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Abstract A computational method is described for the
generation of virtual air pores with randomized features in
granular materials. The method is based on the creation of a
stack of two dimensional stochastically generated domains of
packed virtual aggregate particles that are converted to three
dimensions and made to intersected with one another. The
three dimensional structure that is created is then sampled
with an algorithm that detects the void space left between
the intersected particles, which corresponds to the air void
volume in real materials. This allows the generation of a map
of the previously generated three dimensional model that can
be used to analyse the topology of the void channels. The
isotropy of the samples is here discussed and analysed. The
air void size distribution in all the virtual samples gener-
ated in this study is described with the Weibull distribution
and the goodness of fit is successfully evaluated with the
Kolmogorov–Smirnov test. The specific surface of the vir-
tual samples is also successfully compared to that of real
samples. The results show that a stochastic approach to the
generation of virtual granular materials based only on geo-
metric principles is feasible and provides realistic results.
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1 Introduction

The study of porosity in granular materials is important to
understand the behaviour of a number of physical properties,
e.g. Young’s modulus [23], strength [23], noisiness [28], and
infiltration rate [10]. In addition to these, in the field of civil
engineering, porosity is related to other properties, such as
the durability of pavements [20] or their resistance to rut-
ting, fatigue cracking, and low temperature cracking [17].
Therefore, it is necessary to take porosity into account when
designing granular materials for various applications.

The study of porosity, however, is usually pursued by per-
forming X-ray CT scans of the specimens under analysis
[12], which is an expensive and time consuming process.
Due to their cost, X-ray CT scanners are not accessible to all,
thus, computational methods were developed to reproduce
the internal structure ofmaterials. Themodels available in the
current literature take a variety of approaches and range from
the use of the discrete elementsmethod (DEM) to analyse the
particles in a granular material [4,9] to the use of the perco-
lation method to describe the void space [11,24]. Moreover,
in [5] the authors show that three dimensional particulate
models obtained with DEM can be further elaborated to per-
form an analysis of the void space, too. The current models
describing porous media are all based on advanced theoret-
ical principles, therefore, their implementation is complex,
unless commercial software is used [21] or the researchers
are expert in mathematical modelling.

In [6] a new model based on geometry only is described
and analysed by the present authors. The method was devel-
oped in order to allow a theoretically-based and simple way
to generate granular material virtual representations. In [6],
the authors proved that the method provides realistic results,
however, a further investigation on the features of the void
space is necessary, mainly because the 3D model generated
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previously only provided a proof of concept andwas obtained
through a manual trial and error method.

In this paper, we describe the automation of themathemat-
icalmethod presented in [6] and analyse the void patterns that
it generates, providing topological information on the virtual
samples that are created in terms of isotropy and coordination
number. In addition, the void size distribution of the virtual
porous media is analysed.

The main aim of this paper is providing a first validation
of this newly developed model for the generation of air pores
in granular materials by comparing the virtual air voids to
the air voids found in real samples.

2 Generation of 3D virtual granular materials

2.1 Packing of virtual granular elements in a 2D domain

In [6] a method to generate virtual asphalt samples is
described. Themethod startswith the generation of 2Dplanes
of virtual particles based on the biologicalmechanismof con-
tact inhibition and can be addressed as a packing algorithm.
A number of virtual particles (circles or ellipses) are seeded
in random points in an arbitrary subset ofR2 and grown until
they reach a fixed maximum radius, reach the border of the
domain, or touch another particle. Therefore, if we assume
that at any point of the analysis all particles respect the just
mentioned criteria and they all are circles, the conditions for
the growth are:

⎧
⎪⎨

⎪⎩

ri + Δr < rmax

Cri+Δr ⊂ A

d(ci , c j �=i ) ≥ ri + Δr + r j �=i

(1)

where ri is the radius of the i th particle,Δr is the fixed radius
increase, rmax is the maximum permitted particle radius,
Cri+Δr is the set of points defining each circumference after
the radius increase, A ⊂ R

2 is the arbitrary domain of inter-
est, and d is the Euclidean distance (2D) between the centre
of particle i from the centres of all other particles. The role of
the domain A is further discussed in Sect. 5.1. A set of con-
ditions similar to relation (1) can be developed in the case of
ellipses, too. For further details on the packing method for
ellipses, see [6].

The randomization of the coordinates of the centres of the
particles in the selected portion of the xy plane [set A in
relation (1)] is performed with a random number generator
using the standard uniform distribution [6]. This distribution
is described by the following probability density function:

f (x) =
{

1
b−a for a ≤ x ≤ b

0 for x < a or x > b
(2)

Fig. 1 Sample domain generated with the algorithm described in [6]

where a = 0 and b = 1. It is important to mention that
the centres of growth in our method form a simple bino-
mial point process in the compact set M = [a, b]2 [7]. The
property of simplicity refers to the fact that with probabil-
ity 1 no points of the process may coincide [3]. In addition,
since the shape chosen for the generation of 2D sections in
this study is a circle in the plane xy, rejection sampling is
applied [7]: a sequence of n independent uniform random
points is generated in M until a point falls in the setW ⊂ M
and defined by the equation (x − cx )2 + (y − cy)2 = r2,
where cx = cy = b/2 and r = 0.5. This operation is then
repeated until a satisfactory (user-defined) number of cen-
tres of growth is reached. Furthermore, scale changes are
applied to the centres in order to reach the desired diameter
for the virtual cross sections. The shape of the subset W was
set as a circle (Fig. 1) in order to allow a comparison with
X-ray CT scans of commonly used asphalt samples. In the
case of a rectangular domain, the set W would be defined as
W ⊆ M .

Even if the centres are seeded according to a uniform dis-
tribution, the radii of the particles composing the domains
generated with our method do not show the same behaviour.
In fact, the presence of a minimum and a maximum radius
for the growth of the particles acts as a limiting factor, caus-
ing the radii of the circles to have the shape of a Weibull
distribution (not shown).

2.2 Comparison of the growth mechanism with other
models

The model of growth introduced in [6] and used in this paper
belongs to the field of stochastic geometry, therefore, it is
relevant to compare it to similar mathematical methods men-
tioned in the scientific literature.

The conditions for growth defined in relation (1) and used
in [6] follow the so-called touch-and-stop model of growth
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Stochastic generation of virtual air pores in granular materials 619

[2], which can be defined as a pattern formation process inter-
mediate between the random sequential absorption (RSA)
model [2,7] and the Johnson–Mehl–Avrami–Kolmogorov
(JMAK) model [2]. In fact, in the touch-and-stop model of
growth, the particles are characterised by shape persistence
(as in the RSA model), but not by size persistence (as in the
JMAK model) [2].

In addition, the model introduced in [6] adds a new fea-
ture to the touch-and-stop model, as it allows new centres of
growth to be seeded once all particles have stopped growing.
This is done in order to obtain a lower planar void area, as
it was found to be necessary for the generation of realistic
representations of granular materials [6].

It is worth mentioning another similar growth mecha-
nism called the lilypond model, which is characterised by
hard grains growing radially with a constant speed [7,16].
This method, is based on a single finite set of starting
points in a subset of R

2 or R
3, thus it does not involve

multiple generations of growth as it is done in [6]. In
addition, the lilypond model possesses the smaller grain-
neighbour property [7,16], which states that every grain
has to touch at least one other grain that has a smaller or
equal radius. In the model described in [6], this feature can-
not be reproduced, because the algorithm developed aims
at reaching a specific planar air void content while respect-
ing the conditions described in relation (1). This aspect
can be seen in Fig. 1 and it happens because the execu-
tion of the algorithm stops when a chosen planar void area
is reached, even if some of the seeded centres have not
yet touched any other neighbouring particle. Another rea-
son for this phenomenon is the fact that boundaries are
imposed for the growth of particles, thus, if any of the
points defining a particle touches an edge of the domain,
its growth is stopped, even if the grain is still isolated. This
concept is clearly defined by the second condition in rela-
tion (1).

As an example of DEM model, the Void Expansion
Method (VEM) can be mentioned [21]. The VEM follows
a growth principle similar to the ones in [2,6], and in the
lilypond model, as a number of particles called structural
particles are cyclically grown in three dimensions in combi-
nation with void particles. The difference, however, lies in
the fact that after each step of growth an equilibration of the
assembly of particles is executed by the means of chosen
physical principles, e.g. a linear elastic contact law between
the particles and damping [21].

Themain reason that led to the development of themethod
introduced in [6] and analysed in this paper is the intrin-
sic complexity of the existing methods, which arises from
the fact that they are based either on complex mathemati-
cal formulations or on the implementation of physical laws
that rule the interaction of the particles in the computer
models.

2.3 Combination of 2D packed planes to obtain 3D
virtual air pores

Each 2D domain created as explained can be converted to
3D, i.e. circular particles can be converted into spheres, and
ellipses into ellipsoids, each with its centre at the same place
as the original circle or ellipse.

The aim of the procedure is, however, not to produce a
layer of randomly distributed spheres or ellipsoids, but to pro-
duce a thicker virtual representation of a granular material.
Therefore, multiple such layers of spheres (or, in principle,
of ellipsoids) can be stacked on one another at fixed spacing
in order to obtain a structure resembling that of a granular
material. The z coordinate of each xy plane containing the
centres of the virtual particles, k, is set in the automation of
the stacking process as:

ki+1 = ki + hmax
i · (1 − μ) (3)

where hmax
i is the radius of the largest sphere in the i th plane

and the value of μ has to be found based on the properties
of the material that needs to be generated. In the case of
asphalt, the value of μ was set as 0.8 and it was found with
an optimisation algorithm whose objective was to generate
a realistic structure for the void space in terms of voids size
and isotropy. The result of the stacking process is that many
particles belonging to the different planes are intersected and
between them a portion of empty space is left. The stacking
process described so far is a pragmatic method to obtain
realistic representations of the air voids in granular materials
using only geometric principles. Therefore, it is not meant
to represent any of the natural phenomena behind the actual
manufacture of such materials, e.g. friction or contact forces.
The validity of the approach is discussed in the next sections
and its use is motivated only by its effectiveness.

In this paper, we consider asphalt as a granular material
in order to perform a comparison with real samples. The size
of the particles and of the planes, however, can be adapted
(reduced or increased) to represent different granular struc-
tures.

The use of spheres to describe asphalt may seem to be
unrealistic, as the aggregate composing the material almost
never has such a regular shape. The forced overlapping of
the spheres, however, means that the intersected particles
become part of the portion of space representingmatter in the
virtual asphalt mixture and, consequently, the solid fraction
is a highly non-spherical agglomeration with a surface com-
prised of multiple spherical caps. In this paper, the aggregate
is not analysed, as only the void space is studied. However,
the intersection of spheres or ellipsoids belonging to different
planes is meant to generate a solid structure that resembles a
packing of real stones.
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It is relevant to add that from the point of viewof stochastic
geometry it is possible to consider the result of the process
just explained as a germ-grain or Boolean model Ξ [18]
defined as:

Ξ =
∞⋃

n=1

(Ξn + xn) (4)

where Ξn are the compact subsets of R
3 defined by the

spheres (or ellipsoids) of radii rn obtained following the
growthmechanismdescribed in Sect. 2.1 and xn are their cen-
tres [7]. For a deeper discussion of this aspect, see [7,18,19],
and [22].

For convenience, the method described so far will be
referred to as the Intersected Stacked Air voids method or
ISA method.

3 Locating the void space

In the approach explained in Sect. 2, the intersected particles
cannot be considered singularly as stones (as done in DEM
models [4,9]), because their original shape is lost, but their
surrounding void space may be more representative.

For this reason, an algorithm was developed to locate the
void space inside a virtual granular material sample. The
void location algorithm starts by generating a set of points
that covers the whole volume occupied by the virtual sample.
These points are compared with the particles associated to
matter in the virtual sample and converted into a 3D Boolean
matrix that has zeros in the void space and ones in the matter
space. The sampling process allows the generation of a 3D
map of the void space, as seen in Fig. 2 with a much exag-
gerated vertical scale. In Fig. 2, the distance between the
sampling planes on the z axis is 0.4mm, i.e. the same dis-
tance used to obtain the X-ray CT scans used in this paper.

Fig. 2 Sample layers obtained with the sampling algorithm (porous
space is black, 0.4mm vertical spacing)

The sampling grid that is used shows numerically what
could be deduced by visual inspection of the surface mesh
mentioned above, i.e. that the very first and last layers of
the virtual material need to be discarded from the analy-
sis, because they contain particles that are “floating” below
or above the solid matter due to the mechanism of the
algorithm.

In order to show the effectiveness of the sampling method
used combined with the algorithm described in [6], a com-
parison between the CT scan of a real sample and a slice of
a virtual sample is shown in Fig. 3. A simple visual inspec-
tion of the real and the virtual CT scans shows a high degree
of similarity in the shape and size of the void areas in both
images (black areas in Fig. 3). In addition, the void patterns
in the virtual slice look compatible with the ones seen in the
real slice. The visual inspection, however, must be followed
by the more strict analysis done in the next sections.

Fig. 3 Comparison between a real and a virtual CT scans (porous space
is black). a Real sample, 20% air void content, 100mm diameter. b
Virtual sample, 21% air void content, 100mm diameter
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3.1 Grid spacing in the sampling matrix

The distance between the points in the grid imposed on the
3D virtual model can be changed and a parametric analysis
can be performed. The grid spacing, ε, was analysed for the
values

0.4% · Ddomain < ε < 1.3% · Ddomain (5)

where Ddomain is the diameter of the 2D domains used for
the generation of the 3D model (Ddomain = 10 cm in this
paper). The lower boundary for ε was found as the limiting
value that could be used on a normal office computer with a
computational time lower than 45min.

The analysis performed for a virtual sample with air void
content equal to about 9% is shown in Fig. 4. The data repre-
sented in Fig. 4 shows that a small difference exists between
the planar air void contents evaluated with a variation of the
grid spacing. In particular, for the curves shown in Fig. 4 an
average air void content of 8.75%with standard deviation of
0.52% was found. Therefore, it is possible to state that the
result of the sampling algorithm is grid independent, thus,
the code can be run according to the specific needs of the
user. In fact, if a very detailed grid is needed the user can
choose a small value of ε, while if a lower number of points
is sufficient ε can be set to a higher value. The use of a dense
grid also allows a more precise analysis of the generated 3D
domain, as some portions of the void space may be too small
to be effectively located with a high spacing between the
sampling points.

Generally speaking, in the case of a circular domain the
number of sampling points in the x and y directions can be
found as

nx = ny = Dsample/ε − 1 (6)

The number of sampling planes in the z direction, nz , is also
a function of the value of ε and it depends on the thickness
of the virtual sample.

Fig. 4 Parametric analysis of the grid spacing (8.75% air void content)

Finally, it is relevant to notice that the set of points describ-
ing the air void content from Fig. 4 is in the shape of a
so-called “bathtub” curve [17]. This behaviour is a first val-
idation of our approach, since it was found in both real and
virtual samples of granular materials used in civil engineer-
ing [5,17,25,26].

4 Topology of the void space

The sampling matrix used to discern the void space from
the matter in the virtual models is a cubic lattice. Therefore,
each point that is not on a border of the lattice will be con-
nected to 26 other points [27]. The number of connections of
each point in the porous space to other neighbouring points
belonging to the porous space is called the void coordination
number, Cn [24]. As reported in [27], even if the maximum
void coordination number is 26, real porous media have a
much lower value ofCn . For example, in [24], average values
of Cn between 2.90 and 10.64 are reported and successfully
compared to real values from the literature.

The study of the coordination number is of interest in
this study, because it determines how neighbouring points
belonging to the pore space are connected to one another.
The behaviour of the void coordination number for a dense
and a porous samples generated with the ISA method and
sampled as described in Sect. 3 is shown in Fig. 5. For com-
parison purposes, the coordination number of real samples
is also shown if Fig. 5. The data shown is satisfactory, as in
the virtual dense sample (9% air void content) most parti-
cles have a low Cn , while in the virtual porous sample (25%
air void content) many particles have higher values of the
void coordination number. In addition, the analysis of Fig. 5
clearly shows that the virtual materials have a realistic coor-
dination number when compared to real samples. The data
gathered in Fig. 5 also shows the variability of the results

Fig. 5 Void coordination number versus normalised number of points
with a given coordination number
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obtained from different simulations. In particular, 15 virtual
models with 9% air void content and 15 virtual models with
25%air void contentwere generated and themarkers inFig. 5
represent the average values obtained for each coordination
number.

In order to show the general validity of the ISA method
the number of points in the void space with a given coordi-
nation is normalised, thus, allowing the comparison between
arbitrarily thick samples. The normalisation is also necessary
because the CT scanned samples come with a given resolu-
tion that is determined by the chosen equipment, thus, it is
usually not possible to match exactly the number of pixels in
the real samples in the virtual models that are generated: this
mismatch would lead to curves that look different because
the number of points under analysis is different. The nor-
malisation is achieved by dividing the number of points with
a given coordination number by the total number of points
belonging to the void space. Let us specify that to achieve a
successful comparison it is necessary to use a small value of
ε, which allows a very good resolution in the virtual slices
seen e.g. in Fig. 2. In fact, while for the calculation of the
air void content the resolution is not a concern, it is when
considering more complex properties of the material. As a
rule of thumb, values of ε equal to about 0.5% of the longest
side of the domain were found to be effective.

In addition, it is worth mentioning that if the coordination
number of the void points is computed for selected slices
inside the material on the z axis it will have a very low vari-
ance (not shown).

Finally, it should be noted that the void coordination num-
ber may show some degree of variability, due to the fact that
the virtual and real specimens never show the exact same
characteristics and to the techniques needed to threshold the
CT scans to isolate the void space.

Additional data concerning the void coordination number
of the void space in the virtual samples built for the present
study are shown in Table 1. The comparison between the
values of the average void coordination number, 〈Cn〉, with
those from [24] shows that the void coordination numbers
obtained with the ISA method are realistic and similar to
the results obtained in other studies. Since the present work

Table 1 Average void coordination number for the generated virtual
samples, 〈Cn〉
Nvoid points Air void content (%) 〈Cn〉 〈Cn〉 from [24]

33,865 9.2 1.62 –

40,516 11.2 1.91 –

53,282 15.3 2.47 –

72,937 22.2 3.37 2.9–3.36

124,941 45.2 5.82 5.14–7.31

mostly concerns the generation of void channels, a success-
ful comparison of the void coordination number is a good
sign that the model is able to produce realistic results. This
measure, however, does not provide information on the pore
network as a whole, as it considers points with maximum
distance of

√
3 ε due to the choice of the cubic lattice. For

this reason, further characterisation methods are shown in
Sect. 5.

5 Analysis and comparison with real asphalt
samples

The results of the model developed are now compared with
real asphalt samples. To begin with, it is relevant to notice
that the virtual samples generated for the present study show
a realistic behaviour in terms of internal structure. In fact,
not only the average air void content in the samples follows
a “bathtub” shaped curve as seen in Sect. 3.1, but also the
air void content in the radial direction shows the expected
behaviour. In fact, as shown in Fig. 6, the air void content
in the centre has a value that is very similar to the average
air void content of the whole sample, while it increases sig-
nificantly approaching the border of the domain, as it was
also observed in previous studies of real and virtual samples
[5,26].

5.1 Isotropy in the virtual samples

In the previous studies using virtual granular materials
[11,24], isotropic media were considered. Since our aim was
to compare the virtual samples to asphalt samples, we devel-
oped an anisotropic 3Dmodel. In fact, asphalt is isotropic on
the xy plane, but anisotropic if the x or y directions are com-

Fig. 6 Sampling planes in a typical cross section (a) and example of
radial air void content in different sampling planes (b)
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Table 2 Normalised number of connections, δ (directions from Fig. 2)

Air void content (%) δx δy δz

9.2 0.5937 0.5956 0.5788

11.2 0.6157 0.6149 0.5997

15.3 0.6863 0.6858 0.6714

22.2 0.7308 0.7298 0.7152

45.2 0.7901 0.7892 0.7790

pared to the z direction (i.e. it is a cross-anisotropicmaterial),
as shown from studies on its hydraulic conductivity [14] or
mechanical testing [13].

The number of connections between points of the sam-
pling matrix in the void space, δ, can be calculated for all
the virtual domains generated. The number of connections
in each direction was divided by the total number of points
in the void space in order to obtain a normalised value. This
was done as in the 3DBooleanmatrix generated in the analy-
sis of the void space the number of sampling points in the
z direction is generally different from the number of points
in the x and y directions. A normalisation of the number of
connections is interesting also because it provides a mea-
sure of the global connectivity of the porous space [24]. This
measure will generally depend on the chosen grid spacing
ε, however consistent comparisons can be performed if the
value of ε is fixed.

Based on the parameter δ, the isotropy of the virtual
domains can be assessed. A simple comparison of the results
gathered in Table 2 shows that between δx and δy the relative
difference is lower than 0.3%, while the relative differences
with δz are up to almost 2.8%. Therefore, anisotropy on the
z axis only is shown in all the virtual samples.

The analysis of the data generated for this paper strongly
suggests that by purposely changing the value of μ (Eq. 3)
the isotropy of the virtual materials can be controlled and
adapted to the specific needs of the investigation. Future
research should investigate the effect of the variation of μ

on the properties of the 3D models that are generated.
If the model does not need to show anisotropy in the

z direction, a different approach can be used. The three
dimensional model could be generated directly rather than
by stacking planes of extruded particles by following a pro-
cedure similar to the one described in Sect. 2.

5.2 Statistical analysis of the size of the air voids

In order to analyse the size of the air voids two approaches
can be followed: the first one is the use of the maximal ball
(MB) algorithmmentioned in [24] and involves the growth of
particles in the void space in order to estimate theirmaximum
size and their coordination number, while the second one

Fig. 7 Reconstructed air void channels in a virtual sample

consists in the actual reconstruction of the void channels.
Since our aim was the generation of void patterns in porous
media and we already determined the coordination number,
we used the second approach. An example of the result of
the reconstruction of the void channels can be seen in Fig. 7,
where the void space in a virtual sample is shown (a region
of interest was selected for clarity). In Fig. 7, void channels
connect the top of the sample to the bottom, while in cases
with lower values of air void content the reconstruction only
consists of a number of unconnected air voids of various sizes
in the domain (not shown).

Moving from the sampling matrix described in Sect. 3
to an actual reconstruction of the void space allows a clear
comparison with real samples.

We define the void volume, Vvoid , as the volume in voxels
of each portion of void space that can be considered as a sin-
gle entity. In particular, two neighbouring portions of space
(subsets of R3) are considered connected only if they share
at least a face.

Since the samples have different values of air void content,
and, therefore, different void sizes, we compared their voids
based on a dimensionless parameter defined as:

λvoid = Vvoid/Vmax (7)

where Vmax is the volume of the largest void in each sample.
After evaluating the volume of the voids and the variable λ

for the reconstructed models, we were able to establish that
the relative void size in all our samples can be described with
aWeibull distribution, as shown in Fig. 8 (sample with 9.2%
air void content).

In fact, the approximately linear behaviour of the data
shown in Fig. 8 suggests that a Weibull distribution could be
used to fit the empirical values. If the same data used in Fig. 8
were to be used in their unnormalised form, they would still
show the same approximately linear behaviour in theWeibull
plot, since the normalisation was introduced only to visualise
dimensionless results.

In [17], the authors analysed the X-Ray CT scans of
real asphalt samples and showed that in this material the
void size distribution can be described with the a Weibull
model. Therefore, recalling the notation used in [17], the
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Fig. 8 Weibull probability plot

Fig. 9 Cumulative distribution function

two-parameters Weibull distribution (probability density
function, PDF) used to fit our data is in the form:

f (λ) = β

θ

(
λ

θ

)β−1

e−(λ/θ)β λ > 0 (8)

where λ is the data to fit, β is a shape parameter, and θ is a
scale parameter. The corresponding cumulative distribution
function (CDF), shown in Fig. 9 for a virtual and two real
samples, can be written as:

F(λ) = 1 − e−(λ/θ)β λ > 0 (9)

The maximum likelihood (ML) estimates of β in Table 3
are similar (slightly lower) to those reported in [17], but the
value of θ cannot be compared, as the curves fit different
kinds of data. However, a similar shape parameter β implies
that the curves have overall similar shapes, thus, the compar-
ison is acceptable.

In fact, for our model the actual size of the voids (which is
described by θ in theWeibull equation) is not of great impor-
tance, since the virtual samples can be very easily scaled and

Table 3 ML estimates of the parameters for the Weibull model (Eq. 8)

Air void content (%) β θ

9.2 0.6186 0.0669

11.2 0.6501 0.0708

15.3 0.6437 0.0778

22.2 0.6889 0.0592

45.2 0.7614 0.0776

Fig. 10 Virtual reproduction of asphalt coring (100mm diameter)

adapted, while the ratio λvoid is very significant and actually
determines the realism of the computational reconstruction
of the void space. In other studies such as [24] different
probability density functions were used to fit the air void
size distribution, however, that was done because different
kinds of materials were analysed (e.g. isotropic rather that
anisotropic).

The goodness of fit of the Weibull distribution for the
computed datawas evaluatedwith theKolmogorov–Smirnov
(KS) test [8] at a 5% significance level (0.05). The KS test
accepts the null hypothesis that our empirical results come
from the respective Weibull interpolating curves, obtaining
p values between 0.14 and 0.63 (>>0.05).

Because the meshed pore space is described digitally it
has the potential to be readily converted to a mesh for finite
element or finite difference modelling, e.g. for the compu-
tational analysis of fluid flow through the pore space. As an
example, Fig. 10 shows a virtual reproduction of the opera-
tion called asphalt coring obtained using the ISA method. A
visual inspection suggests that the virtual model looks real-
istic, even if the single stones are not represented. It should
be noted that what Fig. 10 shows is not the void volume as
seen in the other figures in this paper, but the portion of space
associated to matter in the 3D model. This was done to show
that further developments of the ISA method will lead to the
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study of a porous material as a whole, thus, also taking into
consideration the aggregates that are here neglected.

5.3 Analysis of the specific surface area of the
reconstructed virtual samples

From the point of view of stochastic geometry, it is possible
to analyse a subset W ⊂ R

3 of a random model Ξ (see
Sect. 2.3) to define its basic characteristics, e.g. the volume
density, VV , and the specific surface, SV . The subscript V
is used to indicate that the analysis is based on a chosen
sampling window corresponding to the subset W and with
volume V (W ). As reported in [18], the volume of the portion
ofΞ lying in the observation windowW is a random variable
with expectation EV (Ξ ∩ W ) = VV V (W ), where V (Ξ ∩
W ) is the volume of Ξ restricted to the chosen observation
window. In a similar way, the specific surface (or surface
density) can be defined as the density of the random surface
measure [18]. In particular, if S(Ξ ∩ W ) is the surface area
ofΞ restricted toW it is possible to write thatES(Ξ ∩W ) =
SV V (W ).

In this paper, the analysis is focused on the porous space,
therefore, these properties are evaluated for the air voids. In
particular,when the observationwindowW is thewhole sam-
ple the volume fraction is dimensionless and represents the
air void content of the virtual or real specimen. The calcula-
tion of the specific surface area is also based on the air voids
and can be performed either by using 3D models directly or
by using mathematical methods such as those explained in
[18]. Since the aim of this study is to provide a first valida-
tion of the ISA method, the value of SV is here calculated
by elaborating a number of 3D virtual models as this is the-
oretically simpler. For the analysis of the aspects described
above, five 3D models for five random air void contents in
the interval from 5 to 30% were generated in order not to
influence the comparison. The values shown in the figures
described below represent the average of the results obtained
for each value of air void content.

The results of the calculation of the specific surface area
are gathered in Fig. 11, where it is shown that the virtual and
real samples lie close to one another and have a linear behav-
iour (the observationwindow is the cylinder corresponding to
the whole sample). The reliability of this calculation, how-
ever, is limited to the X-ray CT scans of the real samples
available to the authors, thus, further investigations should
be performed to check how well this method is able to repro-
duce different kinds of asphalt mixtures.

In the field of construction materials, a slightly different
method is generally used to describe the properties of air
voids systems, as the void surface area, S(Ξ ∩W ), is divided
by the total air volume, V (Ξ), rather than by the volume
of the observation window W [1,15]. For completeness this
parameter was also calculated and shown in Fig. 12. The

Fig. 11 Surface of void space divided by volume of the observation
window versus air void content

Fig. 12 Surface of void space divided by volume of the void space
versus air void content

comparison between Figs. 11 and 12 shows that the virtual
models have realistic features when compared to the real
asphalt samples used in this study.

The data shown in Figs. 11 and 12 allows a further dis-
cussion of the behaviour of air voids in granular materials. In
fact, it can be observed that the surface of the voids increases
with the air voids content when compared to the total volume,
however, when this parameter is compared to the volume of
the voids it shows a decreasing trend. This decreasing trend
is not caused by decreasing values of the surface or the vol-
ume of the voids, but it is the result of two reasons: (a) large
objects (in this case, voids) always have smaller specific sur-
face areas (meant as the ratio between area and volume of
voids) due to the reduced number of objects in a certain vol-
ume, and (b) larger voids are more interconnected so there
are less surfaces in such voids. Generally speaking, it can be
observed that high values of specific surface area defined as
in Fig. 12 correspond to fine air void systems [1,15].

Finally, it is relevant to add that the specific surface is not
able to describe the size distribution of the air voids, i.e. it
cannot describe the number of void particles with a given
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Fig. 13 Distance of points in the matter space from the closest bound-
ary

volume as it is a single index used by the industry to quickly
characterise the properties of multi-size granular materials
[15]. However, this parameter can be used as an indicator of
the air void distribution for void systems with a similar total
air void content [1].

5.4 Analysis of the matter space in real and virtual
samples

As the observations about Fig. 10 made in Sect. 5.2 are only
qualitative, it is interesting to calculate somequantitative data
to perform a preliminary characterisation of the portion of
space associated to matter in the 3D models. For this pur-
pose the Euclidean distance transform [19], EDT, was used
to analyse the matter space. For each matter point the EDT
yields the distance to the nearest void point. Therefore, the
EDT was used to assess if the distance of matter from the
voids in the generated models was compatible to the same
metric applied to real samples.

This approachwas applied to all points in every layer of the
virtual models, thus, the results do not depend on additional
assumptions made by the authors. In Fig. 13, the maximum
and average distances of the “matter” points from the void
boundaries are represented for a number of real and virtual
samples. By observing the data shown inFig. 13 it can be con-
cluded that the virtual samples fall on the curve interpolating
the results for the real samples with very small deviations.
The fitting curves calculated from the data from real samples
were found by using a power lawwith two parameters (robust
least-squares regression, R2 = 0.9961 and R2 = 0.9789 for
the average and maximum curves, respectively).

It is relevant to add that in order to allow this kind of
comparison the input files or binary images need to have the
same resolution, otherwise a relative indicator (e.g. distance
over maximum distance) should be used.

6 Conclusions

In this paper we presented the analysis of a stochastic model
based on geometric principles that can be used to build virtual
representations of the porous space of granular material. The
following conclusions can be drawn:

– The Intersected Stacked Air voids (ISA) method can be
used to generate representations of the porous space of
granular materials with realistic features.

– The comparison, qualitative and quantitative, with real
samples provides validation of the approach analysed in
this paper.

– Both continuous and isolated voids can be generated
the latter becoming the most common as the void ratio
decreases, as found in genuine samples of asphalt.

– The void size distribution of the anisotropic virtual
samples can be modeled with a Weibull probability dis-
tribution.

– Meshed versions of the virtual porous space can be cre-
ated for computational modelling, e.g. computational
fluid-dynamics (CFD).
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