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Abstract This paper examines the development and evo-
lution of shear bands in granular assemblies when particle
rolling and imperfections are taken into account. Simu-
lated biaxial tests in two-dimension are conducted using the
discrete element method. The progressive development of
rotational angles and effective strain are presented to describe
the emergence and evolution of shear bands in biaxial tests.
The simulated results reveal that when rolling resistance is
taken into account in DEM, the development of shear bands
is more distinct as the evolution of the minor shear bands is
limited while the major shear bands are preferably promoted
in granular materials, and that the local rotating bearings not
only influence the onset of shear bands and the width of the
shear bands, but also decrease the resistance and reduce the
strength of the granular material. Also, it is demonstrated that
the primary shear bands initiate from the imperfect areas and
develop preferentially along the direction of imperfections.
Therefore, the emergence and development of shear bands,
which will result in a decline in strength and eventually lead to
instability and destruction of the material, can be effectively
simulated when rolling resistance is incorporated in DEM
and the initial distribution of imperfections in the granular
material is defined.
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1 Introduction

Under an external load, the intense deformation of a granu-
lar material, such as dense sand, usually occurs in relatively
concentrated narrow regions (called shear bands). This phe-
nomenon is also called strain localisation and is usually
related to the strain-softening property of the material. The
mechanism for strain localisation and formation of shear
bands is an important topic in the study of granular mate-
rials.

Granular materials are an assembly of discrete particles
that are in contact at a microscopic level. It has been recog-
nised that microstructure properties, such as particle packing,
void ratios, and the evolution of void ratios, control the
macroscopic behaviour of granular materials. The discrete
element method (DEM) has been widely used to investigate
the failure micro-mechanism of granular materials because
of the ability to obtain the microscopic information at the par-
ticle level [1–6]. DEM allows for a contact model between
two particles, viz. force-displacement law, for calculating the
contact force. The physical properties and relative motion
mechanism of particles in granular materials are reflected
by contact models between particles. Using different contact
models, different macroscopic behaviours can be achieved
with DEM.

Oda et al. observed the microstructural changes and devel-
opment of shear bands in a sand specimen using experiments
combining an X-ray method with an optical method, which
provided information about the thickness and direction of
shear bands. Two conclusions have been drawn from these
experimental results: there are great void ratios within the
shear bands, and there are high rotational gradients of parti-
cles in the shear bands [7,8]. Also Bardet [9] observed the
significant effects of particle rolling on the shear strength and
consequently on the occurrence and evolution of shear bands
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in particulate system. Through a two-dimensional granular
Couette experiment, Veje et al. [10] revealed a separation
of the kinematics into a slipping state and a nonslipping
state consisting of a combination of rolling and translation.
Astrom et al. [11] investigated a two-dimensional packing
of elastic spheres, demonstrated that local “rotating bear-
ings” are spontaneously formed in a shear band and that local
rotating bearings play an important role in shear band for-
mations. Alonso-Marroquin et al. [12] indicated that sliding
and rolling are two outstanding deformation modes in gran-
ular media and that the introduction of rolling in the gouge
dynamics could potentially explain the low friction of faults
and low stress drops during earthquakes.

These phenomena can be replicated well only when rolling
resistance is considered in DEM [13–15]. The importance of
introducing the rolling resistance into the contact model has
also been addressed by some researchers [16–18]. In most
work, the rolling resistance moment at each contact is intro-
duced as an additional component mechanism for taking into
account the effects of particle rolling, but the rolling and the
sliding friction tangential forces at contact, which should be
constitutively related to the tangential components of the rel-
ative rolling and the relative sliding motion measurements
respectively at the contact, are not distinguished. It should
be noted that, as the relative motion that occurs at the con-
tacting point is only or almost only the relative rolling, a
model for tangential forces with omission of rolling friction
tangential force may lead to unrealistic results in numerical
calculations. Feng et al. [19] pointed out that correct mod-
eling of rolling friction is still an under-developed area and
many issues remain unanswered, and they developed a rolling
resistance model and incorporated it within the sliding fric-
tion model. Li et al. [20] proposed a discrete element model,
which can take into account both rolling resistances (rolling
friction tangential force and rolling resistance moment) and
sliding friction tangential force.

Void ratios and their distribution also play key roles in
the macroscopic behaviour of granular materials [21,22].
Hermann argued that the distribution of void ratio is an impor-
tant factor in the behaviour of granular materials [23]. In
fact, local imperfections may relate with local uneven void
ratio distributions in the granular specimen. The effects of
initial imperfections on the initiation and development of
shear bands in the sand specimen have been studied by some
researchers using a macroscopic continuum [24]. For contin-
uum, the information of shear bands can be described through
macroscopic deformation, plastic strain and so on. While at
the microscopic level of granular materials, it is not easy to
get clear shear bands through describing the changes of par-
ticle positions or force chains or stresses or void ratios. From
the previous work [7–9,13–18,20,25], the shear strain, vol-
umetric strain, displacement vector and particle rotation are

much better to show the information of shear bands occurred
in granular materials.

Using DEM in two-dimension, this study will consider
both rolling resistances (rolling friction tangential force and
rolling resistance moment) and sliding friction tangential
force between particles in the contact model, and attempt
to investigate the effects of initial imperfections on the ini-
tiation and evolution of shear bands in granular materials.
To easily understand and clearly describe the deformation
process and the evolution of shear bands in granular materi-
als, a macroscopic definition of effective strain for granular
material is used. Besides, the rotational angles of the par-
ticles are displayed to describe the shear bands since there
are high rotational gradients of particles in the shear bands
from the experimental results [7,8]. In describing the pro-
gressive development of the effective strain and the rotational
angles, the initiation and evolution of shear bands are simu-
lated using different numerical tests considering free rolling,
rolling resistance and no rolling for granular materials. Addi-
tionally, the effects of specimen imperfections on bearing
capacity are analysed.

2 A contact model incorporating a particle rolling
resistances mechanism

It should be noted that as the relative motion at the contact-
ing point is mainly the relative rolling, a model for tangential
forces with omission of rolling resistance may lead to unreal-
istic results in numerical calculations. Based on the work of
Iwashatia and Oda [13,15], Li et al. [20], the contact model
for calculation of tangential forces between two particles at
contact, which incorporates both rolling resistances (rolling
friction tangential force and rolling resistance moment) and
sliding frictional force, is used here. This model is described
in Fig. 1.

The normal contact force, the tangential contact force and
the contact torque between particles A and B in contact are
computed as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fn = knUn + cn
dUn

dt

ft = fs + fr = min

(

ksUs + cs
dUs

dt
, μs | fn|

)

+ min

(

krUr + cr
dUr

dt
, μr | fn|

)

Mr = − min

(

kθ θr + cθ

dθr

dt
, μθr | fn|

)

(1)

where fn is the normal contact force; ft is the tangential
contact force; fs is the tangential sliding friction force; fr is
the tangential rolling friction force; Mr is the rolling friction
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Fig. 1 The contact model
incorporating both rolling
resistances and sliding frictional
force

kn n

ks

kθ
kr

c

c

s

cθ
cr

μs μr

μθ

Normal displacement Sliding Rolling

Springs

Dash Pots

Sliders

No-tension Joint

Fig. 2 The deformation of
surface and supporting force
(adapted from Chu [26]): a
without rolling tendency; b with
rolling tendency or being rolling

resistance moment; kn is the stiffness coefficient of normal
force; ks is the stiffness coefficient of sliding force; kr is the
stiffness coefficient of rolling force; kθ is the stiffness coeffi-
cient of rolling moment; Un is the normal displacement; Us

is the tangential sliding displacement; Ur is the tangential
rolling displacement; θr is the rolling angle; cn is the vis-
cous damping coefficient of normal force; cs is the viscous
damping coefficient of sliding force; cr is the viscosity damp-
ing coefficient of rolling force; cθ is the viscosity damping
coefficient of rolling moment; μs is the sliding friction force
coefficient; μr is the rolling friction force coefficient; and μθ

is the rolling friction moment coefficient.
The rolling resistance considered here includes not only

rolling moment, but also rolling friction force. The rolling
friction force considered in the model is necessary for pro-
viding the energy dissipation under steady pure rolling state
[19,20]. Up to rolling moment, when circular particle is used
to model the real particle with irregular shape, the rolling
moment is necessary for modeling accurately shear band
of granular assemblies as the circular particle is easier to
roll than irregular shape particle. Bardet, Iwashatia and Oda
suggested similar rolling moment models and gave a rela-

tionship between rolling moment stiffness and slide stiffness
[9,13,15]. Jiang et al. suggested the rolling moment stiffness
is related to the normal stiffness, particle radius and the width
of contact area [17]. From the mechanical and physical point
of view, rolling moment and forces come from the bias of
the resultant of contact normal force [26], as shown in Fig. 2,
where f gn is the gravity of the particle.

3 Shear band failure of a perfect specimen

An 86.7 cm × 50 cm particle assembly specimen is consid-
ered. The specimen is generated with 4950 particles, each
with an identical radius of 5 mm. Rigid plates, where com-
pression forces will be applied, are set on the top and bottom
of the specimen, as shown in Fig. 3. A pressure of 0.1 MPa is
imposed around the specimen. The material parameters used
in the analysis are presented in Table 1. In addition, the fric-
tional coefficient between the rigid plates and the particles is
0.5.

To illustrate the effects of particle rolling resistance, four
numerical biaxial compression tests (i.e., free rolling test, two
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Fig. 3 A granular assembly of 4950 particles with radius of 5 mm
collocates in a regular specimen

rolling resistance tests and no rolling test) are conducted. In
each of the four tests, the loading and boundary conditions
are the same, but different contact coefficients (i.e., different
rolling stiffness, rolling moment stiffness, rolling damping,
rolling moment damping, rolling friction and rolling friction
moment coefficients) are adopted to reflect the free rolling,
rolling resistance and no rolling mechanisms and presented in
Table 2. During the compression process, the confining pres-

sure is kept constant; the loading is applied continuously by
displacement-control of the rigid plates, which are forced to
move towards each other vertically. The numerical test results
for each granular specimen, including the deformed configu-
rations, effective strain distribution, particle rotational angles
and axial stress-strain curves, are presented. The effective
strain, which is defined at the centre of the particle to measure
the change in position of a particle in relation to neighbouring
particles, is briefly summarized in the “Appendix”.

3.1 Free rolling

In this condition, no additional resistance against rolling is
imposed on the rolling particles. Figure 4 shows the defor-
mation of the specimen and the position of the particles at
different axial strains. It can be seen that some large voids
associated with large particle rotations (as can be seen in
Fig. 6) appear in the middle of the final configuration. Fig-
ure 5 shows the effective strain distributions in the specimen
for different axial strains indicating that a pair of wide shear
bands develop gradually with the increasing axial strain in the
specimen. The rotational angles of the particles relative to the
initial position (clockwise rotation is positive, negative oth-
erwise) for different axial strains are shown in Fig. 6, which
illustrates a spontaneous formation of a local rotating ball
bearing and high particle rotations in the wide and conjugate
shear bands at the end of loading stage. However, they are dis-
tributed rather uniformly in both positive and negative sides.
Astrom et al. [11] also stated that local “rotating bearings”
are spontaneously formed in a shear band, and the bearings
can be formed only when contacting grains rotate in differ-
ent directions, and therefore there is a concentration of both
clockwise and counterclockwise rotations in the shear bands.
The similar observations were reported by Oda et al. [7,8,25].

The deviatoric stress-axial strain curve for the specimen
in the free rolling test, shown in Fig. 7, illustrates that peak

Table 1 Parameters for DEM simulation

Parameters Particle density
(kg/m3)

Normal spring
constant (N/m)

Tangential spring
constant (N/m)

Normal damping
constant (N)

Tangential damping
constant (N)

Slide friction
coefficient

Value 2600 2.5 × 108 2.0 × 108 0.02 0.02 0.5

Table 2 Contact coefficients for different tests

Rolling stiffness
(N/m)

Rolling moment
stiffness (Nm/rad)

Rolling damping
(Ns/m)

Rolling moment
damping (Nms/rad)

Rolling
friction

Rolling
friction
moment

Free rolling 0 0 0 0 0 0

Rolling resistance 1 1.0 × 106 2.5 0.1 0.1 0.1 0.1

Rolling resistance 2 1.0 × 107 2.5 0.7 0.7 0.7 0.7

No rolling 1.0 × 108 2.5 1.0 1.0 1.0 1.0
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Fig. 4 The positions of the
particles at different axial strains
in the sample

(a) 0.7%       (b) 2.1%         (c) 3.5%             (d) 4.9%

Fig. 5 The effective strain distributions in the specimen with increasing axial strain in free rolling test

Fig. 6 The rotational angles distributions in the specimen with increasing axial strain in free rolling test

strength arrives at 2.1 % axial strain and then declines grad-
ually until a residual value arrives at 5 % axial strain. From
Figs. 5 and 6, it can be seen that the shear bands initiate
around the peak strength and develop to concentrate in one
pair of wide and conjugate shear bands afterwards.

3.2 Rolling resistance 1 and 2

In these conditions, the particles are not allowed to roll until
the rolling torques acting on the particles are greater than a
threshold value. The results are similar to the case of free

rolling. Two conjugate shear bands can be seen along the
diagonal lines in the final configuration. Figure 8 shows
the effective strain distributions in the specimen for dif-
ferent axial strains indicating that a pair of persistent and
distinct shear bands develop gradually with the increasing
axial strain.

The rotational angles of the particles relative to the initial
position for different axial strains are shown in Fig. 9, which
illustrates that compared with Fig. 6, some lower particle
rotations appear in narrower zone in the specimen at the end
of loading stage.

123



12 Page 6 of 12 H. Tang et al.

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

axial strain ε1 (%)

ε / %

de
vi

at
or

ic
 s

tre
ss

 σ
1−σ

3 (
M

P
a)

 free rolling
 rolling resistance 1
 rolling resistance 2
 no rolling

Fig. 7 The deviatoric stress-axial strain curves for the granular assem-
bly in biaxial test of a perfect specimen

Compared with the free rolling test, it can be observed that
only two major and conjugate shear bands are promoted,
and the width of shear bands are narrower in this test. It
demonstrated that local rotating bearings play an important
role in shear band formations and influence both the onset of
shear banding and the width of the shear bands.

3.3 No rolling test

In this condition, particle rolling is prevented, and particle
sliding is the primary movement pattern.

Figure 10 shows the effective strain distributions in the
specimen at different axial strains, indicating that no regu-
lar shear bands are developed in the specimen. The rotational
angles of the particles relative to the initial position for differ-
ent axial strains are shown in Fig. 11, illustrating that some
extremely low particle rotations randomly distribute in the
sample.

The deviatoric stress-axial strain curve for the specimen in
this condition, shown in Fig. 7, illustrates that peak strength is
distinctly higher than that in previous three tests, and arrives
at a delayed axial strain of 3.5 % because the particles can
not move smoothly due to rolling restriction. It indicates that
particle rolling may decrease the resistance and reduce the
strength of the granular material.

Alonso-Marroquín et al. [12] indicated that the defor-
mation of the granular material is dominated by rigid-body
motion due to the vorticities, rolling due to the rotational bear-
ings and elastic dislocation due to building of force chains,
and that spontaneous formation of vorticity cells assisted by

Fig. 8 The effective strain distributions in the granular assembly withincreasing axial strain of the assembly in rolling resistance test

Fig. 9 The rotational angles distributions in the specimen with increasing axial strain in rolling resistance test 2
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Fig. 10 The effective strain distributions in the specimen with increasing axial strain in no rolling test

Fig. 11 The rotational angles distributions in the specimen with increasing axial strain in no rolling test

rotational bearings is the mechanism of reduction of strength
and frictional dissipation in shear cells. Astrom et al. [11]
also stated that the bearing state significantly reduces shear
stiffness. These better explained why the strength is low when
particle rolling takes place in previous conditions.

From Figs. 10 and 11, it can be observed that no shear
bands can be seen in this condition, i.e. no rolling test. It also
can be concluded that the development of distinct shear bands
can be effectively simulated only when rolling resistance is
considered in DEM.

4 Shear band failure of an imperfect specimen

An 86.7 cm × 50 cm particle assembly specimen is consid-
ered. To start, 4950 particles, each with an identical radius
of 5 mm, are generated to form a specimen with an even
porosity of 0.0931, and then some particles are replaced with
particles with a porosity of 0.25. Rigid plates, on which the
compression forces are applied, are set on the top and bottom
of the specimen. Figure 12 shows the granular assembly of
this specimen and the irregular arrangement in local areas.
The boundary conditions and the material parameters incor-
porated in this analysis are identical to those used in the test
of the perfect specimen.

4.1 Free rolling test

Figure 13 shows the deformation of the specimen and the
position of the particles at different axial strains. It can be
seen that some voids appear in the direction of imperfec-
tions. Figure 14 shows the effective strain distributions at
different axial strains; the intense deformation initiates from
imperfect areas and traverse the specimen gradually along the
line connecting these two imperfect areas with the increasing
axial strain in the specimen. Also, the shear band develops
a little along another diagonal line in the specimen in later
stage. The rotational angles of the particles, relative to the ini-
tial position, for different axial strains are shown in Fig. 15,
which illustrates that high particle rotations appear in a wide
conjugate diagonal range in the specimen at the end of load-
ing stage, but the absolute value in the imperfect direction
is larger. The deviatoric stress-axial strain curve for the free
rolling test specimen, observed in Fig. 16, illustrates that the
strength declines distinctly after the peak value and that the
lowest value arrives at 6 % axial strain.

Compared with the numerical results (Figs. 4, 5, 6, 7) for
the even specimen, the primary shear band initiates from the
imperfect area and preferentially develops along the direc-
tion of imperfection in free rolling test. The width of the shear
band is less than that of the previous one, while the effective
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Fig. 12 A granular assembly
by 4898 particles with radius of
5mm collocated in an irregular
manner: a, b are irregular
arrangement in local areas; c is
regular arrangement; d is the
whole specimen
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Fig. 13 The positions of the
particles at different axial strains
in the sample

(a) 0.7%       (b) 2.1%         (c) 3.5%             (d) 4.9%

strain and rotational angles of the particles in the shear band
are greater. It means that the initial distribution of imperfec-
tions affects emergence and development of shear bands. The
deviatoric stress-axial strain curve in Fig. 16 shows that the
strength of the imperfect specimen is affected by the imper-
fections; it declines to 5.1 MPa less than 5.7 MPa of the even
specimen.

4.2 Rolling resistance test 2

In this condition, the results are similar to the case of free
rolling test. The intense deformation initiates from imperfect
areas and distinct and regular shear bands develop gradu-
ally in the direction of imperfection with the increasing axial
strain in the specimen. Also, a conjugate distinct shear band

develops along another diagonal line in the specimen. The
rotational angles of the particles illustrate that lower particle
rotations in narrower zone compared with the free rolling
test, and the development of minor shear bands is limited
while the development of major shear bands is promoted in
the rolling resistance test.

4.3 No rolling test

Figure 17 shows an almost uniform deformation of the speci-
men and the position of the particles at different axial strains.
Figure 18 shows the effective strain distributions in the spec-
imen at different axial strains, indicating that no regular
shear bands are developed in the specimen. The rotational
angles of the particles relative to the initial position, ran-
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Fig. 14 The effective strain distributions in the granular assembly with increasing axial strain of the assembly in free rolling test

Fig. 15 The rotational angles distributions in the specimen with increasing axial strain in free rolling test
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Fig. 16 The deviatoric stress-axial strain curve for the granular assem-
bly

domly distribute in the specimen for different axial strains,
as shown in Fig. 19. The deviatoric stress-axial strain curve
for the no rolling test specimen, observed in Fig. 16, illus-
trates that a peak strength, which is the highest in these tests
arrives at 3.5 % axial strain because the particles can not move
smoothly. Therefore, the particle rolling influences not only

the onset of shear band, but also the strength of the granular
material.

Compared with the numerical results (Figs. 10, 11) for the
even porosity distribution numerical simulation, there is still
no clear shear band in this specimen, so it can be concluded
that to well reproduce the development of distinct shear band
in granular materials, it is very important to introduce rolling
resistance into DEM. In addition, the strength of the specimen
is affected by the imperfections; it declines to 6.5 MPa less
than 7.6 MPa of the even specimen because the particles in
imperfect areas can move more easily.

5 Conclusions

Particle rolling and imperfections are incorporated in the
numerical model to study their influence on the formation
of shear bands in granular materials. To describe the macro-
scopic deformation process and the emergence and evolution
of shear bands in granular materials, the macroscopic defin-
ition of effective strain for granular materials is introduced.
Several different numerical tests (i.e., free rolling test, rolling
resistance test and no rolling test) using the discrete element
method (DEM) are conducted to simulate the mechanical
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Fig. 17 The positions of the
particles at different axial strains
in the sample

(a) 0.7%       (b) 2.1%         (c) 3.5%             (d) 4.9%

Fig. 18 The effective strain distributions in the granular assembly with increasing axial strain of the assembly in no rolling test

Fig. 19 The rotation distributions in the granular assembly with increasing axial strain of the assembly in no rolling test

response of the granular specimens. The deformed configura-
tion, the progressive development of rotational angles and the
distribution of effective strain in the granular specimens are
illustrated to analyse the origination and evolution of shear
bands. The following conclusions can be made:

1. The evolution of shear bands in granular materials is
accompanied with particle rotation and void growth. The
progressive development of rotational angles and effec-
tive strain both are capable of describing the emergence
and evolution of shear bands in granular materials, but
the latter is more effective.

2. The evolution of shear bands in granular materials can
only be simulated effectively with particle free rolling
and rolling resistance. In the case of particle rolling resis-
tance, the shear band evolution is more distinct as the
evolution of the minor shear bands is limited while the
major shear bands are preferably promoted. It can be con-
cluded that to well reproduce the development of distinct
shear band in granular materials, it is very important to
take into account rolling resistance in DEM.

3. The local rotating bearings play an important role in shear
band formation. They influence both the onset of shear
bands and the width of the shear bands, and decrease the
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resistance and reduce the strength of the granular mater-
ial. Usually speaking, the larger the rolling resistance is,
the narrower the width of the shear band is.

4. The initial distribution of imperfections in the speci-
men affects the emergence and development of shear
bands. Apparently, the primary shear bands initiate from
the imperfect areas and develop preferentially along
the direction of imperfections. As the rolling resistance
increases, the conjugate shear bands, similar with that in
even specimen, are developed in a late stage. Also, the
strength of the imperfect specimen is lower than that of
the even specimen. Therefore, the emergence and devel-
opment of shear bands, which will result in a distinct
decline in strength and eventually lead to instability and
destruction of the material, can be effectively simulated
when rolling resistance is incorporated in DEM and the
initial distribution of imperfections in the granular mate-
rial is defined.
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Appendix

The definition of effective strain for granular materials is
briefly summarized.

To measure the change in position of a particle in relation
to neighbouring particles, a nominal strain (i.e., the effective
strain) is defined at the centre of the particle. Considering
the change in position of particle A in relation to one of
its neighbouring particles, denoted particle B and shown in
Fig. 20, the nominal effective strain is defined as follows.

In Fig. 20, the relative change in position of two neigh-
bouring particles at times t1 and t2 is considered. Using the
XYZ global coordinate system, the centre coordinates of par-
ticles A and B are X1

A,X1
B at t1 and X2

A, X2
B at t2. The angles

between the axis in the XYZ global coordinate system and
the corresponding xyz local coordinate system are α1, β1, γ1

at t1 and α2, β2, γ2 at t2. The difference between the centre
positions of particles A and B, using the global coordinate
system, at t1 and t2 are

�X1
BA = X1

B − X1
A; �X2

BA = X2
B − X2

A (2)

The differences based on the local coordinate system can be
expressed as

�x1
BA = x1

B − x1
A; �x2

BA = x2
B − x2

A (3)

1α

2α
2β

1β1γ
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Fig. 20 The position of neighboring particles in different time

The coordinate transformation result is

�x1
BA = T1�X1

BA; �x2
BA = T2�X2

BA (4)

where T1 and T2 are the coordinate transformation matrixes
from the local coordinate system to the global coordinate
system at t1 and at t2, respectively.

T1 =
⎡

⎢
⎣

cos γ1 sin γ1 0

− sin γ1 cos γ1 0

0 0 1

⎤

⎥
⎦

⎡

⎢
⎣

cos β1 0 − sin β1

0 1 0

sin β1 0 cos β1

⎤

⎥
⎦ (5)

T2 =
⎡

⎢
⎣

cos γ2 sin γ2 0

− sin γ2 cos γ2 0

0 0 1

⎤

⎥
⎦

⎡

⎢
⎣

cos β2 0 − sin β2

0 1 0

sin β2 0 cos β2

⎤

⎥
⎦ (6)

It means that by revolving β1 around axis y1, then γ1

around axis z1 at t1, the local coordinate system can coincide
with the global coordinate system. Similarly, by revolving
β2 around axis y2, then γ2 around axis z2 at t2, the local
coordinate system can coincide with the global coordinate
system.

As two-dimensional problem concerned, only the coordi-
nate transformation within XY plane is considered [20]. The
coordinate transformation matrixes are

T1 =
[

cos α1 sin α1

− sin α1 cos α1

]

; T2 =
[

cos α2 sin α2

− sin α2 cos α2

]

(7)

Deformation gradient f is used to describe the relative loca-
tion change between particles A and B, from the material
particle pair A− B : X1

A −X1
B at time t1, to the same mater-

ial particle pair A′ − B ′ : X2
A − X2

B at time t2, referred to as
x1 − y1, where f is defined as:
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f = �x2
BA

�x1
BA

= RU (8)

In Eq. (8), R is the orthogonal tensor, which represents the
rotation of the connecting line between particles A and B. U
is a positive definite symmetric tensor, which represents the
tensile deformation of the connecting line between particles
A and B. They can be expressed as

R =
[

cos (α2 − α1) − sin (α2 − α1)

sin (α2 − α1) cos (α2 − α1)

]

(9)

U =
[

λAB 0
0 1

]

(10)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λAB = l2AB
l1AB

l1AB = ∥
∥�x1

BA

∥
∥

l2AB = ∥
∥�x2

BA

∥
∥

(11)

Equations (4), (7), and (8) result in

{
�X2

BA = F�X1
BA

F = TT
2 fT1

(12)

According to the theory of continuum mechanics, the deriv-
ative tensor of the displacement gradient, defined by the
relationship between the material coordinate and space coor-
dinate, is

D = F − I (13)

where I is the unit matrix. If Di j are the components of matrix
D, then

γAB =
[

2

3
Di j Di j

]1/2

(14)

γe = 1

nA

nA∑

B=1

γAB (15)

where γAB is an intermediate variable, and γe is the effective
strain at the centre of particle A, around which there are nA

neighbouring particles.
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