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Abstract We investigate numerically the mechanism gov-
erning the quasi-static collapse of two-dimensional granular
columns using a recently proposed continuum approach, the
particle finite element method (PFEM), which inherits both
the solid mathematical foundation of the traditional finite
element method and the flexibility of particle methods in
simulating ultra-large deformation problems. The typical
collapse patterns of granular columns are reproduced in the
PFEM simulation and the physical mechanism behind the
collapse phenomenon is provided. The collapse processes
obtained from the PFEM simulation are compared to experi-
mental observations and discrete element modeling, where a
satisfactory agreement is achieved. The effects of the macro
density and friction angle of the granular matter, as well as
the roughness of the wall surfaces on the quasi-static col-
lapse, are also investigated in this paper. Furthermore, our
simulations reveal new quasi-static collapse patterns, as sup-
plements to the ones already observed in the experimental
tests, due to the change of the roughness of the basal surface.
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1 Introduction

Granular materials may behave like a solid, a liquid, or even
a gas under different conditions [1]. Due to their complex
behaviour that they exhibit, granular materials remain poorly
understood and continue to attract attention from researchers
in both academia and industry. Numerous experiments have
been conducted to provide a better understanding of granular
materials and improve guidelines for engineering practice,
among which the dynamic/quasi-static collapse of granular
columns under the action of gravity [2–4] is a typical exam-
ple.

To date, a considerable amount of research effort has
been devoted to investigating the dynamic collapse of gran-
ular columns. Such laboratory tests were initially introduced
by two separate research groups simultaneously, Lube et al.
[2,5] and Lajeunesse et al. [3,6]. Experimental results from
both groups revealed that: (a) the shape of the final deposit
mainly depends on the initial aspect ratio of the column; (b)
during the collapse process, there exists a static region within
which the granules are undisturbed; (c) the relation between
the deposit shape (measured by the normalised final height
and width) and the initial aspect ratio can be expressed as a
simple power law, the factor of which differs for columns with
low and high aspect ratios; and (d) in the case of axisymmet-
ric collapse, the normalised final height tends to be constant
when the initial aspect ratio is sufficiently large. To identify
the dominant factors that govern the collapse, such experi-
ments were then widely studied under different conditions
[7–12] (i.e. different roughness and inclination of the basal
plane, in air or underwater, etc.) in physical modelling.

From the perspective of numerical analysis, the dynamic
collapse of granular columns has also been extensively inves-
tigated using both the discrete element method (DEM) and
continuum approaches. The DEM [13] treats the granular
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column as an assembly of independent elements called par-
ticles or grains, whose motions are predicted via Newton’s
law of motion associated with appropriate constitutive rela-
tions linking the contact force and overlap that may occur
between particles (or grains). So far, the dynamic collapse of
granular columns has been studied by a bulk of researchers
using the DEM [14–18]. This is, to a large extent, due to
its feature that arbitrarily large deformation can be handled
naturally. In addition, the DEM simulation can consider the
effect of microscopic properties of particles (i.e. particle
surface roughness, particle shapes etc.) on the macroscopic
mechanical behaviour [19,20]. However, it is worth noting
that the computing cost of the DEM simulation is highly
intensive rendering the number of particles used in the sim-
ulation is usually far less than that in the physical modeling.
In contrast to DEM modelling, the simulation based on
continuum approaches makes use of macroscopic constitu-
tive models and may provide insight into the effect of the
macroscopic material properties, which in fact are easily
obtained through laboratory tests and are more frequently
referred to by engineers. However, the large deformation
and moving boundaries involved in the problem are chal-
lenging for the popular traditional finite element method
(FEM) [21]. This is because large deformation usually leads
to a severely distorted finite element mesh, and the bound-
ary evolution cannot be captured accurately due to the fixed
mesh topology in the traditional FEM. To overcome these
issues, some alternative numerical tools have to be employed.
For example, Chen et al. [22] developed a three-dimensional
model of the smoothed particle hydrodynamics method for
the analysis of granular column collapse which successfully
reproduced the flow pattern as well as the final deposit. Hol-
sapple [23] presented a finite-difference continuum model to
evaluate the performance of standard continuum plasticity
Mohr-Coulomb and/or Drucker-Prager models on predict-
ing granular columns collapse problem and showed that the
classical plasticity models very accurately predict such a
cliff collapse problem. The effects of the internal frictional
angle of granular matter on the dynamic collapse of gran-
ular columns were investigated by Mast et al. [24] using
the material point method. Recently, a novel continuum
approach called particle finite element method (PFEM), were
adopted for the simulation of granular flow problems [25–
28], in particular the dynamic collapse of granular columns
[29,30]. The PFEM [28,31–33] makes use of particles to
represent materials, as in meshfree particle methods, but
solves the governing equations via a standard finite element
procedure. As a result, this technique inherits not only the
ability of meshfree particle methods to cope with arbitrary
changes in geometry, but also the solid mathematical foun-
dation of the traditional FEM. It is shown [25–28,30,34] that
the PFEM is particularly suitable for simulating granular

materials which show both solid-like and fluid-like behav-
iour.

Compared to the extensive works that are available on
the dynamic collapse, the quasi-static spreading of gran-
ular columns attracts less attention despite its importance
in industry. It is true that in many, if not most, industrial
processes (in particular soil-related processes) the inertial
effect of granular materials is commonly negligible and thus
the problem can be treated as quasi-static. Typical examples
include the movement of soil retaining walls in geotechnical
engineering and soil cutting using blades in tillage. To the
best of the authors knowledge, the earliest published data on
the quasi-static collapse of granular columns were attributed
to Mériaux [4], with additional results documented in [35]
by Owen et al., who also provided insight into the effect of
the microscopic characteristics and properties of the granules
on quasi-static collapse from the numerical point of view. In
[35], both two-dimensional and three-dimensional modelling
was conducted using the discrete element method (DEM). It
was reported that the collapse is independent of the particle
stiffness, particle-wall friction, and particle-particle friction
whereas it is very sensitive to the particle shape.

In this study, we attempt to provide insight into the quasi-
static collapse of two-dimensional granular columns from
a continuum simulation perspective. This is achieved by
employing the PFEM developed in [26]. This version of
the PFEM makes use of the classic plastic theory with the
Mohr-Coulomb model to represent granular matter which is
deemed to be appropriate for describing quasi-static behav-
iour of granular matter [36]. In addition, the singularity of the
Mohr-Coulomb yield surface is no longer a problem because
the finite element formulation is reformulated as a standard
second-order cone programming problem [37] in which the
cones can be treated natually using an advanced optimisa-
tion algorithm [38]. The simulation results from the PFEM,
including the collapse patterns, the evolution of the granular
bed height at the fixed and moving walls, and the final depo-
sition are compared with available experimental data [4,35]
and DEM simulation results [35] with the mechanism behind
the flow being discussed. Various collapse types observed in
experiments are explained from the perspective of numerical
modeling. The effects of the macroscopic material properties
and the roughness of the walls on the collapse mechanism
are studied in detail. Furthermore, some new collapse types
are discovered due to the change of basal roughness in our
simulations.

The paper is organised as follows. Section 2 describes
the problems considered as well as the associated governing
equations. Section 3 briefly introduces the solution scheme
for the initial boundary-value problems. Simulation results
as well as discussions are then presented in Sect. 4 before
conclusions are drawn in Sect. 5.
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Fig. 1 Schematic representation of the quasi-static collapse of two-
dimensional granular column

2 Problem description

Figure 1 illustrates the experimental setup for the quasi-
static collapse of two-dimensional granular columns. This
quasi-static collapse experiment was originally conducted by
Mériaux [4] and then by Owen et al. [35]. In the experiments
[4,35], the granular materials were deposited in a cubic box
(see Fig. 1). The wall on the left hand side is fixed, while the
wall on the right hand side can move. The initial length and
height of the column are represented by Li and Hi , respec-
tively, and the initial aspect ratio of the column is defined by
A = Hi/Li . The collapse is induced by retreating the wall
on the right hand side from the fixed wall.

Although in experiments the collapse of a granular column
proceeds very slowly and can be regarded as quasi-static, the
problem here is studied through a complete dynamic analysis
in continuum modeling, the governing equations of which are
summarised as follows:

(a) Momentum conservation equations for the granular
matter

∇Tσ + b = ρ ü, in V (1)

(b) Mass conservation equation

ρ J = ρ0 (2)

(c) Rigid-perfectly plastic constitutive model for the gran-
ular matter

F(σ ) ≤ 0

ε̇ = λ̇∇σG(σ )

λ̇F(σ ) = 0, λ̇ ≥ 0 (3)

(d) Classical Coulomb model [39] for frictional contact
between the granular matter and walls

gN ≥ 0, p ≥ 0, p gN = 0

|q| − μp ≤ 0 (4)

(e) Boundary conditions

u = ū, on Γu (5)

NTσ = t̄, on Γt (6)

where

σ is the stress
b is the body force
ρ and ρ0 are bulk densities of the granular material at
time t and t0
J is the determinant of the deformation gradient tensor
u is the displacement
V is the material domain under consideration
ε = ∇u is the linear strain
F is the yield function
G is the plastic potential
λ̇ is the plastic multiplier
gN is the gap between the granular matter and the rigid
surface
p is the contact pressure which is positive corresponding
to compression
q is the tangential stress
μ is the friction coefficient between the material and the
rigid surface
ū is the prescribed displacement on boundary
t̄ is the prescribed traction on boundary
N consists of components of outward normal to the cor-
responding boundaries.

In the above equations, a superposed dot denotes differentia-
tion with respect to time, and, in two-dimensional cases, the
∇ is the usual linear operator.

Remark 1 The governing equations proposed above are on
the basis of the infinitesimal strain theory which may lead
to several errors. The most serious one is the generation of
strains as a result of rigid body motion. However, it has been
shown in [26,40] that this and related errors are relatively
minor for the kind of time steps used in typical granular flow
simulations. As such, the price to pay for the convenience
of being able to operate with usual infinitesimal strain the-
ory appears to be very small. Under the infinitesimal strain
assumption, the mass conservation or continuity equation (2)
degrades to ρ = ρ0. It should be emphasized that, due to the
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fact that mesh node position will be updated at each incre-
mental analysis, volume change may happen in the situation
that Poisson’s rate is not euqal to 0.5 or the dilation angle
of the granular matter is greater than zero. As a result, the
density of the material have to be updated according to equa-
tion (2) explicitly at the end of each incremental analysis
step even though the infinitesimal deformation is assumed.
In this study, the elastic deformation is neglected and the dila-
tion angle is set to be zero which prevent the volume change.
As a result, Eq. (2) is always fulfilled.

Remark 2 As shown in (3), the granular materials are
represented by a rigid plastic constitutive model with a
non-associated flow rule. In our simulations, both the yield
function and the plastic potential obey the Mohr-Coulomb
failure criterion in the present work, that

F =
√

(σxx − σyy)2 + 4σ 2
xy + (σxx + σyy) sin φ − 2c cos φ

G =
√

(σxx − σyy)2 + 4σ 2
xy + (σxx + σyy) sin ψ (7)

where φ is the friction angle, c is the cohesion, and ψ is the
dilation angle with ψ = 0◦ implying that plastic flow takes
place at constant volume. Although it is simple, such a classi-
cal rate-independent plastic model is perhaps the most widely
used one for describing quasi-static behaviour of granular
materials [36]. Furthermore, recent studies show that this
model is also valid for predicting the dynamic collapse of
granular columns [23,29,41]. Notably, the model utilised
here ignores any elastic, reversible behaviour of the granular
material. Such a treatment is appropriate when deformation
in the material is dominated by plastic flow as shown in
[28,29]. For the numerical studies of the collapse of gran-
ular columns using more sophisticated models, we refer the
readers to [24,27,30,42]

3 Solution scheme

A variety of numerical solution schemes are available for
solving the governing equations presented in the above sec-
tion. In this work, they are tackled using the Finite Element
Method (FEM) in mathematical programming (MP) [43–46].
In particular [26], the governing finite element equations
are reformulated as a standard optimisation problem, for
example as a second-order cone programming program,
which is then solved directly using advanced optimisation
engines. Some key advantages associated with this MP-based
method [26] include the natural treatment of the singularity
of the Mohr-Coulomb yield criterion [43] and the predictable
and rapid convergence behaviour of solutions from the
modern mathematical programming algorithms[38,45,47]

among others. Notably, the utilised MP-based method can
handle the frictional contact between rigid and deformable
bodies straightforward and the corresponding frictional con-
tact algorithm has been documented in [26]. In this paper, the
utilised solution scheme is documented briefly in the “Appen-
dix” for the sake of completeness. Also in [26], this MP-based
solution scheme was embeded into the particle finite element
procedure, which is adopted here for the numerical studies
of quasi-static collapse of granular columns.

4 Numerical simulation and discussion

In this section, the quasi-static collapse of two-dimensional
granular columns described in Sect. 2 is studied numerically
using the recently-developed PFEM [26]. In our simulations,
the speed of the movement of the wall on the right hand
side is set to be V = 6 mm/s (if not otherwise specified). In
such a circumstance, the inertial effects are negligible (which
will be shown later). The material parameters of the granular
matter follow those quoted in [4,35] for sands, if not defined
otherwise, and are: density ρ = 1.49 g/cm3, friction angle
φ = 28◦, dilatancy angle ψ = 0◦, and cohesion c = 0.
The frictional coefficient between the wall and the granular
material is μw = tan φw with φw = 25◦ and the basal surface
is assumed to be rough, namely its friction coefficient μb =
tan φ.

4.1 Collapse patterns

To capture different collapse patterns, the collapse of granular
columns of initial aspect ratio A ranging from 0.1 to 11 are
simulated numerically. The typical collapse patterns obtained
from the PFEM simulation are illustrated in Figs. 2, 3 and 4.
From these figures we can see that the collapse patterns of the
granular columns chiefly depend on the magnitude of their
initial aspect ratios, which is in line with the observations in
the experimental tests [4].

Figure 2 shows the collapse evolution for a granular col-
umn with a small initial aspect ratio, e.g. A = 0.5. The
normalised time ¯(t) is estimated via the current accumu-
lated horizontal displacement of the moving wall divided by
its total displacement when the final deposit is formed. As
illustrated, the column collapses only partially with a fail-
ure plane propagating from the bottom right of the column
(adjacent to the moving wall) up to its free surface. The initial
failure plane is oriented towards the horizontal at an angle
smaller than (φ/2 + 45◦) = 59◦. Note that, when an asso-
ciated plastic flow rule is assumed (e.g. ψ = φ = 28◦), the
angle of the initial failure plane estimated from the simula-
tion is roughly 59◦. This can be seen in Fig. 2a where the
dashed line represents the predicted failure plane with asso-
ciated flow. During the collapse process, the material near the
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(b)

(a)

(c)

(d)

Fig. 2 Collapse of the granular column with the initial aspect ratio
A = 0.5 and length Li = 70 mm at the normalised time a t/T = 0.01,
b t/T = 0.3, (c) t/T = 0.7, and d t/T = 1.0. Colours are proportional
to the norm of the velocity, ‖v‖ (mm/s) (colour figure online)

(a) (b) (c)

(d)

Fig. 3 Collapse of the granular column with the initial aspect ratio
A = 3.0 and length Li = 36.7 mm at the normalised time a t/T = 0.01,
b t/T = 0.2, c t/T = 0.55, and d t/T = 1.0. Colours are proportional
to the norm of the velocity, ‖v‖ (mm/s) (colour figure online)

fixed wall remains static while a triangular block of material
moves down towards the moving wall. As the wall displaces,
the column gradually spreads so that the static region keeps
increasing while the moving wedge shrinks steadily. When
the column comes to rest, an almost flat sloping surface is
obtained, as shown in Fig. 2d, with its angle being around

(e)

(a) (b) (c)

(d)

Fig. 4 Collapse of the granular column with the initial aspect ratio
A = 5.5 and length Li = 20 mm at the normalised time a t/T = 0.01,
b t/T = 0.2, c t/T = 0.3, d t/T = 0.7, e t/T = 1.0. Colours are
proportional to the norm of the velocity, ‖v‖ (mm/s) (colour figure
online)

26◦ (which is smaller than the angle of repose of the sand,
28◦, reported in [4,20]). This is in contrast to the final con-
figuration resulting from dynamic collapse [16,18] where a
curved sloping surface is formed and the slope angle at the
toe of the deposit is very low. Such a difference is attributable
to the effect of the inertial forces.

For a column of a moderate initial aspect ratio (e.g.
A = 3.0 as shown in Fig. 3), the whole free surface of the
column begins to move once the wall retreats. Rather than
breaking the free surface of the granular column as in Fig. 2a,
the interface between the static and moving regions shown
in Fig. 3a propagates from the bottom right to the left side of
the column. The interface obtained here is very similar to the
one observed in the dynamic collapse; nevertheless, in the
sequential quasi-static collapse the part of the free surface
adjacent to the fixed wall deforms much faster than the part
close to the moving wall, which has also been observed in the
experimental tests [4]. As a result, a downward slope from
the fixed wall is formed in quasi-static collapse (see Fig. 3b),
which differs from the slope which tilts downwards the mov-
ing wall in dynamic collapse [2,3,23,26]. It was reported in
[4] that the collapse pattern for granular columns with large
aspect ratios will evolve to be the same as that observed for
columns with small aspect ratios as the collapse proceeds
(e.g. Fig. 2b) at the moment the aspect ratio of the column
is close to one. Such a transition in collapse pattern is also
reproduced by the PFEM simulation (see Fig. 3b–d), and the
mechanism behind it can be seen from the simulation results.
As illustrated in Fig. 3b, the reason for this transition lies in
the fact that the length of the static region approximately
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equals its height, and the left part of the column’s top free
surface is very close to the failure plane when the aspect
ratio is close to one. Further displacement of the wall leads
to the situation that the left part of the free surface reaches
the failure plane, and then the shape of the dynamic region
changes to be triangular which results in the transition of the
collapse pattern. The angle of the final slope surface is around
26◦, which again is close to, but smaller than, the material
friction angle. The finite element mesh shown in Fig. 3 high-
lights the issues related to large changes of geometry, for
example mesh distortion and free-surface evolution, which
are handled without difficulty by the PFEM.

Figure 4 shows the collapse of a column with a high initial
aspect ratio A = 5.5. Surprisingly, the collapse pattern in this
quasi-static case is quite similar to that in the dynamic case at
the very beginning of the collapse process [2,3]. The free sur-
face of the column remains flat and the upper material drops
without any deformation as the wall retreats (see Fig. 4a, b),
and a triangular region, within which the granular material is
undisturbed, exists at the bottom of the column. Such a static
region increases gradually as the collapse proceeds, and when
the free surface tends to be close to the failure plane, the free
surface near the fixed wall declines faster than it does close
to the moving wall (see Fig. 4c). This leads to the collapse
pattern being transferred to that for columns with a moderate
initial aspect ratio. Similar features of the final deposit (see
Fig. 4d), as described in the above, are then exhibited.

The above collapse patterns obtained from our simulation
coincide with those observed in experimental tests [4,35].
However, our results show that the angle of the final profile
is somewhat smaller than the friction angle of the material,
implying that it may not be equal to the maximum angle of
repose of the material (even though the collapse is quasi-
static). Further numerical studies show that, in addition to
the aspect ratio of the granular column, the basal roughness
is also a key factor in quasi-static granular collapse. Other
collapse patterns can be found by adjusting the basal rough-
ness, and will be discussed later in this paper. To illustrate
the internal flow, the column with aspect ratio A = 5.5 is
also painted accordinly to differentiate six alternating layers.
Figure 5 shows the internal structure of the deposit obtained
from the PFEM simulation where the results from the two-
dimensional DEM simulation and the experimental test are
also depicted. Altough the strata boundaries are recovered
qualitatively in both the PFEM and DEM simulations, there
are some appreciable differences. The first one is that the
strata boundaries in the experimental test (Fig. 5a) are more
sharply defined than these in the DEM and PFEM simulations
(Fig. 5b, c). In addition, neither the PFEM nor the DEM sim-
ulation reproduced the kink of the second black layer which
were observed in the experimental test (see Fig. 5a). How-
ever, it was reported that the kink can be reproduced when
the three-dimensional DEM modelling was conducted [35].

Fig. 5 Comparison of internal structure of the deposit: a results from
[35], b DEM solution from [35], c PFEM solution

4.2 Evolution of column height and length and effect of
the wall speed

In the above section, the computed collapse patterns for the
granular columns in quasi-static cases are qualitatively com-
parable to those observed in the experiment. In this section,
a quantitative study on the collapse process is carried out. To
this end, the collapse of a granular column with a high initial
aspect ratio A = 5.5 is revisited with a focus on the evolution
of the height and the length of the granular bed.

Figure 6 illustrates plots of the height of both sides of the
granular bed against its length from the PFEM simulation.
The experimental and DEM simulation data documented in
[35] are provided as well for comparison. As shown, the
results obtained from the PFEM simulations with differ-
ent moving speeds of the wall at V =2 mm/s, 6 mm/s, and
10 mm/s agree well with each other which echoes the finding
in [4,35] that the velocity of the moving wall has no signif-
icant influence on the results as long as the collapse can be
approximately regarded as quasi-static. Figure 6 also shows
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(a)

(b)

Fig. 6 Evolution of the height of the granular columns at the fixed wall
(a) and the moving wall (b) against the bed length

that the PFEM simulation results correspond well with the
results from two-dimensional DEM simulations documented
in [35]. For the bed height at the fixed wall (Fig. 6a), the sim-
ulation results from both the DEM and PFEM modelling
are always lower than the experimental results. Regarding
the height at the moving wall (Fig. 6b), the results from the
PFEM simulation are lower than the experimental results
before the bed length reaches 4 cm, after which the situation
is reversed.

From Fig. 6a we can also see that the deformation process
of the bed height at the fixed wall can be divided approxi-
mately into two stages. In the first stage (before the bed length
reaches 4 cm), the bed height declines sharply, whereas in
the second stage the rate of the decrease slows down sig-
nificantly. This is because in the first stage, the bed’s top
surface is far away from the failure plane and collapse is of

the type shown in Fig. 4a, b. When the bed length is around
4 cm, the surface at the fixed wall is very close to the fail-
ure plane and thus no significant dropping occurs afterwards.
The free surface of the granular column adjacent to the mov-
ing wall, on the other hand, is always further away from the
failure plane, and thus the bed height near the moving wall
decreases smoothly as shown in Fig. 6b. Notably, the 4-cm
threshold for the change of the bed height near the fixed wall
is just for the column with A = 5.5. Generally speaking, for
columns with intermediate or high aspect ratios, the thresh-
old is the transition between the collapse patterns shown in
Fig. 4b, c, respectively.

The overall agreement between the PFEM solution and
experimental data is generally satisfactory. Regarding the
deviation of the simulation results from the experimental
results, this may stem partially from the fact that the prob-
lem was modelled under plane-strain conditions, whereas the
actual deformation is three-dimensional (due to the effect of
the front and back walls). Previous studies on the quasi-static
collapse of granular columns show that numerical predictions
are more accurate when three-dimensional DEM simulations
are conducted [35]. Similar conclusions were also drawn in
[41] where the dynamic collapse of granular columns was
investigated. Moreover, the studies in [35] also show that
the accuracy of the simulations can be improved when non-
circular particles are utilised in the DEM modelling, which
corresponds to increasing the macro friction angle. Further
simulation results regarding the effect of the macro friction
angle on the mode of collapse will be given in Sect. 4.4.

4.3 Deposition profile

Mériaux [4] conducted a series of experiments to investi-
gate the relations between the initial aspect ratio and the
normalised height and length of the final profile. It was
found [4] that the relation can be expressed as a power law
which is similar to that for dynamic collapse [2,3]. The
power laws obtained by Mériaux [4] can be summarised
as follows:

Hi

H f
=

{
1, A ≤ 1

as Aα, A > 1
(8)

L f − Li

Li
=

{
cs A, A ≤ 2

bs Aβ, A > 2
(9)

where H f and L f are the height and the length of the final
deposit, and as , bs , cs , α, and β are material dependent coef-
ficients [4].
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(a)

(b)

Fig. 7 Normalised final height (a) and length (b) of final profiles as
functions of the aspect ratio

The PFEM simulation results, as well as the experimen-
tal data for sands, are plotted in Fig. 7. As can be seen,
for A ≤ 1, the numerical predictions for the normalised
height obey Eq. (9) exactly. For A > 1, the estimated as
and α for the best-fit curve to the simulation results are
1.0 and 0.57, respectively, which are within the ranges pro-
posed by Mériaux [4] (who found that as is close to 0.9 and
α = 0.55 ± 0.05 for sands). Regarding the normalised final
length, the estimated cs , bs , and β for the best-fit curves to
PFEM simulation results are 1.15, 1.1, and 0.8 which are
close to the values given by Mériaux [4] for sands as well.

4.4 Effect of friction angle

The results regarding the final deposition profile are expected
to improve by increasing the friction angle of the granular

(a)

(b)

Fig. 8 Effect of the friction angle on normalised final height (a) and
length (b) of depositions

matter. Figure 8 shows the results of the simulation with the
friction angles φ = 25◦, 30◦, and 35◦, respectively. It can be
seen that, for a column with a small aspect ratio (i.e. A ≤
1.0), the normalised final height and length of the deposit are
insensitive to the macro friction angle. In cases where the
aspect ratio A > 1.0, however, the macro friction angle does
affect the shape of the final deposit. A larger friction angle
results in a smaller normalised final height (which means
a larger final height) and a smaller normalised final length
(which means a shorter final length). As indicated in Fig. 8,
the simulation results with φ = 35◦ match the experimental
data very well.
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(a)

(b)

Fig. 9 Effect of the friction angle φ on the evolution of bed heights at
the fixed wall (a) and the moving wall (b) with ρ = 1.5 g/cm3, ψ = 0◦,
φw = 0.5φ

It is remarkable that, although the increase of friction angle
improves the match of the final profiles, it does not elemi-
nate the difference in the bed height evolution process at the
first collapse stage for a column with a high aspect ratio (for
example A = 5.5) whose quasi-static spreading involves a
transition of the collapse pattern. This can be seen from Fig. 9,
where the bed height evolution process is insensitive to the
friction angle when the bed length is less than 4 cm (imply-
ing the first collapse stage). Such an insensitivity is due to
the fact that, for a bed length smaller than 4 cm, the column
undergoes the collapse pattern shown in Fig. 4b where the
top surface of the column remains flat. When the bed length
is larger than 4 cm (second collapse stage), an increase of
the friction angle results in changes of bed height evolu-
tion.
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Fig. 10 Evolution of the height of the granular columns at the fixed
wall and the moving wall against the bed length. a Effect of surface
roughness μ = tan φw with ρ = 1.5 g/cm3, φ = 30◦, ψ = 0◦ and b
effect of density ρ with φ = 30◦, ψ = 0◦, φw = 0.5φ

4.5 Effect of the roughness of side walls and the
granular density

Figure 10a illustrates the effect of the surface roughness of
the walls on the collapse. It appears that the effect of the
walls roughness is rather trivial, which is in line with the
finding in [35]. In addition, it is unsurprising that the evo-
lution process for the bed heights at both the fixed and
moving walls is the same regardless of the macro density
of the granular matter (see Fig. 10b). This indicates that
quasi-static collapse is independent of the macro density of
the material. Such independence has been observed also in
dynamic granular flow problems [28,29]. It is worth noting
here that the investigation of the sensitivity to the macro den-
sity was performed while keeping the rest of the other macro
mechanical properties constant. For an assembly of granu-
lar matter, a change in density is always associated with a
change of the void ratio, and thus of the macroscopic friction
angle.

4.6 Effect of basal roughness

Despite the numerous investigations of the influence of the
basal surface on dynamic granular collapse [14,29], little
attention has been paid to its effect on quasi-static column
collapse. The numerical results that have been presented in
this paper, so far, are all based on the assumption that the
basal surface is rough (e.g. μ = tan φ). In the following, the
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(e)

(a) (b)

(c)

(d)

Fig. 11 Collapse of a granular column with aspect ratio on a basal
surface with friction coefficient μ = tan( 1

4 φ) at the normalised time a
t/T = 0.01, b t/T = 0.3, c t/T = 0.4, d t/T = 0.67, and e t/T = 1.0.
Colours are proportional to the norm of the velocity, ‖v‖ (mm/s) (colour
figure online)

basal roughness will be decreased to investigate its influence
on quasi-static column collapse.

We first focus on the granular column with a low aspect
ratio A = 0.5. Figure 11 shows the evolution of the col-
lapse with the basal friction coefficient μ = tan( 1

4φ). It can
be seen that the collapse pattern at the beginning is simi-
lar to that shown in Fig. 2a where μ = tan φ was assumed.
However, a new collapse pattern emerges when the collapse
proceeds. In contrast to the failure plane propagating from
the bottom-right of the column to the top surface as shown in
Fig. 2a, b, the new pattern consists of a failure plane break-
ing through the bottom of the column. Due to this new
collapse pattern, a wavy sloping surface, rather than a flat
sloping surface, forms when the column comes to rest and
the profile angle is smaller than that obtained previously.
A further decrease of the friction coefficient, for example
μ = tan( 1

8φ), leads to the appearance of other new failure
patterns (see Fig. 12). As illustrated in Fig. 12c the new fail-
ure mode is ’V-shaped’, which is similar to the one in the
problem of an accretionary wedge [48,49]. Further move-
ment of the wall leads to the emergence of more V-shape
failure planes (see Fig. 12c, d). The final profile of the col-
umn in this case possesses a wavy sloping surface as well
and a further decrease in the profile angle (see Fig. 12f).
When the basal surface is perfectly smooth (e.g. μ = 0),
the evolution of the collapse is totally different in that the
heights at both lateral sides of the granular bed are always
approximately equal with the presence of a wavy top sur-
face in between (see Fig. 13). As can be seen, V-shaped

(e)

(a) (b)

(c)

(d)

(f )

Fig. 12 Collapse of a granular column with aspect ratio on a basal
surface with friction coefficient μ = tan( 1

8 φ) at the normalised time a
t/T = 0.01, b t/T = 0.1, c t/T = 0.3, d t/T = 0.4, e t/T = 0.65, and
f t/T = 1.0. Colours are proportional to the norm of the velocity, ‖v‖
(mm/s) (colour figure online)

(c)

(e)

(a) (b)

(d)

Fig. 13 Collapse of a granular column with an initial aspect ratio A =
0.5 on a perfectly smooth basal surface with retreatment displacement
at a 1.2 mm, b 6 mm, c 17 mm, d 44 mm, and e 62 mm. Colours are
proportional to the norm of the velocity, ‖v‖ (mm/s) (colour figure
online)

failure planes are again involved when the basal surface is
smooth.

Similar phenomena have been observed for columns with
high aspect ratios and low basal roughness in our simulations.
Thus, here we only present the collapse of a column with
A = 5.5 and μ = tan( 1

8φ) as an illustration (see Fig. 14).
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(e)

(a) (b) (c) (d)

(g)

(f )

Fig. 14 Collapse of a granular column with aspect ratio A = 5.5 on a
basal surface with friction coefficient μ = tan( 1

8 φ) at the normalised
time a t/T = 0.01, b t/T = 0.03, c t/T = 0.3, d t/T = 0.4, e
t/T = 0.5, f t/T = 0.7, and g t/T = 1.0. Colours are proportional to
the norm of the velocity, ‖v‖ (mm/s) (colour figure online)

5 Conclusions

The quasi-static collapse of two-dimensional granular colum-
ns is studied using a novel continuum approach, the Particle
Finite Element Method (PFEM).

Three typical collapse patterns for granular columns with
small, intermediate and large initial aspect ratios are pre-
dicted by the PFEM, with the evolution of the static region
in the granular matter being discussed. The transition of
the collapse patterns when the aspect ratio is close to one
is explained, based on the physical mechanism behind the
collapse phenomenon. The results from the PFEM simula-
tions for the evolution of the granular bed heights at both the
fixed wall and moving agree well with those from the DEM
simulations, and are also comparable to those observed in
experiments. In addition, satisfactory agreement is achieved
between the simulated and experimental normalised heights
and lengths of the final profile, even though the simulations
assume plane-strain conditions.

Parametric studies show that the collapse of columns with
an intermediate to large aspect ratio (A ≥ 1) is influenced
considerably by the macro friction angle, but this is less
marked for columns with small aspect ratios (A < 1). For a
column with a large aspect ratio, the macro friction angle only
affects the second stage of failure due to the specific collapse
patterns involved. The macro density of the granular matter

has no influence on the collapse mechanism and the influence
of the roughness of the side walls is very limited. In contrast,
the effect of the roughness of the basal surface is signifi-
cant. Indeed, the numerical studies show that the change of
basal roughness not only affects the collapse process quan-
titatively, but may lead to new failure patterns which have
yet to be observed in experimental tests for the quasi-static
collapse of granular columns.

It is worthnoting that the three-dimensional modelling
may further improve the agreement rate, in particular in
terms of the strata boundaries. Regarding the constitutive
model, the simple Mohr-Coulomb model is utilised here and
both the dilation angle and the friction angle of the material
are assumed to be constant. This model is valid for describ-
ing the behaviour of loose granular matter; however it fails
when dense granular matter undergoing large deformation is
considered. This is because plastic deformation leads to the
change of the porosity of granular matter that has a consider-
able influence on the friction angle and dilation angle of the
granular matter. Further development of the PFEM for using
more realistic model is currently underway.
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Appendix

Time discretisation

The momentum conservation equations (1) can be discretised
using θ -method [50] as:

∇T[θ1σ n+1 + (1 − θ1)σ n] + b = ρ
vn+1 − vn

Δt
, (10)

θ2vn+1 + (1 − θ2)vn = un+1 − un
Δt

, (11)

where v are velocities, subscripts n and n + 1 refer to the
known and new, unknown states, and Δt = tn+1 − tn is the
time step. Rearranging the above equations leads to

∇Tσ n+1 + b̃ = ρ̃
Δu
Δt2 , (12)

vn+1 = 1

θ2

[
Δu
Δt

− (1 − θ2)vn

]
, (13)

where Δu = un+1 − un and

ρ̃ = ρ

θ1θ2
, (14)
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b̃ = 1

θ1
b + ρ̃

vn

Δt
+ 1 − θ1

θ1
∇Tσ n, (15)

The natural boundary conditions (6) are approximated in an
analogous manner leading to

NTσ n+1 = t̃, on S, (16)

where

t̃ = 1

θ1
t − 1 − θ1

θ1
NTσ n . (17)

Following [26], the above problem can be stated in terms of
a min-max problem:

min
Δu

max
(σ ,r)n+1

〈σ n+1,∇(Δu)〉V − 〈b̃,Δu〉V − 〈 t̃,Δu〉S
− 1

2Δt2〈rn+1, ρ̃
−1rn+1〉V + 〈rn+1,Δu〉V

subject to F(σ n+1) ≤ 0

(18)

on the basis of the Hellinger-Reissner variational principle.
In above, rn+1 are a set of variables interpreted as dynamic
forces [26], and the notation

〈x, y〉A =
∫

A
xT y dA (19)

is utilised. The equivalence between the optimisation prob-
lem (18) and the governing equations at hand is established
by demonstrating that the Euler-Lagrange equations asso-
ciated with (18) indeed reproduce the governing equations
[26].

Spatial discretisation

Using the standard finite element notation, the following
approximations

σ (x) ≈ Nσ σ̂ , (20)

r(x) ≈ Nr r̂, (21)

u(x) ≈ Nu û, (22)

∇u ≈ Bu û, (23)

are introduced for the state variables, where σ̂ , r̂ and û are
the nodal variables, N matrices contain the shape functions,
and Bu = ∇Nu . Substituting the above approximations into
the variational principle (18) results in the following discrete
principle:

min
Δû

max
(σ̂ ,r̂)n+1

σ̂
T

n+1BΔû − f TΔû

− 1
2Δt2 r̂T

n+1Dr̂n+1 + r̂T

n+1AΔû
subject to F(σ̂

j
n+1) ≤ 0, j = 1, . . . , nσ

(24)

where nσ is the number of Gauss integration points, and

B =
∫

V
NT

σ Bu dV, (25)

f =
∫

V
NT

u b̃ dV +
∫

S
NT

u t̃ dS, (26)

D =
∫

V
NT

r ρ̃
−1Nσ dV, (27)

A =
∫

V
NT

uNr dV . (28)

Then, solving the minimisation part of (24) gives a maximi-
sation problem as:

maximise
(σ̂ ,r̂)n+1

− 1
2Δt2 r̂T

n+1Dr̂n+1

subject to BTσ̂ n+1 + AT r̂n+1 = f
F(σ̂

j
n+1) ≤ 0, j = 1, . . . , nσ

(29)

At this stage, the contact constrains (4) are imposed on
all potential contact nodes (i.e. mesh nodes located on the
boundaries), which leads to a final problem of the type:

maximize
(σ̂ ,r̂,p j )n+1

− 1
2Δt2 r̂T

n+1Dr̂n+1 − ∑nc
j=1 g0 j p j

subject to BTσ̂ n+1 + AT r̂n+1 + ETρ = f
F(σ̂

i
n+1) ≤ 0, i = 1, . . . , nσ

p j = −nTρ j , j = 1, . . . , nc
q j = −n̂T

ρ j
|q j | − μp j ≤ 0

(30)

where ρ = (ρ1, ρ2)
T are the nodal forces, n = (n1, n2)

T and
n̂ = (−n2, n1)

T are the normal and the tangential of the rigid
boundary, E is an index matrix of zeros and ones, and nc is
the number of potential contacts.

The above problem can be transformed into a stan-
dard form of the second-order cone program (SOCP) and
then solved using the high performance optimization solver
MOSEK [38]. The transformation of (30) into SOCP stan-
dard form is straightforward and has been documented in
[40]. In the course of solving the problem, the kinematic
variables (displacement increments and plastic multipliers)
are recovered as the dual variables, or Lagrange multipliers,
associated with the discrete equilibrium constraints.
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