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Abstract In this work, we analyse the physical conse-
quences of capillary bridges coalescence between spherical
particles agglomerates and more particularly the jump of the
capillary force. By referring to Murase et al. (Adv Pow-
der Technol 19(4):349–367, 2008) and Rynhart et al. (Res
Lett Inf Math Sci 5:119–127, 2003) about bridges adhered to
three particles, we analyse the effects of coalescense between
three bridges with two grains and a bridge joining three
grains. This monographic synthesis intends to explain ana-
lytically and geometrically the significant increase of the
inter-particle force, a strengthening cohesion effect, exper-
imentally observed, reported and still largely unelucidated
to our knowledge in the literature.

Keywords Capillary bridge · Three spheres device ·
Coalescence · Inter-particle force · Young–Laplace equation

1 Introduction

In a previous work [9], the same authors have proposed
a method for parameters identification and resolution of
Young–Laplace equations based on an inverse problem
approach. Among the results obtained, the classification of
capillary bridges associated to an explicit criterion relied on
the observation of the contact point, the wetting angle and the
gorge radius, lets appear that the only strongly stable case that
may be encountered in practice (except in very specific situ-
ations) is a portion of nodoid with both positive suction and
capillary force. That case will constitute the starting point
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for describing the evolution and the coalescence of capil-
lary bridges between three spheres and for explaining the
strengthening cohesion effect, phenomenon experimentally
observed and reported in the literature without substantiated
elucidation [1,4,6,8,12–14,16,17,19,22]. This matter needs
further clarifications by means of quantitative arguments.

The model case that will be considered is the coalescence
between three capillary bridges between three spheres cen-
tered at the vertices of an equilateral triangle; it corresponds
to the experiments performed in [11] (see also Fig. 1). After
coalescence, we obtain a three grains capillary bridge whose
free surface does not process a global symmetry of revolu-
tion anymore. The characteristic data are determined at the
coalescence of the three bridges when the meridians inter
in contact, under an identical filling of the three bridges.
The mechanisms of formation of the micro-bridges leading
to the coalescence are not the subject of this study and we
may refer to Aarts et al. [1], Decent et al. [4], Eggers et al.
[8], Shikhmurzaev [19], Sprittles et Shikhmurzaev [21], M.
Wu et al. [22] for these questions. Referring to works of K.
Murase et al. [13] and of Rynhart et al. [16], based on the
numerical resolution of Young–Laplace equation in spheri-
cal and cylindrical coordinates, we propose an explanation
of the observed experimental phenomenon [11], according to
which the coalescence is the cause of a sudden increase (or
a sudden decrease in a drying process), corresponding to a
jump, of the vertical capillary force acting on the upper grain
(Fig. 1). As a result, we obtain from the analytical expressions
that the surface tension (tensile capillary force) only varies
a little. Conversely, we observe that the orthogonal projec-
tion on an horizontal plane of the new effective surface of
the liquid with the upper grain is of quasi-ellipsoidal type
and we prove that its area increases strongly. This reinforced
cohesive effect, due to the Laplace pressure contribution, is
emphasized by an increase of the suction which is quantified
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Fig. 1 Evolution of vertical capillary force versus time in a drying
process, according to J.P. Gras Ph.D. (Fig. 3.30, p. 103 of [11]). We
observe a sudden decrease, corresponding to a jump, of the vertical
capillary force acting on the upper grain

in the present work, after the sudden filling of the central part
of the capillary bridge after coalescence (cf. Fig. 3). To our
knowledge, it is the first time that such an analytical study is
proposed. Moreover, some formula existing in the literature
are improved or even corrected.

2 Motivations of the analysis

Let us recall the experimental setup and main results obtained
by Gras [11, pp. 101–103]. We impose simultaneously, by
progressive filling until the coalescence, a constant volume of
liquid to each double capillary bridge. The resulting capillary
force applied to the upper sphere by the capillary bridges is
measured by differential weighing. Before the coalescence,
it is observed that the increase of the fluid volume of the
bridges has only a weak influence of the value on the capil-
lary force: in the experiment presented, a 1.36µN capillary
force is measured for two capillary bridges whose volume is
4.5µl each, whereas a 1.32µN capillary force is measured
when the volume of each capillary bridge is increased to
9µl [11]. This observation will be explained, in the context
of our study, as follows: during the filling of the capillary
bridges, the triple line perimeter and the contact surface area
increase, whereas the strictly positive suction s has a ten-
dency to decrease. This antagonistic aspect will be detailed
by analytical developments leading to formula (35) which
explains the small variations of the suction s during the filling.
At the coalescence (exact instant of merging of the capillary
bridges), a sudden increase of the capillary force is observed,
up to 1.82µN. Conversely, during the drying of a coalesced
capillary bridge, the triple bridge splits into three distinct
bridges and we observe a sudden decrease of the capillary
force from 1.54 to 1.1µN [11, p. 103, fig. 3.29–3.30]. Fig.

3.30 page 103 of [11] is reproduced above; it represents the
evolution of the vertical capillary force versus time in a dry-
ing process. The sudden decrease of the vertical capillary
force acting on the upper grain is clearly revealed.

Rynhart et al. [16] have confirmed this observation on
another triple capillary bridge whose characteristics are
r = 39µm, γ = 63.1 mNm−1, V = 65.6µl. They have
measured a 12.51µN capillary force whereas Simons and
Fairbrother [20] have observed, on the same experimental
device with two capillary bridges, a maximal capillary force
of 8µN (by optimizing the distance between particles). Many
abacuses (monograms) are also provided by Murase et al.
[13] for the calculation and the numerical assessment of the
static force between three spheres by varying significant fac-
tors (see also [14] for similar numerical and experimental
data or [6] for the evolution of splitting bridges into multiple
bridges between plates; calculations of the capillary force are
presented).

The next of the paper is devoted to explain analytically and
geometrically this sudden jump of the capillary force between
merging bridges, from particular solutions of Young–Laplace
equations for three equally sized spherical particles whose
centers are located on the vertices of an equilateral triangle
(Fig. 3).

3 Solutions of Young–Laplace equation in
axisymmetric case

3.1 General solutions and nodoid parameterization

We recall in this section the main results obtained in [9],
concerning the solutions of Young–Laplace equation and the
properties of the associated capillary bridges. When the capil-
lary bridge is enclosed by a surface of revolution, hydrostatic
Young–Laplace equation may be written as (without gravity
effects):

y′′
(
1 + y′2)3/2 − 1

y
√

1 + y′2 = −�p

γ
=: H, H �= 0 (1)

the expression x �→ y(x)defining the free meridian equation,
with the conditions y′′ ≥ 0, 0 < y ≤ r sin δ for convex
profiles, where δ denotes the filling angle of the capillary
bridge (Fig. 2). For simplification, the two spheres involved
have the same radius r and are separated by a distance D.
The case H = 0 is well-known (minimal surface) and does
not fall within this framework. The solutions of (1) are then a
family of catenoids, limit cases of nodoids at a lower stability.

By highlighting a significant invariant with a first integral
of Eq. (1), we proved in Res. 1 of [9] that the inter-particle
force (or suction force) Fcap can be evaluated at any point
of the profile as
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Fig. 2 Example of static capillary bridge between two grains (axisym-
metric surface with convex meridian)

Fcap =2πγ

(
y

√
1 + y′2 + Hy2

2

)

uniformly iny∈[y∗, yc].
(2)

It is important to note that this result is only valid for capillary
bridges whose free surface is of revolution. In other cases,
the resulting capillary force must be evaluated at the triple
contact line, as it will be the case after coalescence of the
bridges in Sect. 6.1.

After a suitable change of variables and a first integration,
Young–Laplace equation (1) may be rewritten as

1 + y′2 = 4y2

H2

(
y2 − 2λ

H

)2 , λ ∈ R, y = yλ,H , (3)

whose characteristic expression leads to classical Delaunay’s
roulette solutions [5,7]. Using the principles of calculus of
variations, this key relationship also corresponds precisely
to the Beltrami identity for the Euler–Lagrange equation
associated with the potential energy functional and Lagrange
multipliers method. In fact, one gets an additional informa-
tion: the Lagrange multiplier coincides with the parameter
H specifying the mean curvature. Accordingly the constant
H can be viewed as a Lagrange multiplier dimensioned to
a (length)−1. Using an original inverse problem method to
restore the missing information on the pressure deficiency
�p, which is often an unknown of the problem, we have revis-
ited the classification of possible existing capillary bridges
with respect to given data accessible experimentally (in par-
ticular the wetting and filling angles and the gorge radius of
the capillary bridge), using for instance a digital camera with
macrozoom (see [9] for more details).

Among the results obtained in [9], it appears that the only
strongly stable case of capillary bridge that may be encoun-
tered in practice, except in very specific situation, is a portion
of nodoid with positive suction and capillary force corre-
sponding to H > 0 and λ > 0. That point can be thoroughly

clarified as follows: it is known that for the stability study of
a bridge, the fundamental tool is the notion of second varia-
tion of the potential energy functional that we can completely
explicit for the class of axisymmetric bridges. Without going
into very mathematical details (see [10] for more details),
indicate that in fact, it is sufficient for testing the bridge
stability to know the sign of the first eigenvalue λ1 (the small-
est) of a Dirichlet–Sturm–Liouville problem associated to the
meridian equation. When necessary, one must also take into
account a Vogel’s stability criterion. That case will be used in
the next, as a starting point for describing the evolution and
the coalescence of capillary bridges between three spheres
and for explaining the strengthening effect of cohesion that
occurs. The main characteristics and associated parameteri-
zation are detailed in Res. 1 of [9] (Sect. 4.1) when the surface
of revolution is a portion of nodoid.

One of the advantages of such an analytical parame-
terization is that the main characteristic quantities of the
capillary bridge (associated volume, free surface area, result-
ing inter-particle force) may be calculated analytically, from
the parameterization of the nodoid meridian.

The total volume of a capillary liquid bridge between two
spheres defined by its meridian representation x �→ y(x) is
classically given by:

V = π

∫ xc

−xc
y2 (x) dx − 2Vc,

where Vc = π

3
r3(1 − cos δ)2(2 + cos δ) denotes the volume

of the spherical caps wetted by the liquid. We have in the
nodoid case considered here (see [9]):

V = 2π
b4

a

∫ τ

0

e − cos t

e + cos t

cos t dt

(e + cos t)
√
e2 − cos2 t

− 2

3
πr3 (1 − cos δ)2 (2 + cos δ) (4)

where τ (δ, r, θ, y∗) = arccos

(
e
b2 − r2 sin2 δ

b2 + r2 sin2 δ

)
is solu-

tion of y(τ ) = r sin δ.
Moreover, the free surface area of the liquid bridge is

given, for the value τ of parameter, by:

	2(τ ) = 2πb2
∫ τ

0

1

e + cos t

√
e − cos t

e + cos t
dt. (5)

Finally, the inter-particle force may be calculated at the three
phase contact line as

Fcap = 2πγ r sin δ sin (δ + θ)

+ 2πγ
y∗ − r sin δ sin (δ + θ)

r2 sin2 δ − y∗2
r2 sin2 δ (6)
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or, equivalently, according to the gorge method (see [9] for
more details):

Fcap = 2πγ y∗ + 2πγ
y∗ − r sin δ sin (δ + θ)

r2 sin2 δ − y∗2
y∗2

. (7)

3.2 Key characteristics just before coalescence

The experimental device which is used to illustrate this mod-
eling work consists of three equally sized spherical particles
whose centers are located on the vertices of an equilateral
triangle (cf. Fig. 3). The spheres of radius r are assumed to
have no surface roughness. The main liquid bridge character-
istics are obtained by image analysis (gorge radius y∗, filling
angle δ, contact angle θ ), that will constitute the boundary
conditions before coalescence. A liquid with known sur-
face tension γ is simultaneously and uniformly introduced in
order to form an assembly between the three grains linked by
three separated liquid bridges (“grain-pairs”). The moment
of coalescence is obtained when the filling angle is set to
δ = π

6 , the gorge radius then observed being denoted y∗
c

(Fig. 3) for each capillary bridge, using the parameterization
of Fig. 2.

Realistically we consider here the case of three coalesc-
ing nodoids. In this stable case (capillary cohesion due to
interstitial liquid [15]), the capillary forces originate from the
simultaneously attractive forces caused by the surface tension
and pressure deficiency across the liquid interface (unique
circumstances that ensure a positive suction). The parame-
terizations developed in [9] are proven extremely useful for
expressing all the key characteristics of the limit state just
when the three bridges may coalesce to form a connected
bridge between the three grains. Indeed, for each primary
bridge, we calculate a and b, the semi-axis of the hyper-

Fig. 3 The three liquid bridges just before the coalescence (“sagittal
view”)

bola that generates the limit profile (Delaunay hyberbolic
roulette) and as a result, the exact mean curvature of the
nodoid. According to Res. 1 of [9], we find that:

a = a
(
r, y∗

c ,
π

6
, θ

)
= 1

4

r2−4y∗2
c

2y∗
c −r sin

(
π
6 +θ

) ,
�p

γ
=−1

a
,

b = b
(
r, y∗

c ,
π

6
, θ

)
=

(
1

2
y∗
c r

r − 2y∗
c sin

(
π
6 + θ

)

2y∗
c − r sin

(
π
6 + θ

)

) 1
2

,

e =
√

1 + b
2

a2 . (8)

Consequently, the volume of the resulting coalesced bridge
with three particles is expressed by adapting (4) as follows

V = 6π
b

4

a

∫ τ

0

e − cos t

e + cos t

cos t dt

(e + cos t)
√
e2 − cos2 t

−2πr3

(

1 −
√

3

2

)2 (

2 +
√

3

2

)

where τ = arccos

(

e
4b

2 − r2

4b
2 + r2

)

(9)

and, by vectorial addition, the resulting inter-particle force
immediately before the coalescence is derived from the
expressions at the three phase contact line1 (6)

fcap = √
3πγ r

(

sin
(π

6
+θ

)
+ r

2y∗
c − r sin

(
π
6 + θ

)

r2 − 4y∗2
c

)

.

(10)

4 Key characteristics just after coalescence

The experimental device that will be used for validation of
the modelling is composed of three spheres centered at the
summits of an equilateral triangle. The analytical calculation
of the capillary bridge properties leads to important compli-
cations because the free surface does not process a global
symmetry of revolution anymore. In that case, the Young–
Laplace equation modelling the problem does not reduce
anymore to a nonlinear ODE, but writes as a nonlinear partial
differential equation, whose right hand side is constituted of
a missing data to be restored (the capillary pressure). The
complementary information is given by the boundary condi-
tions on the triple line, which is henceforth a skew curve and
by the value of the gorge radius (still considered as a data
given by the experiment).

1 The coefficient
√

3 comes from the composition rule of the forces
inclined of a π/3 angle with respect to the vertical.
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In the general case, the Young–Laplace equation then
leads to a divergential problem (a source identification
problem which creates a really complicated mathematical
situation:

divS (n) = � p̃

γ
, � p̃ unknown to be adjusted (11)

where n denotes the unit normal vector to the surface at point
m, oriented towards the liquid, divS is the divergence operator
applied to the surface, i.e. in an abstract point of view, the
trace of the second order tensor grad n [that explains the
intrinsic character2 of formula (11)]. Note that (11) may be
also written on the form:

divS (n) = −H (12)

where H = −� p̃
γ

denotes the suction. Equation (11) and the
properties of the associated capillary bridge may be specified
in the case of three particles device considered here using a
judicious choice of the axis associated to cylindrical coordi-
nates. It is the main goal of what follows.

4.1 Recall on theory of parametric surfaces

Let us recall the very basic definition of the geometric prop-
erties of a surface S of R3 that will be used in the sequel. Let
U be an open set of R2 and

f : U ⊂ R
2 → R

3

x = (u, v) �→ m = f (x)

an embedding. S = f (U ) is called a parametric surface of
R

3 (Fig. 4). In what follows, we assume that f is smooth
enough (for instance C2(U )) in order to introduce the basic
elements of differential geometry (see for instance [3,18]).

As f is injective, the vectors a1 = ∂ f
∂u and a2 = ∂ f

∂v
are

independent and constitute a local basis (the natural basis) of
the tangent plane TmS to S at m. Then the normal vector n
to the surface S at m is given by

N = a1 ∧ a2

‖ a1 ∧ a2 ‖ (13)

The metric tensor (first fundamental form of S) classically
stands:

aαβ = aα · aβ

where the dot denotes the usual scalar product of R3. We can
also define the dual basis (a1, a2) of the tangent map TmS by

aα · aβ = δα
β

2 Independent of the coordinate system that is chosen.

Fig. 4 Parametric surface

where δα
β denotes the Kronecker symbol. The contravariant

components (aαβ) of the metric tensor are then given by
aαβ = aα · aβ and satisfy the property (aαβ) = (aαβ)−1.
Finally, the covariant components (bαβ) of the curvature ten-
sor can be computed as

bαβ = n · aα,β . (14)

4.2 Young–Laplace equation in cylindrical coordinates

Using a judicious choice of the axis [16], the study may be
limited to 1/12 of the capillary bridge, with a choice of the
representation of the height z using cylindrical coordinates

z = z (ρ, ϕ) , z is
π

2
− periodic with respect to ϕ,

where ρ axis is vertical and the origin coincides with the
center of the upper sphere (Fig. 5).

The regular transformation between Cartesian and cylin-
drical coordinate systems classically matches

U (ρ, ϕ) =
⎛

⎝
X
X
Z

⎞

⎠ where X = ρ, Y = z (ρ, ϕ) cos ϕ,

Z = z (ρ, ϕ) sin ϕ. (15)

Once the normal n being calculated on the surface S using
definition (13), the divergential problem (11) enables to
determine H = −� p̃

γ
.

The divergence operator on the surface S may be com-
puted using the intrinsic definition

divS(n) = Tr(gradSn) (16)
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Fig. 5 Cylindrical coordinates used for the parameterization of the
capillary bridge just after coalescence

where Tr denotes the trace operator. The gradient on the
surface S may be defined by

gradS = aρ ∂

∂ρ
+ aϕ ∂

∂ϕ
(17)

where aρ and aϕ are the vectors of the contravariant basis
at point M on the surface S. They are determined using the
definitions of Sect. 4.1 and the parameterization (15) based
on cylindrical coordinates. We get:

aρ = ∂U
∂ρ

=
⎛

⎝
1

zρ cos ϕ

zρ sin ϕ

⎞

⎠ ,

aϕ = ∂U
∂ϕ

=
⎛

⎝
0

−z sin ϕ + zϕ cos ϕ

z cos ϕ + zϕ sin ϕ

⎞

⎠ (18)

and

n = 1
√
z2(1 + z2

ρ) + z2
ϕ

⎛

⎝
zzρ

−zϕ sin ϕ − z cos ϕ

zϕ cos ϕ − z sin ϕ

⎞

⎠ (19)

with the notations zρ = ∂z
∂ϕ

and zϕ = ∂z
∂ϕ

. The associated
metric tensors are then given by

(aαβ) =
(

1 + z2
ρ zρzϕ

zρzϕ z2 + z2
ϕ

)
,

(aαβ) = 1

z2(1 + z2
ρ) + z2

ϕ

(
z2 + z2

ϕ −zρzϕ
−zρzϕ 1 + z2

ρ

)
(20)

leading to the contravariant base vectors:

aρ = 1

z2(1 + z2
ρ) + z2

ϕ

⎛

⎝
z2 + z2

ϕ

z2zρ cos ϕ + zzρzϕ sin ϕ

z2zρ sin ϕ − zzρzϕ cos ϕ

⎞

⎠ ,

aϕ = 1

z2(1 + z2
ρ) + z2

ϕ

⎛

⎝
−zρzϕ

zϕ cos ϕ − (1 + z2
ρ)z sin ϕ

zϕ sin ϕ + (1 + z2
ρ)z cos ϕ

⎞

⎠ (21)

Finally, applying definitions (16) and (17), Young–Laplace
equation may be expressed in terms of z and the partial deriv-
atives of z. It leads to the nonlinear elliptic partial differential
equation

z2 − zzϕϕ + 2z2
ϕ − z2z2

ρ − zzϕϕz2
ρ + 2zzρϕzρ zϕ − zρρ z3 − zzρρ z2

ϕ
(
z2
ϕ + z2

(
1 + z2

ρ

))3/2

= � p̃

γ
= −H (22)

with the notations zϕϕ = ∂2z
∂ϕ2 , zρρ = ∂2z

∂ϕ2 and zρϕ = ∂2z
∂ρϕ

.
Note that we find a similar expression as Eq. (2.58) of [16]
with a slightly different definition of H .

5 Outline of the bridge properties just after
coalescence

5.1 The numerical strategies of resolution of
Young–Laplace equation existing in literature

In order to determine the capillary bride properties just after
coalescence, a first strategy would be to solve numerically
Young–Laplace equation (22) for given constant mean cur-
vature, contact angle and inter-particle separation distance,
introducing an n×m mesh and using a robust nonlinear equa-
tion solver. By varying � p̃, as a parameter, we can a family
of liquid bridges with different volumes. Notably, the binding
force Fcap between the particles can be calculated (in μN )

at the three phase contact line and plotted as a function of
liquid bridge volume V (in μm3) according to a monotonic
relationship available in practice (cf. Fig. 58, p. 126 in [16]).

An alternative numerical and conceptual approach is due
to Murase et al. [13]: the three-dimensional bridge profile
is acquired by grid generation for the simulation in spher-
ical coordinates, using Galerkin finite element method, in
a quarter of the region, i.e. ρ = f (ϕ, ψ), 0 ≤ ϕ ≤ π

2 ,

−π
2 ≤ ψ ≤ π

2 , the integral domain being divided into
isoparametric elements. The formulation of the static shape
of the bridge adhered to three spheres is based on an opti-
mization problem: the minimization of the potential energy
with respect to the constraint of a given constant bridge
volume. According to classical calculus of variations, the
constrained minimal problem with fixed boundaries intro-
duces a Lagrange multiplier λ in order to express the total
energy. Again according to Murase et al. [13], the surface
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area 	3 and the volume V3 are formulated as

	3 = 4
∫ π

2

− π
2

∫ π
2

0
f

√(
f 2 + f 2

ψ

)
cos2 ψ + f 2

ϕ dϕdψ,

	3 = 	3 ( f ) , (23)

V3 = 4
∫ π

2

− π
2

∫ π
2

0

f 3 cos ψ

3
dϕdψ, V3 = V3 ( f ) . (24)

In this context, the formulation of the bridge shape for a
constant bridge volume V is based on the minimization of
the Lagrangian

�V ( f ) = 	3 ( f )+λ (V−V3 ( f )) f or f = f (ϕ, ψ) , 0

≤ ϕ ≤ π

2
, −π

2
≤ ψ ≤ π

2

by searching arg f min �V ( f ), with f real-valued function
smooth enough.

This approach is particularly well suited for our study
because the volume V is a parameter known precisely at the
coalescence from formula (9) adapted for fine numerical cal-
culations. However, to simplify the problem, Murase et al.
[13] made some geometric simplifying assumptions on the
geometry of the contact lines: the contact lines on higher and
lower sphereswhere approximated by circles through contact
points based on the three different filling angles experimen-
tally determined by digital images [16, p. 358]). As the
determination of the binding force is performed on the con-
tact line, the approximation performed may alter the results
and the conclusions. The reader may find in [13] numerical
estimations of the strength of a liquid bridge adhered to three
spheres.

The numerical resolution of Young–Laplace equation is
not an easy task; it depends strongly on the boundary condi-
tions on the contact line. For this reason, we will focus in the
next of this paper on the geometric and analytical accurate
determination of the triple line profile and of the associated
capillary force. The analytical formula that will be estab-
lished will enable a comparison of the value of the resultant
capillary force before and after coalescence. To our knowl-
edge, such results do not exist in the literature. They enable
to explain accurately the strong increasing of the capillary
force observed experimentally just after the coalescence and
may constitute a starting point for numerical resolution of
Young–Laplace equation of coalesced capillary bridges, that
is not the subject of the present work.

5.2 Remark on least energy solutions subject to
frictional dissipation mechanism

We consider the more general case of the liquid bridge formed
between three equally sized spherical particles, optionally
made up of different materials.

The contact angles values δi , i = 1, 2, 3, related to the
different surface tensions, are presumed strongly imposed
in an option involving a free boundary problem since the
contact curves are obviously free to move; these values are
assumed to be constant at all possible contact points while
ignoring all of realistic hysteresis phenomena. In fact, the
contact lines are subject to a frictional force [2] generating a
dissipation mechanism; hence |	| the area of the free surface
and |�i |i=1,2,3 the area of the wetted region on solid Si are
the unknown of the constrained problem.

In the absence of gravity effects or other disrupting exter-
nal potentials, the shape of the free surface then arises from
minimizing the following capillary energy functional at pre-
scribed volume and taking into account the free boundaries
contribution to transcribe a physically relevant formulation:

E = γ (|	| − cos δ1 |�1| − cos δ2 |�2| − cos δ3 |�3|) ,

δi ∈ [0, π ] .

Because contact angles are fixed and by compliance with
this requirement, Fourier–Robin boundary conditions are
imposed on the variation.

It is well known in the calculus of variations that the first
order conditions from the corresponding minimization con-
firm that the mean curvature must be constant and that the
normals to 	 and �i at fixed i form a constant angle along
the curve ∂	 ∩ ∂�i . The second variation introduces then a
quadratic form related to stability at a given critical point.

In the context of this paper (solid balls made of the same

material), by
2π

3
-rotational symmetry (gravitational effects

are not taken into account), one has

δ = δi , |�| = |�i | , i = 1, 2, 3,

and the energy E− at the instant immediately before coales-
cence is exactly known by previous analytical expressions
for three disjoint bridges.

Accordingly, the energy E+ at the instant immediately
after coalescence has to verify:

E+ = γ
(∣∣	+∣∣ − 3 cos δ

∣∣�+∣∣) ≤ E−.

5.3 Analytical and geometrical determination of the
bridge properties after coalescence

The analytical expressions of capillary bridges properties just
after coalescence established here will be used in Sect. 6
for explaining the jump of the capillary force that occurs at
coalescence.

The free surface area of the liquid bridge is given via the
norm of the fluid surface normal vector

∥∥aρ × aϕ

∥∥ by the
formulation
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	3 = 12
∫ π

2

0

∫ ρp(ϕ)

ρs (ϕ)

√
z2

(
1 + z2

ρ

) + z2
ϕ dρdϕ

For each ϕ ∈ [
0, π

2

]
, the point ρp = ρp (ϕ) on the ρ axis

corresponds to the intersection between the fluid free surface
and the so-called “symmetry contour” bisecting the liquid
bridge between adjacent particles and ρs = ρs (ϕ) is the
ρ−coordinate of the fluid -sphere intersection point (Fig. 6).

According to formulas (3.69) and (3.72) of [16], the total
volume of the liquid bridge is given by

V = 12
∫ π

2

0

∫ ρp(ϕ)

ρs (ϕ)

∫ z

0
zdzdρdϕ

−
∫ π

2

0

(
4r3 − 6r2ρs (ϕ) + 2 (ρs (ϕ))3

)
dϕ

+ 2
∫ π

2

0
z2 (

ρp (ϕ) , ϕ
) (

ρ0 − ρp (ϕ)
)
dϕ. (25)

We point out that the inter-particle force acting on the upper
sphere must be calculated at the three phase contact line (a
skew curve) according to the boundary method and conse-
quently its value is expressed as

Fcap = 4γ

∫ π
2

0

√

z2 (ρs (ϕ) , ϕ) +
(
dρs (ϕ)

dϕ

)2
sin

(
δ (ϕ)+ θ̃

)
dϕ

− 2� p̃
∫ π

2

0
z2 (ρs (ϕ) , ϕ) dϕ (26)

where θ̃ denotes the contact angle, a physical property of the
fluid and

δ (ϕ) = arccos
ρs (ϕ)

r

with r the particle radius. It is important to note that Ryn-
hart et al. [16] set out the following simplified formula [p.
124, (3.74)] for the inter-particle force where the torsion term
dρs (ϕ)

dϕ
is neglected:

Fig. 6 Region where the problem is solved

F̃cap = 4γ

∫ π
2

0
z (ρs (ϕ) , ϕ) sin

(
δ (ϕ) + θ̃

)
dϕ

− 4� p̃
∫ π

2

0

∫ z(ρs (ϕ),ϕ)

0
zdzdϕ. (27)

Thus, expression (26) constitutes an improvement of the
existing formulas in the literature to compute accurately the
inter-particles cohesion forces.

In order to establish further comparisons, we note that
the exact perimeter of contact at the interface boundary is
obtained by calculating

�3 = 4
∫ π

2

0

√

z2 (ρs (ϕ) , ϕ) +
(
dρs (ϕ)

dϕ

)2

dϕ. (28)

In view of further developments, suitable assumptions of con-
tinuity being fulfilled, we observe that the first mean value
theorem for integration states that there exists ϕ0 ∈ ]

0, π
2

[

such that

�3 = 2π

√

z2 (ρs (ϕ0) , ϕ0) +
(
dρs (ϕ0)

dϕ

)2

(29)

and ϕ1 ∈ ]
0, π

2

[
such that the vertical component of the

surface tension force (first term of expression (27) of the
total capillary force) is expressed by

Ftension

=2πγ

√

z2 (ρs (ϕ1) , ϕ1)+
(
dρs (ϕ1)

dϕ

)2

sin
(
δ (ϕ1)+θ̃

)
.

(30)

6 Analysis of the capillary force jump at
coalescence

In this section, using only the mathematical modeling, we
analyze the causes of the quantitative jump of the capillary
force at the coalescence. The variations of the superficial
tensile force of the liquid, of the suction and of the effective
surface area measured (or calculated) at the triple line, that
occur at the coalescence, will be analyzed separately.

We dispose of exact analytical formulas which express
the physical characteristics of the three capillary bridges
immediately before the coalescence. For example, formula
(9) gives exactly the liquid volume V of the three double
capillary bridges before the coalescence. The latter can be
evaluated with an accurate numerical integration formula (a
composite Simpson’s rule to avoid the overestimating trapez-
ium rule because of the convexity of the meniscus). From (5)
and (9), the total free surface area is given by 3	2(τ ).
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Fig. 7 Top view scheme
showing: (i) Contact line with
the upper sphere in case of three
just coalesced nodoids. (ii)
Resulting quasi-ellipsoidal
cross-section used to evaluate
the contribution of the Laplace
pressure to the cohesive
strengthening

Immediately after the coalescence, according to the stud-
ies of Rynhart et al. [16], p. 126, the binding force between
the particles may be calculated at the three phase contact
line and plotted as a function of liquid bridge volume via the
available law

Fcap = fr ,γ ,θ̃
(
V

)

leading to a strictly monotonic relationship available in prac-
tice (cf. Fig. 58, p. 126 in [16]).

Once the new value of the capillary force known with such
kinds of abacus, it may be compared with the vertical result-
ing capillary force applied on the upper sphere before the
coalescence through formula (10). The jump of the capillary
force observed experimentally may be calculated analytically
by this way. Let us quote that these deterministic formulas do
not take into account the complex hysteresis effects during a
wetting-drying cycle, and a fortiori the sensitivity due to the
impurities and roughness that affect the wetting angle θ .

6.1 Contribution of the surface tension of the liquid

Before the coalescence, the length of the total triple line on
the upper sphere is 2πr , which corresponds to the perimeter
at the equator of the sphere.3 However, to take into account
the composition rule of the forces, the effective length to be
considered is

√
3πr , according to formula (10). Otherwise,

after coalescence, the triple line is a skew curve plotted on the
boundary of the lower spherical cap of the upper grain, whose

base is the horizontal disk of radius
√

3
2 r (corresponding to

the radius of the spherical cap joining the upper extremities

3 This value corresponds to 4πr sin π/6.

of the triple line), centered on the vertical axis (Fig. 7). Its
perimeter is given exactly by the abstract formula (28).

Even expression (28) is not easy to use in practice, the first
mean value theorem for integration implies that the perimeter
may be calculated as the perimeter of a circle of radius z0

given by

z0 = z (ρs (ϕ0) , ϕ0)

√√√√√
1 +

(
dρs (ϕ0)

dϕ

)2

z2 (ρs (ϕ0) , ϕ0)

where ϕ0 ∈
]
0,

π

2

[
. (31)

Moreover, we have z (ρs (ϕ0) , ϕ0) <
√

3
2 r as we have after

coalescence, a small decrease of the filling angle, due to the
sudden filling of the central void of the equilateral triangle
(cf.Fig. 3). A graphic evaluation of z (ρs (ϕ0) , ϕ0) leads to an

indicative value close to
√

2
2 r . As a consequence, the multi-

plicative coefficient resulting form accounting for the torsion
does not have a significant influence on the new length of the
triple line, in the sense of the remarked quantitative jump for
the cohesion effect.

However, the effect of the whole triple line length is not
the only one involved in the sudden variation of the capillary
force. In order to fix ideas, we assume that the fluid used is
glycerol whose contact angle on glass ballotini is measured
to be 50◦ as in [16]. According to formulas (10) and (30),
using a similar argument, we may establish that the vertical
component of the surface tension force cannot increase very
suddenly, but presents a very low increase. To do this, let us
compute the ratio of the vertical components of the surface
tension force after and before coalescence, i.e.:
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2z (ρs (ϕ1) , ϕ1)√
3r

√√√√
√

1 +

(
dρs (ϕ1)

dϕ

)2

z2 (ρs (ϕ1) , ϕ1)

× sin
(
δ (ϕ1) + θ̃

)

sin
(π

6
+ θ

) , ϕ1 ∈
]
0,

π

2

[
(32)

The three following observations must be done.

(i) The wetting angles θ and θ̃ concern the same liquid and
are a priori equal.

(ii) According to relation (30), the inequality z (ρs (ϕ1) , ϕ1)

<
√

3
2 r is still valid, so that the first factor is lower than

1 (probably close to
√

2√
3

, using graphic considerations).
However, we must take into account the amplification
factor

√√√√√
1 +

(
dρs (ϕ1)

dϕ

)2

z2 (ρs (ϕ1) , ϕ1)
(33)

due to the torsion of the new triple line.
(iii) The angle δ (ϕ1)+ θ̃ resulting from the first mean value

theorem for integration is, in the frame of Rynhart et
al. [16], certainly bounded by the values 80◦ and 105◦,
with a value close to the center of this interval. It is com-
prised in an interval whose range is linked to the torsion
of the triple line. This value must be compared with the
80◦ angle involved in the formula (10) corresponding to
the instant just before the coalescence. So that this third
factor implied in formula (32) has a very low ampli-
fication effect. Therefore, it appears that the evolution
of the surface tension to an increase play a minor role
in the observed phenomenon; this is the key point to
note.

Let us now perform another analysis of the evolution of the
surface tension force at the coalescence, that will highlight
point (ii), henceforth decisive to explain the sudden increase
of the whole capillary force. As already noticed, just after the
coalescence, the maximum value of the filling angle on the
spheres decreases very slightly. So that, let π

3 − ε be the new
maximum value of the filling angle of the upper particle,4

ε > 0 being expressed in radians (see Fig. 7). This corre-
sponds to a decrease of the liquid level on the upper sphere

whose value is
√

3
2 εr at the first order, if ε is small. This

decrease of the liquid level should mainly contribute to
increase the suction value s and therefore to create an attrac-
tive effect through the modification of the mean curvature,

4 Whose vertex is the center of the upper sphere and the other direction
given by the vertical.

after a relaxation time. The accurate calculus of the relative

suction
�s

s
by shrinking turns out to be difficult.

However, we can prove that a positive gradient of the suc-
tion occurs and estimate its value. Indeed, let us consider
the variation of the suction resulting from a retraction as in
a drying process of a nodoid bridge between two spheres,
at the coalescence instant, when the filling angle decreases
of ε. Referring to formula (22) of [9] where y∗

δ denotes the
gorge radius observed for a filling angle δ considered as the
varying parameter, we have (Fig. 8):

s (δ) = 2γ
y∗
δ − r sin δ sin (δ + θ)

r2 sin2 δ − y∗2
δ

. (34)

In the sequel, we assume that the denominator is locally
almost constant for s > 0. That corresponds to the effec-
tive non degenerate nodoid case, before the limit case of the
catenary,5 i.e. provided the following conditions are satisfied:

y∗
δ − r sin δ sin (δ + θ) > 0 and r sin δ − y∗

δ > 0.

In a neighboring of δ, we obtain by differentiation:

�s

s
(δ) = �y∗

δ − r sin (2δ + θ)

y∗
δ − r sin δ sin (δ + θ)

�δ with

�y∗
δ

∼= 1

2

r2 sin 2δ

y∗
δ

�δ, (35)

In particular, for δ = π

6
and �δ = −ε, we get the strictly

positive value:

�s

s

(π

6

)
= r

y∗
π
6

2y∗
π
6

sin
(π

3
+ θ

)
− r

√
3

2

2y∗
π
6

− r sin
(π

6
+ θ

) ε. (36)

From numerical and graphical results of Murase et al. [13],
p. 358, we notice that the orthogonal projection, on an hor-
izontal plane, of the part of the capillary bridge stuck to the
upper sphere has a quasi-ellipsoidal form denotes �. This
observation will be useful in the next for the calculus of
Laplace pressure contribution in the vertical attractive force
applied to the upper sphere. It will induce some remarks
on the length of the triple line, without the mathematical
precision of the last developments (mean value theorem for
integration applied to the exact theoretical integral formula).

First, let us quote that the length of the triple line, which
is a skew curve (this point is confirmed by the experiments
of [11,13,16]), may be approached, in first approximation

5 Characterized by the well-known relations s = 0 and y∗
δ =

r sin δ sin (δ + θ).
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Fig. 8 Schematic description
of the triple contact line on the
upper sphere after coalescence
(rough perspective view). C and
C ′ are the highest points. Just
before the coalescence, the
triple line consists in the two
tangent circles of diameter AB
and AB ′. The circular arcs BC
and BC ′ represent the slight fall
in the liquid level, causing the
strengthening of the suction

underestimating the solution, by the boundary of the projec-
tion � using an oval of basket-handle type, whose semi-major

axis is a = r sin
(

π
3 − ε

)
and semi-minor axis6 b = a 4−√

3
3 .

Therefore its perimeter is equal to 2 × 8
9πr sin

(
π
3 − ε

)
.

The difference between the perimeters of the effective
triple lines (before and after coalescence), after correction
to take into account the force composition, then reduces to:

πr

(√
3 − 16

9
sin

(π

3
− ε

))

∼= πr

(√
3 − 16

9

(√
3

2
− ε

2

))

if ε is small.

This positive quantity, really overestimated because of the
real torsion of the new triple line (an amplification factor
similar to (33) should be introduced), would lead in first
approximation to a decreasing of the surface tension. How-
ever, a torsion corrective factor of the order of value 1.13
would reverse the trend to opt for a greater perimeter of con-
tact.

Anyway, this point cannot explain the sudden visible
increase of the cohesive force measured on the upper sphere.
In addition, the multiplicative parameter sin (δ + θ) linked to

6 By geometrical construction by dividing the major axis in three equal
parts.

the solid–liquid interaction does not vary strongly. Finally,
without modifying the conclusion, an approximate formula
of the perimeter of an ellipse, by default or by excess, of
Kepler ou Euler’s type, may be used:

πr sin
(π

3
− ε

) (

1 + 4 − √
3

3

)

,

πr

√√√√2 sin2
(π

3
− ε

)
+ 2

(
4 − √

3

3

)2

.

As a consequence, although the surface tension force may
present a small increase, only the hydrostatic force (linked
to the capillary force) have a priori a significant influence
on the phenomenon, as already noted in a previous different
approach.

6.2 Contribution of the increase of contact surface area
and suction force

According to the notations introduced previously, � denotes
the orthogonal projection on a horizontal plane of the part
of the capillary bridge stuck to the upper sphere. The
quasi-ellipsoidal surface area implied in the calculus of the
hydrostatic force (cf. Fig. 7), that may be considered as the
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effective section at the triple line, can be calculated using the
exact formula of the area of an ellipse. We obtain:

π
4 − √

3

3
r2 sin2

(π

3
− ε

)
.

Let us recall that the inter-particle force of a liquid bridge (in
this case adhered to three spheres) must be defined only at
the contact line with a sphere. Nonetheless specifically for
the two particles problem concerning axisymmetric liquid
bridges, the “gorge method” and the contact line method (so-
called “boundary method”) or the evaluation on any cross-
section are equivalent according to the invariance property
(see [9] for more explanations).

On the other hand, just before the coalescence, the effec-

tive surface involved corresponds to
√

3
4 πr2 and results from

the composition of two concurring forces acting on the two
inclined disks of radius r

2 . Therefore, just after the coales-
cence, the increase of the surface area �A stands as:

�A = πr2

(
4 − √

3

3
sin2

(π

3
− ε

)
−

√
3

4

)

∼= πr2

(

1 −
√

3

2
− ε

√
3

6

(
4 − √

3
))

. (37)

It is materialized by the difference of areas between the
connected ellipsoidal form and the two tangent ellipses of
semi-major and semi-minor axis (r/2, r

√
3/4) (Fig. 7).

The increase of surface area �A corresponds to the new
contribution of the lower part of the upper sphere which is
now in contact with the liquid, around the vertical axis (cf.
Fig. 7). Numerically, at zero order in ε, we have

�A
A = 4

√
3

3
− 2 � 30.9

100
(38)

That corresponds to an increase of about 30 % compared to

the effective surface area whose value is
√

3
4 πr2 (resulting

from the composition of two concurring forces acting on the
two inclined disks of radius r

2 just before the coalescence).
Besides, this increase is amplified by the expected increase
of the suction according to (36) as

�Fsuc

Fsuc
= �A

A + �s

s
. (39)

This result must be compared to the increase of the order
of 38 % of the capillary force observed experimentally at
Sect. 2.

Conversely, the same considerations are valid to explain
and measure the weakening by drying of a coalesced capil-
lary bridge between three spheres. At the rupture, the surface
tension force is weakly decreased by the evolution of the
perimeter of the contact line involved in the composition of
the concurring forces. Anyway, this effect is of low ampli-
tude in comparison with the large decrease of the contact
surface area and the decrease of the suction. According to
Gras [11, pp. 102–103], a ratio of 0.7 is measured between
the capillary force before and after the coalescence.

In summary, before the coalescence of the three nodoids,
the filling has a little impact on the vertical cohesive force
on the upper sphere. We have an antagonist aspect: the
active contact area and the triple contact line length increase,
whereas the suction decreases, leading to a relatively weak
increase of the whole capillary force acting on the upper
sphere. After coalescence, the observed jump results mainly
from the effect of Laplace pressure: the suction and the active
contact area increase. The evolution of the properties before
and after the coalescence of three nodoids during the filling
is summarized in Table 1.

Finally, it is well known by dimensional analysis that
surface tension γ has the dimension of force per unit
length or of energy per unit area; consequently this para-
meter can be also measured in SI system as joules per
square meter. So, γ being constant at constant temperature,
the free surface area of a capillary bridge is proportional
to an energy, somehow stored as potential energy. Since

Table 1 Evolution of the properties before and after the coalescence of three nodoids during the filling

Before coalescence After coalescence

General observations Filling has a little impact on the
vertical force acting on the upper
sphere

Significant jump of the cohesive
force

Whole capillary force � ↗ ↗
Acting contact area for Laplace pressure ↗ ↗ ↗
Positive suction ↘ ↗
Triple contact line length ↗ � weak increase

Surface tension force ↗ � weak increase

Symbols used � weak evolution (a few per cent or nearly constant), ↗ increase (<10 %), ↗ ↗ large increase [around 30 % according to (39) and
(38)], ↘ decrease (<10 %)
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the mechanical system evolves towards a state of mini-
mum potential energy at fixed volume, the modified surface
area of the resulting coalesced bridge, that leads to the
change in energy, is necessarily less than the free surface
area of the three disjoint bridges at coalescence time. The
actual determination of this issue would require sophisti-
cated numerical calculations and remains a delicate matter.
The explicit calculation of the nodoids free area, namely
3	2(τ ) with the notations (5) and (9), is obtained in practice
by a numerical integration formula from a Hermite inter-
polation of the convex meridian via the differential element
y (x)

√
1 + y′2 (x)dx .

7 Conclusions

The criteria for identifying quickly the nature of the meridian
and providing exact parametric equations in order to calculate
all the physical characteristics of bridges between two grains
has been revisited in [9]. On the basis of the results obtained,
we have considered the coalescence of three capillary bridges
constituted of portions of nodoid with positive suction and
attractive capillary force, as the only strongly stable case that
may be encountered in practice (except in very specific situa-
tions). We have clearly demonstrated the origin of the sudden
jump of the capillary force at the coalescence of three bridges
between two grains, phenomenon experimentally observed
and reported in the literature without elucidation. The addi-
tional strength in three particles agglomerate is due to both
the significant increase for the area of the projection on a
horizontal plane of the contact surface with the upper sphere
and the greater suction while a slight increasing variation
is expected in the surface tension force. In summary, the
observed jump is essentially the result of the double effects
of the Laplace pressure: greater suction acting on larger areas.
Theoretical results are in good agreement with experimental
data available in the literature.
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