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Abstract Recent developments in powder technology gave
birth to a new lubricant—powder lubricant. Compared to
liquid lubricant, powder lubricant like graphite powder has
several advantages, such as good electrical conductivity and
good thermal resistance. Such advantages are especially
appreciated in sliding electrical contacts. Thus, the study
of the electrical transmission ability of a shearing powder
layer under different dynamical constraints appears to have
a great interest. Recent works allowed to model the coupling
of mechanical and electrical effects in a discrete medium.
This algorithm was extended to study the electrical proper-
ties of a shearing powder layer with discrete element method.
The mechanical and electrical behaviors of the sample were
studied in different dynamical regimes, characterized by the
inertial number I . The results exhibit an interesting relation-
ship between the average contact resistance and the inertial
number I . An exponential increase of the sample’s electrical
resistance as well as the induced electrical noise are observed
closed to the dense flow limit. Such observations underline
the fact that to ensure the electrical transmission ability of
the powder layer, one must keep the particle size and shear
rate small, and a sufficiently large pressure.
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1 Introduction

Recent developments in powder technology have given birth
to a new lubricant: powder lubricant. Compared to liq-
uid lubricant, powder lubricants like graphite have several
advantages such as static stress, good thermal resistance and
electrical conductance [1]. Such advantages are especially
appreciated in sliding electrical contact, since standard oil-
based lubricant has poor electrical conductivity, and can not
resist the Joule-heat generated by electrical current, which
can rise to above 500 ◦C. In static case, where no shear
motion occurred, many theories and models can be found
in the literature, especially the pioneering works of Rag-
nar Holm [2], who had contributed in both theoretical and
experimental sides. However, most works are limited to sta-
tic cases, where no shearing occurred. Although the needs
are emergent, very few investigations have been reported in
a shearing sample. To fulfill these needs, the present paper
proposes some results from numerical investigations on the
mechanical and electrical coupling for the shearing powder,
with 2D contact dynamic simulation. The mechanical and
electrical coupling algorithm was developed by Renouf et
al. [3] at the basis of works on multi-physical coupling in
discrete element methods. The time-average resistance of a
shearing sample in different regimes is studied, from quasi-
static case to the limit of dense shearing [5] and compared
to mechanical quantities such as the macroscopic friction or
the volume fraction of the sample.

2 Simulation methodology

2.1 Mechanical framework

Numerical simulations dedicated to the mechanical evolu-
tion of granular media can be based either on explicit [4,5]
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or implicit [6,7] method. The Non Smooth Contact Dynam-
ics (NSCD) method used here is implicit and provides a
non-smooth formulation of the bodies impenetrability con-
dition, the collision rules, and the dry Coulomb friction law.
The method is extensively described in Ref. [8] and briefly
explained below.

Firstly, equations of motion are written for a collection of
rigid bodies and discretized by a time integrator. The interac-
tion problem is then solved at contact scale (local level) rather
than at particle scale (global level) as commonly performed
in explicit methods. In other words, equations are written in
terms of relative velocitiesuα and local impulsions rα defined
at each contact point indexed by α. The impenetrability con-
dition mentioned previously means that particle candidates
for contact should not cross the boundaries of the antagonists
bodies. Contacting bodies do not attract each other, i.e., that
the reaction force is positive and vanishes when the contact
vanishes. This can be summarized in the following so-called
velocity Signorini condition:

un ≥ 0, rn ≥ 0, unrn = 0 (1)

where the index n denotes the normal component of the
various quantities (index α is omitted). This philosophy is
different from what is used in explicit methods [5], where
normal forces are usually proportional to the penetration
between two particles.

2.2 Electrical computation

For electrical computation, the algorithm developed by
Renouf et al. [3] is used. The formulation of the electrical
problem relies on an analogy between the contact network
and an electrical resistance network. At any time t , it is
supposed that the mechanical problem is solved and the inter-
action force between each contacting pair is known. For each
contact, the electric current Iα , induced by two neighboring
particles, follows Ohm’s law:

Iα = ΔUα

Rα

, (2)

where Rα represents the contact pair resistance. Rα is deter-
mined by the classical electrical contact constriction model
proposed by Holm [2]:

Rα = ρ

2a
, (3)

where ρ denotes the electrical resistivity of the particle mate-
rial and a the radius of the effective contact area. Such
equation generally holds when a << r (r the radius of the
particle), which is true for rigid discrete particles.

For small particles with high strain, which is typically the
case in powder lubrication, the contact area is more likely
to deform plastically than elastically. To calculate the appar-
ent contact area a, Bowden et al. [9] propose the following
formula:

a =
√

F

πY
, (4)

where F is the contact force and Y the yield strength. Such
equation is valid for apparent contact area. The true con-
tact area which allows electrical current passing is normally
much smaller. Consequently the apparent contact area is mul-
tiplied by a factor γ which represents the ratio between the
effective contact area and apparent contact area. Such a para-
meter is identified through comparison with experimental
data.

Once the local contacting model is chosen, the whole volt-
age network can be solved using the first Kirchhoff law for
each particle i :

∑
β∈Li

Iβ = 0, ∀i ∈ {1, . . . , N }, (5)

where N is the number of particles and Li the list of contacts
connected to particle i . Combination of Eqs. (2) and (5) leads
to the following linear system:

CI = U, (6)

where C is the conductivity matrix while I and U denote
respectively the global intensity and electrical potential vec-
tors. Combined given boundary conditions, such a linear
system can be easily solved with a Gauss–Seidel algorithm
[3].

To complete the model, simulations are compared to the
experiments performed by Noda et al. [10] to determine the
value of γ and to reproduce the linear relationship between
the box height and the sample resistance (cf. Fig. 1).

A value of 2.5 × 10−2 is taken for γ to obtain a good
correlation between experimental and numerical result. It is
interesting to point out that, since the periodic conditions in
x direction are used, the frictional effects between walls and
the particle layer disappeared and the pressure is uniform on
the lower boundary. For these reasons, the dependance of
the electrical resistance on the height is still linear even for
layer thickness larger than 8 mm, contrary to the experimental
data [10] for which the non-uniformity of the pressure is
related to friction between particle layer and walls (Janssen
effect).
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Fig. 1 Sample resistance (R) vs box height (H ). Results were com-
pared to the experimental data by Noda et al. [10]

Fig. 2 Numerical sample for powder shearing with periodic boundary
condition in the X-direction

3 Shearing simulation

3.1 Numerical model

In order to study the reliability of a powder lubricant used
in sliding electrical contact, numerical investigation on the
the electrical conductivity of a sheared powder sample are
performed. The numerical material used in this section is
identical to the one used in the previous section. The simu-
lated system is two-dimensional (cf. Fig. 2).

The granular medium is a dense assembly of 8 641 rigid
disks of average diameter d equal to 200µm and average
mass m. A small size polydispersity of 20 % is consid-
ered to prevent crystallization [11]. The granular medium
is submitted to a plane shear, without gravity, to obtain an
uniform stress distribution. The material is sheared between
two parallel rough walls of length L , distant from H . Peri-
odic boundary conditions are applied along the X-direction.
The wall’s roughness is made with a set of grains sharing the

Table 1 Simulation parameters (nominal values)

Average particle size (r ) 100µm

Polydispersity (Δr ) 20 %

Sample height (H ) 8 mm

Sample width (L) 2 cm

Load pressure (P) 0.25, 512 kPa

Velocity (V ) 0.1, 1, 10 m/s

Time step (dt) 1.0 × 10−7 s

same size polydispersity and mechanical properties than the
flowing grains.

One of the walls is fixed, while the other moves at the
given velocity V which varies from 0.1 to 10 m/s in order to
give a wide range of velocity. The applied pressure P varied
from 250 Pa to 512 kPa. Both parameters P and V are kept
constant in each simulation. Other important parameters can
be found in Table 1.

Moreover frictionless systems are considered leading to
a zero value of local friction coefficient. Thus there is no
rolling and the contact force has only a normal component.
Account for friction will affect the normal component of the
contact force and thus will change the effective contact area
[Cf. Eq. (3)] which depends on the contact force. Neverthe-
less as the friction changes also the global volume fraction
(compacity) of the medium as well as the whole contact net-
work, considering a zero friction avoids such a competition
and offers some perspectives to the present work.

3.2 Inertial number I

The inertial number, denoted I , measures the ratio of iner-
tial force of grains to the imposed force: a small value
corresponds to the quasi-static state, while a high value cor-
responds to the inertial (or dense flow) state or even the
“dynamic” state [12]:

I = γ̇ d√
P/ρ

, (7)

where γ̇ (=V/H) is the shear rate, d the average particle diam-
eter and ρ the density. Three regimes can be distinguished
according to the value of I : quasi static flow (I < 10−3),
dense flow (10−3 < I < 10−1) and collisional flow (I >

10−1).

3.3 Mechanical aspect

Figure 3 presents the visualization of the velocity field within
the sheared sample.
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Fig. 3 Visualization velocity field within the sheared sample for a
value of I equal to 0.05

Fig. 4 a Velocity profile through the thickness of the sample and b
velocity variation profile through the thickness of the sample

Simulations are running until a steady state is reached.
Such a steady state is generally associated to a linear velocity
profile through the thickness of the sample (Cf. Fig. 4a).

Indeed even if the profile is linear the system presents a
shear band located in the center of the shear cell. As friction
less contact are considered, it is not possible to observe the
shear band using the angular velocity as in [14], but such a
phenomena could be emphasize by plotting the fluctuation
of the velocity around the mean velocity value (Cf. Fig. 4b).

In a quasi static flow, as its name indicates, the sheared
granular layer is close to a static state. Its average packing
fraction is then close to the RCP (Random Close Packing)
limit. It remains true in dense flow regime, where the shearing
rate would create more porosity then decrease the packing
fraction, in order to better accommodate the dynamic strains.
In the analytical model proposed by Dahmen et al. [15],
authors have shown that voids in granular materials dissi-
pate a fraction of the released stress.

Cruz et al. [13] show that the average packing fraction
decreased proportionally to the inertial number I . So, the first
step is to reproduce the same behaviors with varying stress
P and V , and the average particle size r . The instantaneous
packing fraction is recorded by the upper plan position y(t).
By definition, the packing fraction Φ(t) is inversely propor-
tional to y(t). So the following relation can be drawn out:

Fig. 5 Evolution of the time-average packing fraction Φ̄ and the effec-
tive friction coefficient μ̄ with increasing inertial number I . For Φ

values were normalized to the static case where I = 0. Varying dynamic
stress have been applied with different values of velocity V and applied
pressure P . Data were compared to the linear equation proposed by
Cruz et al. [13]

Φ(t)

Φ∗ = y∗

y(t)
, (8)

where Φ∗ is the packing fraction for V = 0 (or I = 0), close
to the RCP limit. The simulation results are summarized in
Fig. 5. As expected, for values of I smaller than 10−3, the
relative packing fraction is close to 1. For values of I lying
between 10−3 and 10−1, the increase is amplified. All data
can be fitted by the linear equation proposed by Cruz et al.
[13]:

Φ = Φ∗(1 − k I ), (9)

with k = 0.32, close to the value (0.3) proposed by the same
author.

For the effective friction coefficient of the sample, another
linear equation is proposed by Cruz et al. [13]. A similar trend
is found here:

μ = μ∗ + bI, (10)

with μ∗ = 0.08 and b = 1.2. The slight difference of the
static limit is related to the local friction condition used in
[13]. However, it is interesting to note that the value of b is
unchanged and independent of the local friction.
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Fig. 6 Electrical potential map for I = 10−3 (up) and I = 0.1 (down):
the number of paths available to transmit the electrical current decreases
for large values of I

Fig. 7 Evolution of the time-average sample resistance R̄ with increas-
ing inertial number I . Values are normalized to the static case where
I = 0. Varying dynamic stress have been applied with different values
of velocity V and applied pressure P

3.4 Mean electrical resistance

Concerning the electrical aspect of the simulations, it is pos-
sible to observe the evolution of the electrical potential within
the sample and the regions with low or high resistivity (cf.
Fig. 6). As no gravity is set on the simulation, blue dots on
Fig. 6 correspond to floating particles which have any contact.

From a quantitative point of view, a general increase of the
time-average electrical resistance of the sample R̄ is observed
with the increase of I (cf. Fig. 7). Unlike the mechanical fac-
tors like Φ or μ, the values of electrical resistance is plotted
with logarithmic scale.

When I get close to 10−1, at the edge of dense flow limit,
a sharp increase of the resistance is observed. For I greater
than 10−1, since very few or no percolation chains exist in
the sample [16], the effective resistance becomes very large
or even close to infinite. An exponential relationship can be
found between R̄/R∗ and I :

Fig. 8 Temporal sample resistance for different values of I

R̄

R∗ = Exp

(
I

I0

)
, (11)

with I0 = 0.05. Such equation is surprisingly simple, and its
physical meaning is very interesting. Two lectures are pos-
sible. The first one is that, if the local kinematic is known
(pressure and velocity), is it possible to determine the value
of the average sample resistance. The second one is that,
if it is possible to measure the average sample resistance,
is it possible to determine the value of I and to obtain
some information concerning contact conditions. Neverthe-
less, one could observe that the fit for high values of I is not
as good as for small values (i.e. I < 4 10−2).

3.5 Electrical noise

In the analysis of an electrical signal, it’s important no only
to consider the average effective resistance, but also the noise
amplitude which can represent a signature of the process. In
some circumstances, the variation of a signal could be more
important than the average effective resistance itself [17].

For this purpose, the temporal electrical signal is recorded
during simulations (cf. Fig. 8).

As for the effective resistance, the shape of the tempo-
ral signal strongly depends on the inertial number I . In the
quasi-static regime, the signal is smooth and exhibits small
variations around its average value. In the dense flow regime,
the signal becomes volatile and some pulses occur. To quan-
tify the induced noise level with different values of I , the
histogram of the signal is analyzed (cf. Fig. 9).

One observe that the induced noise for small I follows a
normal-distribution. Such distribution suggests that the gen-
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Fig. 9 a Histograms of temporal signal with some typical value of
I and b linear relationship between the standard deviation σ and the
square root of the inertial number

√
I

Fig. 10 Noise level (or standard deviation) σ increases with inertial
number I . Compared to raw data (b), a correction term

√
V was found

to be better fitted the simulation results (a)

erated fluctuations are a white noise. It is interesting to point
out that not only the average value of relative resistance varies
with the inertial number I , but also the standard deviation σ .
This last one seems to variate as a linear function of

√
I :

the higher is the inertial number the higher is the standard
deviation.

As for the average value of relative resistance, the stan-
dard deviation σ is plotted as a function of I (cf. insert of
Fig. 10). If the global trend is the same, it is difficult to fit all
data. According to previous observation (cf. Fig. 9), such an
observation seems logical, and if I is kept as control para-
meter, it is the evolution of the product σ

√
V which should

be plotted as a function of I .

From Fig. 10, it is possible to draw the following relation:

σ
√
V = c(Exp

(
I

Ic
) − 1

)
, (12)

where c and Ic are respectively equal to 0.25 and 0.025. Such
results suggest that, not only the internal structure contribute
to the noise level, but also the change rate V .

4 Conclusion

The study of the electrical conductivity of a sheared powder
sample is performed. Simulation results unveil the correla-
tions between the mechanical and electrical phenomena in
a sample under dynamical solicitations. Various aspects are
analyzed in a dense shearing flow, including the packing frac-
tion, the friction coefficient and the time-average electrical
resistance with different boundary conditions.

Many papers from the literature suggested that the con-
tact network depends strongly on the inertial number I of
the sheared sample, such as contact anisotropy [16], and the
average coordination number [16]. As the electrical network
is strongly related to the contact one, it is logical to obtain the
dependency of the sample resistance on the inertial number I .

For a powder lubricated electrical contact, a low voltage
drop is expected to limit electrical loss. With the present
results, it can be seen that the inertial number I in the system
should be kept small all process long. It implies that for the
same thickness, small powder particle, high pressure, and
low shear rate are the key factors for a successful current
transmission. So, contrary to liquid lubrication, where high
velocity and low pressure are appreciated, high velocity is a
threat to the electrical transmission for a powder lubricated
electrical contact. Such results can guide engineers for their
conception.

From another practical standpoint, since electrical signals
are very reliable and sensitive, as we have shown, electrical
signals could be used to detect events happening in a gran-
ular packing, just as many authors have already suggested
[18]. Consequently, the proposed algorithm could give com-
plementary informations.
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