment velocities remains essen-
tially the same, i.e. at all plate thicknesses the same scaling
behavior Eq. (11) is recovered where even the exponent γ

proved to have the same value irrespective of H . Only the
precise shape of the scaling function Φ depends on the plate
thickness.

6 Correlation of fragment mass and velocity

A large amount of experimental efforts have been devoted to
investigate the velocity of fragments and its correlation with
the fragment mass [21–24]. The mass-velocity correlation of
fragments is usually characterized by evaluating the average
value of the magnitude of the velocity 〈v〉 of fragments as a
function of their mass m. In order to determine this quantity,
in our calculations the fragment mass m was logarithmically
binned and the arithmetic average of the velocity magnitude
of fragments was calculated for each bin.

Figure 12 presents the 〈v〉 (m, v0) function for the lowest
plate thickness H = 3 considered at several impact velocities
spanning both the damage v0 < vc and fragmented v0 >

vc phases. Note that in the damage phase of the breakup
process the curves have a gap where no fragments fall, while
in the fragmented phase the gap disappears and a continuous
curve is obtained. In the damage phase one or two dominating
fragments are created comparable to the original mass of the
body together with numerous smaller pieces. In Fig. 12 the
remarkable result is that in the damage phase a strong mass-
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Fig. 12 (Color online) Average velocity of fragments 〈v〉 as a function
of their mass m. Impact velocities v0 are considered both in the damage
and fragmented phases. The straight lines represent power laws with
exponents 1/3 and 1/6 to guide the eye
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velocity correlation of fragments emerges: for small pieces
the velocity of fragments decreases with increasing mass.
Lowering the impact velocity the functional form of 〈v〉 (m)

tends to a power law

〈v〉 ∼ m−ν, (12)

where the exponent can be approximated as ν = 1/3. Since
at low impact velocities the number of fragments is limited,
a large number of samples had to be generated to obtain reli-
able results. At the lowest value of v0 the correlated regime
extends to fragment masses m/Mtot ≈ 0.02 followed by the
mass-gap so that all small sized pieces have correlated mass
and velocity. As v0 increases the dominating fragments break
up into smaller pieces and the mass-velocity correlation in
the low mass regime gradually disappears, i.e. the 〈v〉 (m, v0)

curves become horizontal. At the same time, in the vicinity
of the critical point vc a new correlated regime develops for
large fragment masses. The correlation is weaker in the sense
that the exponent ν of the power law regime ν = 1/6 is lower
(see Fig. 12).

It can be seen in Fig. 12 that further increasing v0, in
the fragmented regime the power law correlation gradually
disappears so that the average velocity attains a constant
value independent of the mass of fragments. Note that one
or two humps develop on the curves in the mass range
0.008 < m/Mtot < 0.04. These humps correspond to the
fragments detached along the boundary of the sample. These
pieces break off the body at an early stage of the breakup
process and escape with a relatively high impact velocity.

Computer simulations revealed that the mass-velocity
correlation of fragments prevails only for low plate thick-
nesses, i.e. for quasi two-dimensional bodies. Increasing H
the correlation gradually disappears and for bulk samples no
correlation could be pointed out. This is illustrated in Fig. 13

10-3

10-2

<v
>/
c

10-3 10-2 10-1 1
m/Mtot

0.06
0.10
0.13
0.20

0.23
0.30
0.36
0.50

v0/c

Fig. 13 (Color online) Analysis of the mass-velocity correlation for the
highest plate thickness considered H = 15. No systematic dependence
of the average fragment velocity on the fragment mass can be pointed
out

for the thickness H = 15. Here even the detached pieces do
not have a remarkable effect, their characteristic mass can
not be identified in the figure.

7 Discussion

We presented a discrete element study of the fragmentation
of plate-like brittle solids focusing on the velocity distribu-
tion and mass-velocity correlation of fragments. Simulations
were performed by varying the impact velocity and the thick-
ness of the plate which controlled the degree of breakup from
damage to fragmentation and the geometry of the sample
from thin plates to three-dimensional bulk solids, respec-
tively. The initial condition we implemented well mimics
the experimental setups where a projectile hits the sample
surface but penetration is prevented, and the case when the
explosion of a surface charge generates a shock wave in the
solid. DEM has the advantage that all details of the model
system can be very well controlled making it possible to
reveal relations which may remain hidden in real experi-
ments.

Based on the simulations we can deduce a simple physi-
cal picture about the process of impact induced breakup of
heterogeneous solids: The formation of fragments and their
final state mass and velocity are determined by the complex
dynamics of elastic waves generated by the impact. As a con-
sequence, large fragments are formed close to the middle of
the sample making up a core, which gets shifted along the
direction of impact with increasing impact velocity. The sur-
rounding material of the core breaks up into a large number
of small sized pieces and flies outward creating an expand-
ing cloud of fragments. The results are in a good qualitative
agreement with the experimental findings on impact induced
breakup of heterogeneous materials [21–24].

We showed that the fastest fragments are the powder parti-
cles ejected in the vicinity of the impact point and the pieces
created in the detachment zone opposite to the impact point.
These fragments determine the cutoffs of the probability
distributions of the velocity components of fragments. Due
to momentum conservation the distributions of the velocity
components perpendicular to the impact direction are sym-
metric functions with zero average. The standard deviation of
the distributions increases linearly with the impact velocity
and decreases as a sub-linear power law of the plate thick-
ness. For the functional form of the distributions a power
law asymptotics was found followed by an exponential cut-
off. Along the impact direction the primary ejecta proved to
have a unique distribution which can be approximated with
a Gaussian. For the rest of the fragments the distribution has
the same qualitative form as for the other two components
with an additional asymmetry caused by the conservation of
linear momentum.
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In experiments, information on the velocity distribution
of fragments is rather sparse since a large fraction of frag-
ments cannot be captured. This limitation hinders the detailed
comparison of our results to experimental findings. In 2D dis-
crete element simulations of the fragmentation of disc-shape
samples induced by impact against a hard wall, the distrib-
ution of both velocity components were found to be close
to a Gaussian [7,12], different from what we observed here.
The possible explanation is the difference of the boundary
conditions: due to the hard wall fragments spend a sufficient
time confined to suffer collisions which can lead to a kind
of thermalization before global expansion sets on. The free
boundaries of our sample let the system freely expand result-
ing in a slower decay of the distributions.

It has been shown for vibrated granular beds that the prob-
ability distribution of the relative velocity of particles has
different functional forms in the solid and fluidized phases
[39]: in the solid phase where the particles are confined to
the local vicinity of their stable position, the velocity distri-
bution proved to be a Gaussian, while in the fluidized phase
the higher mobility of particles leads to the emergence of a
power law tail described by the t-distribution [39,40]. The
particle motion in the two phases is very similar to the sit-
uation of fragments in 2D and 3D fragmentation processes
outlined above so that the same mechanism can be respon-
sible for the emergence of power law and Gaussian velocity
distributions of fragments as for granular matter. The func-
tional form Eq. (8) deduced for the velocity distribution of
fragments is consistent with the t-distribution [41], although
the direct application of the t-distribution gives a somewhat
lower quality fit than our expression.

The most important outcome of the present work is the
relation of the mass and velocity of fragments: simulations
give a strong evidence that correlation can emerge between
the mass and velocity of fragments, however, the presence
and absence of the correlation depend both on the impact
velocity and on the geometry of the sample. Correlation is
only found for quasi 2D thin plates embedded in the 3D
space, when increasing the plate thickness to 3D bulk sam-
ples no systematic correlation could be pointed out. For thin
plates the mass-velocity correlation emerges for small frag-
ment masses in the damage phase, i.e. at sufficiently low
impact velocity the average velocity of fragments decreases
as a power law of their mass. At higher impact velocities the
correlation disappears in the low mass regime, however, in
the vicinity of the critical point of fragmentation a power law
correlation emerges again for the largest fragments but with
a lower exponent. Due to technical constraints, experimen-
tal studies on the mass-velocity correlation typically focus on
the larger fragments of the fragmented phase of breakup. It is
interesting to note that the corresponding value of the power
law exponent 1/6 we obtained falls in the range of experi-
mental results [22]. The absence of correlation well above

the critical point is also in agreement with experiments [24].
Further laboratory experiments are needed to check the emer-
gence of correlations in the damage phase of breakup, where
difficulties arise because of the small fragment size and low
fragment number.

Computer simulations revealed that the position of frag-
ments inside the original body with respect to the impact
site and to the core determine the velocity and mass of frag-
ments: the velocity increases with the distance from the core,
while the fragment mass is sensitive to the details of the stress
field resulting in a complex mass pattern in the body. As a
very interesting novel result we deduced a scaling form of
the spatial distribution of the velocity components obtained at
different impact velocities. The scaling implies that the veloc-
ity components of fragments created at any location inside the
body increase with a power of the impact velocity. The posi-
tional dependence is comprised in a scaling function which
does not depend on the impact velocity. For fragment masses
a similar scaling form could be obtained solely perpendic-
ular to the impact direction, however, along the impact a
more complex non-homogeneous dependence on the impact
velocity was revealed. Our simulation results suggest that the
origin of the mass-velocity correlation is that the mass and
velocity of fragments get connected through their positional
dependence inside the body.
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