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Abstract It is well known that particle breakage plays a
critical role in the mechanical behavior of granular materials
and has been a topic subject to intensive studies. This paper
presents a three dimensional fracture model in the context of
combined finite-discrete element method (FDEM) to simu-
late the breakage of irregular shaped granular materials, e.g.,
sands, gravels, and rockfills. In this method, each particle is
discretized into a finite element mesh. The potential fracture
paths are represented by pre-inserted non-thickness cohe-
sive interface elements with a progressive damage model.
The Mohr–Coulomb model with tension cut-off is employed
as the damage initiation criterion to rupture the predominant
failure mode at the particle scale. The particle breakage mod-
eling using combined FDEM is validated by the qualitative
agreement between the results of simulated single particle
crushing tests and those obtained from laboratory tests and
prior DEM simulations. A comprehensive numerical triaxial
tests are carried out on both the unbreakable and break-
able particle assemblies with varied confining pressure and
particle crushability. The simulated stress–strain–dilation
responses of breakable granular assembly are qualitatively
in good agreement with the experimental observations. The
effects of particle breakage on the compressibility, shear
strength, volumetric response of the fairly dense breakable
granular assembly are thoroughly investigated through a
variety of mechanism demonstrations and micromechanical
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analysis. This paper also reports the energy input and dissi-
pation behavior and its relation to the mechanical response.
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1 Introduction

Particle breakage plays an important role in the mechani-
cal behavior of granular materials, typically in high rockfill
dams, where the contact forces acting on grains can be
high enough to cause excessive particle crushing. In recog-
nition of its importance in many geotechnical engineering
applications, particle behavior has been a topic subject to
intensive experimental studies over the past few decades
[1–4]. The experimental studies have proved that particle
breakage is related to many fundamental aspects of granular
materials, such as dilatancy, strain hardening, shear band for-
mation, energy dissipation, and creep deformation. However,
all of the micromechanics related to the particle breakage
are still not fully understood. This deficiency hinders the
development of constitutive models incorporating the parti-
cle breakage effects.

In parallel with experimental studies, another major con-
tribution in this field comes from the discrete element
modeling pioneered by Robertson and Bolton [5] and later
developed by Cheng et al. [6]. The theoretical basis of this
work is that grains are taken to fracture probabilistically, the
likelihood increasing with applied stress and can be described
by Weibull’s statistical distribution. On this basis, a wealth
of numerical modeling works have been carried out to inves-
tigate the effects of particle breakage on the mechanical
behavior of granular materials and its microscopic mecha-
nism [7–11]. Previous works handing particle breakage are
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mainly realized by the breakage of subparticles joined by
bonding or cohesive forces. Another approach is to replace
the particle fulfilling a predefined failure criterion with an
equivalent group of smaller particles [12,13]. The recent
development in this modeling approach includes the work
done by de Bono and McDowell [14] and subsequently
improved by Zhou et al. [15].

DEM has demonstrated its ability in reproducing the
macroscopic response and exploring the microscopic mecha-
nism of granular materials. However, problems still encoun-
tered with these DEM applications that reduce the physical
behavior they attempt to model, namely deformability, frac-
ture and shape representation, have long been recognized.
The simplification of particle shapes will arise some compu-
tational issues when breakage occurs, such as the unrealistic
release of voids initially enclosed by subparticles. For obey-
ing conservation of mass, the total volume of new spheres is
equal to that of the original parent sphere, this will produce
local pressure spikes during breakage [14].

As observed by many researchers, the original boundary
between continuous and discontinuous modeling techniques
has become less clear as several techniques are capable
of dealing with both the continuous and discontinuous
problems. In particular, the hybrid approach known as the
combined finite-discrete element method, which was first
pioneered by Munjiza and Owen in 1990’s [16], and later
becoming established with a text book [17]. Hereinafter
the combined finite-discrete element method is referred to
as the combined FDEM. In discrete modeling of granu-
lar materials, the most attractive benefit of using combined
FDEM is that various particle shapes can be easily intro-
duced with a general contact solution. Latham and Munjiza
simulated the gravitational deposition of irregular shaped
units using combined FDEM, the comparison between sim-
ulated and experimental results demonstrates that combined
FDEM can handle the interactions between complex-shaped
particles with reasonable accuracy [18]. At present, the com-
bined FDEM has been used in various scientific researches
and engineering applications, such as rock engineering [19–
22], granular materials [23,24], and coastal engineering
[25,26].

However, in this context, while considerable advances
have been made in the numerical construction of realis-
tic granular materials [23,27], the modeling of fracture and
fragmentation of granular materials has presented a consid-
erable challenge which need us to develop a robust three
dimensional fracture model in combined FDEM [24,26].
The research object of this paper is to develop a robust
three dimensional fracture model within the framework of
combined FDEM, and then use it to investigate the mechan-
ical behavior of breakable granular materials as well as the
energy transformation and dissipation behavior. First, the
fundamental issues of combined FDEM, especially the three

dimensional fracture model, are described in Sect. 2. Next
is Sect. 3, single particle crushing tests are simulated and
the results are compared with previous studies as a means
of validating the particle breakage modeling using combined
FDEM. In Sects. 4 and 5, a series of numerical triaxial tests
are performed on a dense packing of irregular shaped particle
assembly. The macroscopic behaviors of breakable granular
materials are fully examined. This paper takes a further step
to explore the energy transformation and dissipation dur-
ing the shearing process, which offers deeper insights into
the role of particle breakage in the mechanical behavior of
granular materials. The most significant contribution of this
paper is that we developed a practical and robust particle
breakage modeling technique in the context of combined
FDEM, which has the potential to capture the complex phys-
ical behavior of breakable granular materials.

2 Fundamental principles of combined FDEM

Combined FDEM incorporates aspects of both the finite ele-
ment method and discrete element method into a uniform
framework. By discretizing the discrete bodies into finite
elements, the particle shape and deformability can be well
described by FEM formulation, while the fracture and frag-
mentation, contact detection, interaction between separate
bodies can be handled by DEM formulation. This hybrid
approach can also be considered as full FEM, only the contact
detection and interaction is “borrowed” from DEM. Com-
pared with DEM, the hybrid approach is more versatile in
dealing with deformable, irregular shaped and breakable dis-
crete bodies. Compared with FEM, the hybrid approach is
more robust and efficient in dealing with solid fracture and
multi body collisions.

A typical combined FDEM simulation comprises a large
number of interacting bodies. The main processes included
in the combined FDEM are contact detection, contact inter-
action, finite strain elasticity as well as fracture and fragmen-
tation. Each of those processes, but deformability, is briefly
illustrated in the coming sections. Deformability is imple-
mented as in any standard explicit finite element analysis and
thus is not discussed any further here. In this study, the com-
bined FDEM modeling of breakable granular materials are
performed using the explicit module of the general-purposed
finite element software ABAQUS/Explicit [28]. The explicit
integration scheme and general contact capability of this
module makes it appropriate for large number of actual and
potential contacts undergoing large deformation.

2.1 Contact detection and interaction

Contact detection works in a similar way as in DEM mod-
eling, which detects all the couples that are in contact and
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eliminate couples that are too far and cannot possibly in con-
tact. Once couples of discrete objects in contact have been
detected, a contact interaction algorithm is used to evalu-
ate contact forces between contacting bodies. The contact
interaction algorithm takes advantage of the finite element
discretization of discrete bodies, and combines this with the
potential function method. The potential function method is
based on the assumption that contacting couples tend to pen-
etrate into each other generating distributed contact forces.
This will yield realistic distribution of contact force over
finite contact domain resulting from the overlap of contact-
ing bodies. If the potentials are chosen to be constant on the
boundaries of both contactor and target bodies, energy bal-
ance is preserved independent of the value of penalty term,
shape and size of the overlap between two contacting bodies
[17]. As penalty term tends to infinity, a body impenetrabil-
ity condition is approached. Then a Coulomb-type friction
law is implemented in the interaction algorithm based on the
sliding distance of two contacting bodies.

2.2 Governing equations

In the combined FDEM modeling of granular materials, each
particle is discretized by tetrahedral elements and cohesive
elements without thickness that will be described in the
next section. The motions of element nodes are governed
by internal forces and external forces acting on them. The
nodal forces include the contribution from contact interac-
tion, deformation of a discrete element, and external loads,
etc.. In general, the governing equations can be expressed as:

M
∂2x
∂t2 + Fint − Fext − Fc = 0 (1)

where M is the lumped mass matrix of the system, x is the
vector of nodal displacements. Fint, Fext and Fc are the vec-
tors of internal resisting forces, of applied external loads and
of contact forces, respectively. Contact forces, Fc are cal-
culated either between contacting bodies or along internal
discontinuities, i.e., pre-existing and newly created fractures.

Internal resisting forces, Fint, include the contribution from
the elastic forces, Fe, and the cohesive element bonding
forces, Fcoh. The elastic forces, Fe, are computed on an
element-by-element basis under the assumption of isotropic
linear elasticity. Cohesive element bonding forces, Fcoh, are
used to simulate material failure, as further explained in the
next section.

The equations of motion of element nodes are integrated
using the explicit central-difference integration scheme.
After the calculation of all the parts contributing to the nodal
force in Eq. (1), the accelerations at the beginning of the
increment are computed, and then the velocity and position
at nodes are updated. The choice of time-step is important
for the numerical stability of combined FDEM simulation,
because the central-difference operator is conditionally sta-
ble. Both the FEM and DEM stability requirements should be
satisfied simultaneously, so the ultimate time-step �t used in
the combined FDEM simulation is the smaller value between
�tFEM and �tDEM [26].

2.3 Material failure model

The fracture and fragmentation is modelled using the cohe-
sive zone model (CZM), which represents the mechanical
processes in the fracture process zone (FPZ) ahead of the
crack tip. Following an approach similar to that pioneered
by Xu and Needleman [29], non-thickness cohesive inter-
face elements (CIEs) are embedded between the edges of all
adjacent tetrahedral element pairs from the very beginning
of the simulation, as depicted in Fig. 1. Thus, the fracture
of the material progresses solely on the damage and fail-
ure of cohesive elements while the bulk elements are treated
as linear elastic using tetrahedral elements. Since fractures
can nucleate and propagate only along the cohesive ele-
ments, the potential crack paths do not need to be assumed in
advance and arbitrary fracture trajectories can be reproduced
within the constraints imposed by the initial mesh topol-
ogy. Unlike other fracture modeling techniques, remeshing
is not performed and mesh topology is never updated dur-
ing the simulation, so a relatively small element size should

Fig. 1 Discretization of
irregular shaped particle into
finite element mesh
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Fig. 2 Constitutive relations of cohesive interface elements

be adopted to reproduce the realistic fracture path. Upon
breakage of the cohesive surface, the cohesive element is
removed from the simulation and therefore the model locally
transits from a continuum to a discontinuum. The newly cre-
ated discontinuity is automatically recognized and modeled
by the contact interaction. Compared with alternative analy-
sis techniques, CZM offers the advantages of encompassing
both crack initiation and crack propagation and the ability
to model multiple crack paths, without the need for com-
putationally expensive crack-path following algorithms. In
addition, it does not require the direction of crack propaga-
tion to be known in advance, and cracks have the potential to
propagate along any path where cohesive interface elements
are placed.

There are three key ingredients in formulating the CZM,
namely, damage initiation criterion, constitutive law, and
critical energy release rate, GC (as shown in Fig. 2). The rela-
tionship between relative displacement and traction inside
the FPZ is characterized by the cohesive constitutive law, in
which the traction and separation response is expressed in
several functional forms, such as a trapezoidal function, a
polynomial function, an exponential function, or most com-
monly a bilinear function [30]. Several investigations dealt
with the effect of the shape of the traction-separation func-
tion on the simulated fracture behavior, and they came to
the conclusion that the detailed shape of traction-separation
curve is less important than the values of fracture energy and
cohesive strength [31]. Thus a bilinear form of CZM is used
due to its simplicity without losing the simulation accuracy.

For a 3D case, the nominal traction stress vector, t, con-
sists of three components: tn, ts1, and ts2 which represents
the normal and two shear tractions, repressively. The corre-
sponding relative displacements are denoted by δn, δs1, and
δs2. The constitutive law in local coordinate system relates the
interface tractions to the relative displacements as follows:

t =
⎧
⎨

⎩

tn
ts1

ts2

⎫
⎬

⎭
=

⎡

⎣
kn

ks

ks

⎤

⎦

⎧
⎨

⎩

δn

δs2

δs1

⎫
⎬

⎭
= Kδ (2)

The off-diagonal terms in the elasticity matrix K are set
to zero, which provides an uncoupled behavior between
the traction vector and separation vector. The initial stiff-
ness of non-thickness CIEs does not represent a physically
measurable quantity and is treated as a penalty parame-
ter. Ideally, the initial stiffness of CIEs should be infinite
so that they do not affect the global compliance of the
model before the damage initiation. However, a finite value
must be used in the context of combined FDEM. Such an
artificial stiffness is represented by the normal and shear
penalty values, kn, and ks. For practical purposes, the cohe-
sive contribution to the overall model compliance can be
largely limited by adopting a very high penalty values
[17,32]. However, larger values of the interface stiffness
may cause numerical problems, such as spurious traction
oscillations of the tractions [33]. Thus the interface stiffness
should be large enough not to alter the overall stiffness of
the model but small enough to reduce the risk of numer-
ical problems. Different guidelines have been proposed
for selecting the stiffness of CIEs in composite materials
based on experience [34–36]. Following the approach ini-
tially proposed by Song et al. [37] and Turon et al. [38],
and later adopted by Lens et al. [39], the stiffness of non-
thickness CIEs is determined in terms of the elastic modulus
and the length of the region surrounding the CIEs. The
effective Young’s modulus of a system consisting of solid
elements bonded with non-thickness CIEs is estimated as
[37–39]:

Eeff = E

(
1

1 + E/(knle)

)

(3)

where E is the Young’s modulus of the bulk material, le is
a characteristic length scale, which is taken as the average
mesh size of all bulk finite elements, and kn is the initial
stiffness of the interface in the normal direction. The effec-
tive elastic properties of the system will not be affected by the
CIEs whenever the inequality E << knle is being satisfied,
i.e.:
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kn = αE

le
(4)

where α is a parameter much larger than 1.
Furthermore, similar expression can be derived for shear

stiffness:

ks = αG

le
(5)

where G is the shear modulus of the bulk material.
The use of Eqs. (4) and (5) is preferable to guidelines

presented in previous work because it results from mechani-
cal considerations, and it provides a sufficient stiffness while
avoiding spurious oscillations caused by an excessively stiff
interface.

Failure of the traction-separation response is defined
within the general framework used for quasi-brittle mate-
rials, which consists of two ingredients: a damage initial
criterion and a damage evolution law. The initial response
of the cohesive element is assumed to be linear as discussed
above. Depending on the local tractions of a CIE, interface
damage can occur in mode I, model II, and in mixed-mode
I/II. A mode I damage initiates when the normal traction, tn,
reaches the tensile strength of the material, ft . As the dam-
age processes, the normal traction, tn, is assumed to gradually
decrease to zero and a traction-free surface is then created.
The mode II damage is initiated when the tangential traction,

tshear =
√

t2
s1 + t2

s2, reaches the shear strength of the mater-
ial, fs. The tensile strength, ft , is assumed to be a constant,
while the shear strength, fs, is defined by the Mohr-Coulomb
criterion with a tension cut-off:

fs =
{
c − tn tan ϕi if tn < ft
c − ft tan ϕi if tn ≥ ft

(6)

where c is the internal cohesion, ϕi is the material internal
friction angle. Note here positive normal tractions are con-
sidered to represent tension, whereas negative normal stress
components indicate compression.

The use of Mohr-Coulomb criterion in the formulation of
CZM is not particularly new, see for instance Camacho and
Ortiz [40] and Lens et al. [39]. Upon undergoing the shear
strength, fs, the tangential traction is gradually reduced to a
residual value, fr, which corresponds to a purely frictional
resistance:

fr = −tn tan ϕf (7)

where ϕf is the fracture friction angle after the breakage of
the embedded CIE.

For mix-mode loading, interface damage is assumed to
initiate when a quadratic interaction function involving the

tensile strength, ft , and shear strength, fs, reaches a value of
one, as defined in the expression below:
{ 〈tn〉

ft

}2

+
{
tshear

fs

}2

≥ 1 (8)

where 〈 〉 is the Macaulay bracket considering that compres-
sive normal traction do not affect damage onset.

From an energetic point of view, as there are stresses to
be overcome in propagating a crack, energy is dissipated
during the fracturing process. Under single-mode loading,
the area under the traction-separation curves in Fig. 2a, b
represents the critical energy release rate in the corresponding
fracture mode. Under mixed-mode loading, the total critical
energy release rate, GC, required to fully break a unit crack
surface area, is normally established in terms of an interaction
between the energy release rates and their critical values. The
most widely used criterion to predict damage evolution under
mixed-mode loading is the power law criterion:
(

GI

GIC

)β

+
(

GII

GIIC

)β

= 1 (9)

where GIC and GIIC are critical energy release rate in pure
tension and shearing modes, respectively. β is a material
parameter derived from mixed-mode tests and will gener-
ally assume values between 1 and 2. For β = 1 and β = 2
the linear criterion and the quadratic criterion are recovered,
respectively.

Knowing GIC and GIIC for pure mode I and mode II, and
the mode ratio GI/GII, we may then use Eq. (9) to obtain a
GC such that, at propagation:

GC = GI + GII (10)

For linear damage evolution, the damage variable, D, is deter-
mined using the following expression:

D = δf
m

(
δmax

m − δ0
m

)

δmax
m (δ

f
m − δ0

m)

δf
m = 2GC/t0

eff

(11)

where δmax
m refers to the maximum value of the effective rela-

tive displacement attained during the loading history. δ0
m and

δf
m are the effective relative displacements at damage initi-

ation and complete failure, respectively. t0
eff is the effective

traction at damage initiation. The effective displacement, δm,
and effective traction, teff , are defined as follows:

δm =
√

〈δn〉2 + δ2
shear =

√

〈δn〉2 + δ2
s1 + δ2

s2

teff =
√

〈tn〉2 + t2
shear =

√

〈tn〉2 + t2
s1 + t2

s2

(12)

where 〈 〉 is the Macaulay bracket.

123



7 Page 6 of 17 G. Ma et al.

3 Validation of particle breakage modeling using
combined FDEM

Single particle crushing tests were first performed on spher-
ical grain to validate the particle breakage modeling in the
context of the combined FDEM. The spherical morphology
eliminates the complications caused by the irregular shapes
of real particles. As shown in the schematic diagram of crush-
ing test in Fig. 3, a rock grain with diameter of 60 mm was
placed between two rigid platens, then vertically lowering
the upper one to force the grain to break, while the bottom
plate was totally fixed. The grain is meshed by quadratic
tetrahedral elements and non-thickness CIEs, and the aver-
age mesh size is approximately 10 mm. A total number of
647 tetrahedral elements and 4723 CIEs are generated. The
friction coefficient between the grain and rigid plates is set
to 0.1. A time step �t = 1 × 10−7s is used in the numerical
simulations. The tensile strengths of the CIEs are randomly
assigned based on a lognormal distribution, with other para-
meters, i.e., cohesion, friction angle of intact material, and
fracture energies are given in Table 1. For simplicity, the

internal friction angle, ϕi, and ratio of uniaxial compres-
sive strength to tensile strength, fc/ ft , are set to 50◦ and
15, respectively. The cohesion strength is then calculated as
c = 15 ft(1−sin ϕi)/(2 cos ϕi). The parameters summarized
in Table 1 are assumed to represent the medium crushability
particle.

Extensive Monte Carlo simulations with different random
thresholds for the CIEs were conducted to investigate the sta-
tistical characteristics of the fracture strength of grains. It has
been proved that at least 30 tests are required to give a statisti-
cal representation of the average strength and the distribution
of strengths. The reaction force on the top plate together
with the broken CIEs in every 0.04 mm of loading displace-
ment are recorded and illustrated in Fig. 3a. Before reaching
the peak force, the grain deforms linearly and only a small
number of CIEs has been broken. A single dominant peak
force of approximately 12.4 kN appears at a displacement of
0.16 mm, followed by a sharp drop in the load-bearing capa-
bility. Before this dominant peak, the curve has an overall
steep slope with slight fluctuation due to a series of minor
perturbations caused by local CIE breakages. After reaching

Fig. 3 Single particle crushing
tests results: a simulated
force-displacement curve and
histogram of broken CIEs in
every 0.04 mm of loading
displacement; b fracture process
of particle in crushing test
arranged in time sequence

Table 1 Input parameters used
in combined FDEM modeling

Parameter Value

Bulk elements Mass density, ρ (kg/m3) 2700

Young’s modulus, E (GPa) 40

Poisson’ s ratio, υ 0.2

Cohesive elements Tensile strength of CIE, ft (MPa) Lognormal distribution with mean
value of 25 MPa and variation coef-
ficient of 0.5

Friction angle of intact material, ϕi (
◦) 50◦

Friction angle of fractures, ϕf (◦) 26.56◦

Cohesion of CIE, c (MPa) c = 15 ft(1 − sin ϕi)/(2 cos ϕi)

Mode-I fracture energy, GI (N/m) 190

Mode-II fracture energy, GII (N/m) 950

Contact law Inter-particle sliding friction, μ 0.5
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the peak, more cracks formed the gradually connect to each
other, leading to the final splitting of the particle. Finally, the
grain is seen to split into three major pieces and some debris.

Figure 3b shows the progressive fracture pattern of the
grain under compression. The letters in the figure indicate
the different loading stages, which are labeled in Fig. 3a.
There is no CIE breakage in the linear elastic stage and few
CIE breaks as an indication of crack initiation. Damage initi-
ates from the contact zone between the grain and top platen,
in where the circumferential stress field is tensile. Cracks ini-
tiate from the contact point between the grain and top platen,
and then run through during the softening stage, roughly par-
allel to the direction of loading to form meridional planes. For
all configurations, a sharp transition from the damage to the
fragmentation region is observed. The fracture pattern is very
similar to the single particle loading tests of spherical parti-
cles [41,42], but also the breakage of spherical particles at
impact loading [43,44]. Although the mechanical responses
of a single particle at static and impact loading are different,
the overall fracture patterns are similar. We show that this pri-
mary fracture mechanism is very robust with respect to the
internal structure of the grain. The validity of the numerical
simulation of single particle crushing test can be demon-
strated quantitatively by comparing the simulated behavior
with the experimental results of platen compression tests on
single quartz by Nakata et al. [45].

It has been theoretically and experimentally verified that
the grain tensile strength follow a Weibull distribution well
[46]. For a given rock grain of average size d loaded diamet-
rically, an induced characteristic strength σ is defined as the
diametral force at failure Fdivided by the square of the parti-
cle diameter, which may be taken to be the distance between
the platens at failure:

σ = F

d2 (13)

Based on the Weibull model, the cumulative probability Ps
that a grain of size d survives a tensile stress σ can be
described as:

Ps = exp

[

−
(
d

d0

) (
σ

σ0

)m]

(14)

where d0 is a reference size and σ0 is the characteristic stress
for a grain of size d0 to give a survival probability of 37 %,
m is the Weibull modulus which describes the variability in
the tensile strength of different grains.

For a finite number of tested grains, the survival probabil-
ity Ps is calculated using the mean rank position:

Ps = 1 − i

N + 1
(15)

where N is the total number of grains and i is the rank of the
grain sorted in an ascending order.

Fig. 4 Comparison of simulation data with Weibull’s equation

By rewriting Eq. (14) with d = d0, a linear relationship
can be obtained:

ln [ln (1/Ps)] = m ln σ − m ln σ0 (16)

Taking ln σ and ln [ln (1/Ps)] as the x- and y-axis, which is
a plot of ln [ln (1/Ps)] against ln σ , the Weibull modulus m
is the slope of the best fit line, and the value of σ0 is the value
of σ when ln [ln (1/Ps)] = 0. The simulated data points and
the corresponding fitting curves according to Eq. (16) for the
spherical grains are plotted in Fig. 4. The data points sat-
isfy the Weibull distribution well, except at lower strength
ranges the data deviates from the Weibull best fit line. The
Kolmogorov Smirnov goodness of fit test is performed and
the returned vale of 0 indicates a failure to reject the Weibull
hypothesis at the 0.05 significance level. This result indicate
that, with the assumption of the strength of CIEs obey lognor-
mal distribution, the behavior of the grains is approximately
Weibullian. This is in excellent agreement with experimen-
tal results presented in [42,47], and DEM modeling results
presented in [11,48].

4 Triaxial compression tests of breakable granular
materials

4.1 Numerical sample preparation

The polydisperse assembly representing the granular mate-
rials consists of irregular shaped polyhedral particles. Each
particle is randomly generated within an ellipsoid by a spe-
cially designed and efficient algorithm [23]. To achieve a
balance between the sample representativity and affordable
CPU time, the equivalent particle diameter ranges from 9
mm (dmin) to 27 mm (dmax) with a Rosin-Rammler distri-
bution, giving a mean grain diameter (d50) of 18 mm (as
shown in Fig. 5). The equivalent particle diameter is defined
as the diameter of a sphere with equal volume of the irregular
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Fig. 5 Particle size distribution

Fig. 6 Schematic diagram of triaxial test and numerical sample

shaped particle. Firstly, for guaranteeing no initial contact
overclosure, a loose assembly of 10,063 polyhedral parti-
cles was generated using random deposition. Following the
geometric processing, the assembly was compacted uniax-
ially insider a cylinder until the desired sample height was
reached, which is similar to the tamping method in laboratory
test. During the sample preparation, the inter-particle friction
coefficient was set to zero to obtain a relatively dense pack-
ing, and the particle breakage was also disabled. The final
configuration of the numerical sample shown in Fig. 6 has a
void ratio of 0.5625 corresponding to a relativity dense gran-
ular packing. The average mesh size is approximately 4 mm.
On average, each particle is discretized into 350 quadratic
tetrahedral elements and 2000 CIEs to reproduce a realistic
fracture pattern.

4.2 Triaxial test set-up

The virtual triaxial compression test set-up is illustrated in
Fig. 6. The numerical sample with diameter of 300 mm and

height of 600 mm was placed between the top and bottom
rigid platens and externally reinforced by a thin and flexi-
ble membrane. In the numerical triaxial testing of granular
materials, special-purpose elements are necessary to model
the rubber membrane used to provide the confinement of
the sample. Such membrane has been modeled with chains
of circular or spherical particles in prior discrete element
simulations [49,50]. In combined FDEM modeling, the rub-
ber membrane is modeled with the deformable membrane
elements with Ogden hyperelastic material model that can
transmit in-plane force only and has no bending stiffness,
which is allowed to deform flexibly to mimic the laboratory
sample deformation. The hyperelastic model is based on the
assumption of isotropic behavior throughout the deforma-
tion history. Hence, the hyperelastic materials are described
in terms of a strain energy potential, which defines the strain
energy stored in the material per unit of reference volume as
a function of the strain at that point in the material. There are
several forms of strain energy potentials available to model
approximately incompressible isotropic rubberlike materi-
als, such as the Ogden form. The Ogden hyperelastic material
model and the multiple experimental results used to fit the
model parameters can be found in ABAQUS user’s manual
[28].

The numerical triaxial test was performed using the
following protocol. The numerical sample was initially com-
pacted hydrostatically to a prescribed confining pressure.
Then, the sample was sheared by displacing the top platen in
a downward direction at constant velocity, while the confin-
ing pressure acting on the exterior surface of the membrane
was kept constant, and the bottom platen was fixed. The tri-
axial shearing continued until the axial strain reached around
16 %. The loading velocity is slow enough to ensure the sam-
ple is sheared under quasi-static condition. The simulations
were performed using 24 Intel Xeon 2.4 GHz processors
and 16 GB DDR3 1600 MHz RAM memory at the Water
Resources and Hydropower High Performance Computing
Center. The CPU time takes about 37 h per simulation.

4.3 Choosing input parameters

A typical combined FDEM simulation requires various input
parameters. The selection of these parameters is very impor-
tant to reflect accurately a real problem. As described above,
the crushability of the particles is represented by the CIE
strength and characterized by the Mohr-Coulomb criterion
with tension cut-off which consists of three parameters, the
uniaxial tension strength ft , internal friction angle, ϕi, and
cohesion strength, c, respectively. It should be noted that ϕi

and c are used to quantify the strength of CIE but not the
granular materials itself. The parameters listed in Table 1 are
used in this qualitative study.

123



A hybrid approach for modeling of breakable granular materials using combined finite . . . Page 9 of 17 7

5 Simulation results of numerical triaxial tests

5.1 Comparisons of breakable and unbreakable
granular materials

Under conventional triaxial conditions with vertical com-
pression, we have σ1 ≥ σ2 = σ3, where σ1, σ2, and σ3

are the principal stresses. The mean and deviator stresses
are expressed as p = (σ1 + 2σ3)/3 and q = σ1 − σ3,
respectively. An area correction and membrane correction
are applied to all numerical triaxial tests. The cross sec-
tional area of the numerical sample is corrected during
consolidation and shearing phases assuming that the sam-
ple deforms as a right circular cylinder. It is generally well
established in the literature that the membrane provides
resistance to the applied loads and that it is necessary to
correct for its contribution. A positive value of volumetric
strain indicates compression while a negative value indicates
dilation.

Comparative numerical triaxial tests were conducted on
breakable and unbreakable granular assemblies, respec-
tively. At the very beginning, both granular assemblies have
identical configuration, except that non-thickness CIEs are

embedded into the finite element mesh of the breakable one,
while particles in the unbreakable one can deform only. Fig-
ure 7 shows the deformations of breakable granular assembly
during the shearing process at confining pressure of 0.8 MPa,
the color of particles indicates the magnitude of displace-
ment. Bulging is shown in all of the subplots, similar to that
observed by laboratory test. Due to the particle breakage,
the bulging of breakable granular assembly is milder than
the unbreakable one. The three-dimensional view of parti-
cle breakages in a dense granular assembly is difficulty to
capture, so a cut plane perpendicular to the y-direction and
passing through the center of the granular assembly is made
to show displacement and particle breakages in this plane(as
shown in Fig. 8a). Compared with the breakable assembly
in Fig. 8c, a relatively clear “X” type shear band is formed
in the unbreakable assembly in Fig. 8b, where the lateral
membrane boundaries are seen to deform severely to form
local “wraps” around the ends of the shear band, and simi-
lar observations were made by pervious DEM investigations
[11]. This is a clear indication of strong dilation associated
with strain localization, which is facilitated by the flexible lat-
eral boundaries. However, this phenomenon is much reduced
or completely absent in the medium to high crushability

Fig. 7 Deformation of breakable granular assembly during the shearing process at confining pressure of 0.8 MPa (units: m)

Fig. 8 Lateral displacement
contour and particle breakage in
this plane for both assemblies at
the end of sharing: a cut plane;
b unbreakable assembly; c
breakable assembly (same color
legend is used for two
assemblies. Units: m
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Fig. 9 Contour plot of broken density in the cut plane at the end of
shearing

granular assemblies. The massive particle breakage becomes
dominant so that large voids cannot be fully developed. Shear
banding and volumetric compaction depict the two failure
modes of a dense granular assembly, however, the more typ-
ical situation is the combination and competition of the two
failure modes, especially in the medium crushability assem-
blies [11]. The particle breakage is moderate in the early
stage of the shearing but interestingly develops into a distri-
bution that generally falls within the major shear band at the
end the shearing (Fig. 8c). This phenomenon can be more
clearly demonstrated by the spatial distribution of broken
density, which is also referred to as the fraction of broken
CIEs. As shown in Fig. 9, the particle breakages mainly
occur in the region of shear band. It is readily comprehensible
because the strong contact force chains mainly concentrated
within the shear band to drive the volumetric dilation, and
particle breakage mainly occurs in this region is a natural
result.

Figure 10 shows the macroscopic responses of two granu-
lar assemblies in terms of the deviator stress and volumetric
strain versus axial strain. The figure shows qualitatively that
the simulated stress–strain–dilation responses obtained for
both assemblies are typical of those observed in laboratory
tests. The initial tangential modulus, secant modulus, and
peak shear stress are much higher for the unbreakable assem-
bly, which exhibits an obvious peak at an axial strain of
approximately 3.9 %, followed by a strain softening behav-
ior. Furthermore, strong dilation is preceded by an initial
slight compression followed by a significant volume expan-
sion at large strains. Because of the extra energy required
for the particles to dilate against the confining pressure,
a dilative assembly has greater strength than a contractive
assembly. Meanwhile, the dilation drives the particle assem-
bly to move from a lower potential-energy state to a higher

Fig. 10 Simulation results for two assemblies at confining pressure of
0.8 MPa

potential-energy state, causing the microstructure to become
more unstable and ultimately decreasing the friction angle to
residual state. In contrast, relatively slight volumetric expan-
sion takes place in the granular assemblies with medium
degree of crushability, and continuous volumetric compres-
sion takes places in the high crushability assemblies. This
behavior is clearly a result of excessive particle breakage,
which has an opposing effect on the dilative mechanism
and suppresses the mobilization of the assembly dilation. As
depicted in Fig. 10, where an overall dilatant behavior associ-
ated with slight post-peak softening is observed to dominant
the medium crushability assembly, although a certain amount
of particle breakages also take place during shearing.

The shear dilatancy behavior of the modeled granular
materials is characterized in terms of the relationship between
the stress ratio q/p and incremental strain ratio −dεv/dεd,
where εv and εd are volumetric and deviator strains, respec-
tively. It should be noted that the incremental strains dεv

and dεd consist of both the elastic and plastic compo-
nents. Figure 11 shows the relations between the stress ratio
and incremental strain ratio for breakable and unbreakable
granular assemblies at confining pressure of 0.8 MPa. The
simulated results and observed trend for two assemblies can
be fairly well fitted by linear functions, which indicate that
the stress dilatancy behavior can be described by Modified
Roscoe’s dilatancy model [51]. At lower stress ratio ranges,
the scatters deviate from the best fit line. This may be due to
the presence of elastic strains, whose proportions are consid-
erable to the plastic strains at low stress ratios. Figure 11 also
illustrates that the fitting lines, which describe the observed
trend from the simulated results, vary with the crushabil-
ity of the granular assembly. The slope of the fitting line
for breakable assembly is much stiffer than the unbreakable
assembly. M is defined as the stress ratio corresponding to
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Fig. 11 Stress dilatancy behavior of two granular assemblies at con-
fining pressure of 0.8 MPa

zero dilatancy, which is also termed as the slope of phase
transformation line or characteristic line. The value of M is
1.20 and 1.02 MPa for breakable and unbreakable assembly,
respectively.

5.2 Influence of confining pressure on the breakable
granular materials

Four levels of confining pressures, 0.4, 0.8, 1.2 and 1.6 MPa
were considered. The figure legend text indicates differ-
ent confining pressures. Notwithstanding the discrepancies
between macroscopic behavior observed in laboratory and
numerical experiment, the numerical simulation can clearly
capture the typical response of breakable granular materials
(as shown in Fig. 12). The difference between the experimen-

tal and numerical responses lies primarily in the volumetric
behavior, i.e., granular materials in laboratory tests show
greater tendency of shear contraction due to their wide range
of particle sizes and intensive particle breakage [23]. It can
be seen that the initial tangential modulus, secant modulus,
and peak deviator stress increase with increasing confining
pressure. There is a tendency in stress–strain curves to reach a
peak deviator stress followed by subsequent strain-softening
at lower confining pressures. At higher confining pressures,
strain-softening changes into strain-hardening type of behav-
ior without a sharp peak in the deviator stress–strain curves.
The variation of volumetric strain with axial strain curves
describes an initial contractive behavior regardless of the
magnitude of confining pressure, at lower confining pressures
the initial volumetric compression is followed by subse-
quent volumetric dilation, while dilation is suppressed and
only volumetric compression is measured at higher confining
pressures. This type of behavior is characteristic of medium
crushability granular materials with fairly dense initial pack-
ing [10,11,23].

The macroscopic responses analyzed previously are
clearly a result of excessive particle breakage demonstrated
by the evolutions of the accumulated fraction of broken
CIEs with axial strain under different confining pressures
(as shown in Fig. 13). The particle breakage has a negligi-
ble effect on the mechanical behavior of granular materials
at a low stress level. In the case of high stress level, this
effect is significant and cannot be ignored. Figure 14 shows
the evolutions of the frequency of broken CIEs, accumulated
fraction of broken CIEs, and deviator stress during the shear-
ing process with the confining pressure of 0.8 MPa. Each red
bar indicates the number of broken CIEs happened in every
0.4 % of axial strain, which represents the frequency of parti-

Fig. 12 Macroscopic responses of breakable granular assembly under different confining pressures:a deviator stress versus axial strain;bvolumetric
strain versus axial strain
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Fig. 13 Evolutions of accumulated fraction of broken CIEs with axial
strain under different confining pressure

Fig. 14 Correlation between the frequency of broken CIEs and devia-
tor stress at confining pressure of 0.8 MPa

cle breakage. The frequency of broken CIEs rapidly increases
at a small strain level and experiences a reduction after the
peak value.

To further investigate the effect of confining pressure
on the dilatancy of the granular materials, the relationships
between dilatancy index and axial strain for different con-
fining pressure are presented in Fig. 15, where dilatancy
index is defined as −dεv/dεa. Note that the trend of dilatancy
index for breakable assembly is quite different under different
confining pressures. The dilatancy index decreases with the
increase of confining pressure. The evolutions of dilatancy
index with axial strain for unbreakable assembly are aligned
in a narrow band, which indicates that the dilatancy behavior
of unbreakable granular materials is independent of the con-
fining pressure. The previous DEM study also confirmed that
the dilatancy behavior is rather independent of extremely low
confining pressures [52]. This is because very few particle
breakages occur when the stress level is extremely low.

Fig. 15 Curves of dilatancy index versus axial strain at different con-
fining pressures

Fig. 16 Variations of the deformation characteristics of breakable
assembly with confining pressure

The macroscopic behavior derived from the numerical tri-
axial tests can be quantified by initial elastic modulus, secant
modulus, peak friction angle, and dilatancy angle. The ini-
tial elastic modulus Ei indicates the deformation behavior of
granular materials, which corresponds to the initial slope of
the stress–strain curve. The axial strain is constrained within
0.1 % for the initial slope of the stress–strain curve, where the
deformation is supposed to be elastic. As shown in Fig. 16,
the initial elastic modulus Ei of breakable granular materials
at a given void ratio increases with an increase in the con-
fining pressure. In the constitutive modeling of sands, soils,
etc., the secant modulus E50 is more commonly used, which
is defined as the secant modulus at 50 % of the peak devia-
tor stress. Similar to the initial elastic modulus, the secant
modulus E50 shows a gradual increase with increasing con-
fining pressure. As demonstrated before, the extent of particle
breakage increases with increasing stress level, which slows
down the increasing trend of both the initial elastic modulus
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and secant modulus. Both two moduli can be correlated with
the confining pressure by a power function with different fit-
ting parameters, where pa is atmospheric pressure used for
normalization.

The variations of peak friction angle ϕp and dilation angle
ψ with confining pressure are shown in Fig. 17. For break-
able granular assembly, an increase in the confining pressure
would lead to a decrease in both the angle of shearing resis-
tance and dilation angle. This relationship is attributed to
two causes: An intense amount of particle breakage, and
a decrease in dilation due to increased confinement under
higher confining pressures. The relationships between peak
friction angle and dilation angle with confining pressure can
be described by exponential functions with different fitting
parameters. Another observation is that the peak friction
angle and dilation angle for unbreakable granular assembly

Fig. 17 Variations of peak friction angle and dilation angle of break-
able assembly with confining pressure

do not change over confining pressure (as shown in the inset
of Fig. 17). The comparison leads to the important conclu-
sion that the stress dependency of the peak friction angle and
dilation angle of granular materials is primarily caused by
particle breakage. It can be concluded that the variations of
peak friction angle for breakable and unbreakable granular
assemblies will converge to the same value at extremely low
stress level, and so does the dilation angle, where particle
breakage is largely absent.

5.3 Effect of particle crushability on the breakable
granular materials

A group of numerical triaxial tests were carried out on an
identical particle assembly but with varied CIE strength para-
meters to investigate the effect of particle crushability on
the mechanical behavior of granular materials. The five lev-
els of particle crushability considered are 8, 10, 15, 20 and
25 MPa, respectively, each denotes the mean value of CIE
tensile strength. Numerical triaxial tests in this part were
performed with the confining pressure of 0.8 MPa. As illus-
trated in Fig. 18a, the macroscopic response of assembly
with lower particle crushability, i.e., higher particle strength,
are characterized by obvious strain softening. The deviator
stress decreases gradually with the increasing particle crusha-
bility, accompanied by an appreciable reduction of post-peak
strain softening extending to large strains. The stress response
is intrinsically related to the volumetric response shown in
Fig. 18b. For assembly with low crushability, strong dila-
tion is observed by an initial slight compaction followed
by a significant volume expansion. Continuous volumetric
compaction takes place in the assembly of a high degree of
crushability. The above description can be explained by the

Fig. 18 Macroscopic responses of breakable granular assembly under different particle crushability: a deviator stress versus axial strain;
b volumetric strain versus axial strain
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Fig. 19 Relations between net volumetric compaction and degree of
crushing under different particle crushability

evolutions of accumulated fraction of broken CIEs with axial
strain.

Figure 19 shows the net volumetric compaction induced
by particle breakage as function of the degree of crushing.
The net volumetric compaction is calculated as the volu-
metric strain of breakable granular assembly subtracts the
volumetric strain of unbreakable strain. There is a positive
relationship between them. However, in case of different par-
ticle strength or confining pressure, fully unified correlation
does not exist between the net volumetric compaction and the
degree of crushing. This is due to the volumetric compaction
not only induced by particle breakage, but also the accom-
panying particle rearrangement. From the microscopic point
of view, the difficulty in quantifying the effects of particle
breakage on the macroscopic behavior stems mainly from
two issues, namely the roles of particle breakage and the
accompanying changes in fabric [11].

5.4 The energy dissipation in breakable granular
materials

In the shearing of granular materials, there exists vari-
ous kinds of energy, such as strain energy, kinetic energy,
etc.. They could transform into each other, while some of
them would dissipate if sliding or particle breakage occurs.
In DEM modeling, the strain energy is stored at contact
points upon particle deformation, while in combined FDEM
modeling, the strain energy in stored in a particle due to defor-
mation. In reality, the strain energy that is released when
brittle materials fracture is converted into surface energy
and acoustic energy. Kinetic energy is primarily caused by
the translation and rotation of particles in the process of
rearrangement and crushing. Due to the quasi-static nature
of the simulation, kinetic energy will be negligible in com-
parison to friction dissipation energy and strain energy.

In this paper, the particles are defined as completely
elastic collision, i.e., coefficient of restitution is 1 and damp-
ing coefficient is 0, so the energy dissipation caused by
mutual collisions between particles is not considered. The
two energy dissipation mechanisms are caused by frictional
slippage and particle breakage, respectively. The stored strain
energy will be lost when the CIE is broken. The friction dis-
sipation energy is calculated by summing the slip work done
at all contacts where inter-particle sliding occurs.

To investigate the evolution of work input and energy dis-
sipation during the shearing process of breakable granular
materials, the various energy terms in the incremental form
were traced and analyzed. These energy terms include the
work input at the boundary dW , strain energy dEs, kinetic
energy dEk, friction dissipation energy dEf , and energy loss
due to particle breakage dEd. The above decomposition is
made to facilitate a convenient investigation into the par-
ticle scale work input and energy dissipation characteristic
[7,53,54]. According to the first law of thermodynamics, the
energy components satisfy:

dW = dEs + dEf + dEk + dEd (17)

The last three terms can be combined to form plastic dissi-
pation:

dEp = dEf + dEk + dEd (18)

So we can rewrite Eq. (17) as dW = dEs +dEp. This super-
ficially analogous to Cam-Clay plasticity theory.

Figure 20 shows the evolutions of four incremental energy
components against the axial strain for granular assembly
with medium crushability. The incremental strain was taken
to be 0.08 %. It is clear that the profile of the incremental work
input has an overall good agreement with the development

Fig. 20 Incremental energy components versus axial strain at confin-
ing pressure of 0.8 MPa

123



A hybrid approach for modeling of breakable granular materials using combined finite . . . Page 15 of 17 7

Fig. 21 Accumulated energy components versus axial strain at con-
fining pressure of 0.8 MPa

of stress ratio with axial strain. In previous DEM mod-
eling of granular materials [53,54], the incremental strain
energy dEs, except within the first few percentages of axial
strain, essentially fluctuates around zero. However, in com-
bined FDEM modeling, the incremental strain energy dEs

undergoes a very slow increase within the range of strain
simulated. Despite this, the incremental plastic dissipation
dEp takes the majority of the incremental boundary work
dW . This indicates that the granular materials quickly devel-
ops a fabric condition that can fully dissipate the external
work through inter-particle friction and particle breakage,
and has very little capability of storing any further strain
energy. The amount of incremental fracture dissipation dEd

is much smaller than the incremental strain energy dEs and
incremental friction dissipation dEf . The major effect of par-
ticle breakage, which itself only dissipates a small amount
of the external work, is to promote the changes in fabric
characteristics by creating additional degrees of freedom for
inter-particle motion, largely prohibiting the strain energy
accumulation and facilitating the friction dissipation. Sim-
ilar conclusions were acquired by previous DEM studies
[7,54]. The evolutions of different accumulated energy with
axial strain are shown in Fig. 21. The friction dissipation
contributes most to the external work, strain energy comes
second, and followed by fracture dissipation. The kinetic
energy remains almost zero throughout the shearing process.

6 Summary

The cohesive zone model is introduced into the combined
FDEM to make it possible to simulate the particle break-
age of granular materials. The validity of particle breakage
modeling is guaranteed by a successful simulation of frac-
ture behavior of single particles. The splitting behavior
resembling that of a quartz particle is captured with higher

CIE strength and smaller variability. More importantly, the
Weibull’s statistical distribution, which essentially controls
the particle fracture behavior, is shown to be reproduced by
such a modeling approach.

A polyhedral particle generation algorithm is adopted to
enable a closer approximation of the true particle shapes.
Despite its convex nature, the polyhedral particles can repro-
duce the geometry dependent behaviors of granular materi-
als, such as particle interlocking and resistance to rolling. A
series of numerical triaxial tests were simulated under differ-
ent confining pressure and particle crushability, which give a
representative set of mechanical behavior of granular materi-
als. The fairly dense packing of breakable granular materials
would show distinct dilatancy and obvious peak shear stress,
as well as post-peak softening behavior, if the particle crusha-
bility and confining pressure are relatively low. Meanwhile,
continuous volumetric compaction and gradual strain hard-
ening behavior in highly crushable granular materials subject
to high confining pressure. In general, the simulation results
are qualitatively in good agreement with the experimental
observations, which indicate that the combined FDEM is pre-
dictive and can reproduce the typical mechanical behavior of
breakable granular materials. The combined FDEM mod-
eling also provides an opportunity for a quantitative study
of the micro-structure of granular materials, which give us
a further understanding of the mechanical behavior at the
particle scale. Some studies demonstrated that there exists a
competition between size effects and particle loading condi-
tions. Small grains have less fracture probability following
Weibull theory, meanwhile, they have less contact points and
hence larger stress anisotropy. A statistical evaluation of the
evolution of particle size distribution may help to find out
which mechanism plays a leading role. However, we have
not been able to exact the necessary information from simu-
lation results to perform such statistical analysis.

The shear band is much reduced or completely absent in
the medium to high crushability granular assemblies. The
massive particle breakage becomes dominant so that large
voids cannot be fully developed, which largely prevents the
development of a shear band. Additionally, the particles in the
shear band were more likely to break because the strong con-
tact force chains mainly concentrated within the shear band
to drive the volumetric dilation. The incremental plastic dis-
sipation takes the majority of the incremental boundary work.
This indicates that the granular materials quickly develops a
fabric condition that can fully dissipate the external work
through inter-particle friction and particle breakage. The
major effect of particle breakage, which itself only dissi-
pates a small amount of the external work, is to promote
the changes in fabric characteristics by creating additional
degrees of freedom for inter-particle motion, largely pro-
hibiting the strain energy accumulation and facilitating the
friction dissipation.
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