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Abstract Friction plays an important role in the behavior
of flowing granular media. The effective friction coefficient
is a description of shear strength in both slow and rapid
flows of these materials. In this paper, we study the steady
state effective friction coefficient μ in a granular material
in two steps. First, we develop a new relationship between
the steady state effective friction coefficient, the shear rate,
the solid fraction, and grain-scale dissipation processes in a
simple shear flow. This relationship elucidates the rate- and
porosity-dependent nature of effective friction in granular
flows. Second, we use numerical simulations to study how
the various quantities in the relationship change with shear
rate andmaterial properties.We explore how the relationship
illuminates the grain-scale dissipation processes responsible
for macroscopic friction. We examine how the competing
processes of shearing dilation and grain-scale dissipation
rates give rise to rate-dependence. We also compare our
findings with previous investigations of effective friction in
simple shear.

Keywords Granular materials · Granular flows · Friction ·
Dynamic material response · Rheology

1 Introduction

Granular flows are ubiquitous in nature and technology [1].
Geologic events such as landslides and earthquakes occur
because granular materials are able to transition from a solid
state to a flowing state. Industrial processes such as hop-
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per flows and powder transport involve the flow of food
and pharmaceutical particles. Defense applications of brit-
tle ceramics rely on the flow of a pulverized bulk material
for energy dissipation. All of these applications demonstrate
the need to understand granular flows at a fundamental level.
Effective friction describes the shear resistance of a flow-
ing granular medium and, in continuum simulations of these
events, encodes information about grain-scale and contact-
scale processes in a single parameter (see Fig. 1).

Granular flows can be classified as quasi-static, inertial
(also referred to as dense), or rapid based on a dimensionless
shear rate known as the inertial number [2,3]. The quasi-
static behavior of granular media is typically modeled using
critical state soil mechanics [4]. Rapid granular flows are
similar in some respects to gases and have therefore been
extensively modeled using kinetic theories (e.g. [5,6]). The
intermediate regime of inertial granular flows has, unlike
the quasi-static and rapid cases, eluded a unified modeling
approach. Nevertheless, researchers have made important
progress in understanding inertial granular flows in recent
years.

The inertial flow regime corresponds to flowswith an iner-
tial number, I = γ̇ d/

√
P/ρg , between approximately 0.001

and 1. Here, γ̇ is the shear rate (|γ̇ | in 3D), d is the grain
diameter, P is the confining pressure, and ρg is the grain
density. The inertial number is the ratio of the particle relax-
ation time d/

√
P/ρg to the macroscopic shear time γ̇ −1, as

illustrated in Fig. 2 [2,7]. This interpretation will be revisited
when we develop a new friction relationship in Sect. 2.

Researchers studying the inertial flow regime have devel-
oped empirical relationships between I and the steady state
effective friction coefficient μ, the solid fraction φ, and the
coordination number Z [2,8]. For instance, da Cruz et al.
[2] proposed a linear relationship between μ and I given
by μ = a + bI for 2D simple shear flows, where a and
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Fig. 1 Friction encodes contact-scale and grain-scale information in a
single parameter for continuum analysis

P γ̇

I =
Tc

Tγ̇

Tγ̇ =
1
γ̇

Tc =
d

P/ρg

Fig. 2 The two timescales associated with the inertial number, I =
Tc/Tγ̇

b are empirical constants. Jop et al. [8] have proposed the
nonlinear relationship μ = μ1 + (μ2 − μ1)/(I0/I + 1)
for 3D flows where μ1, μ2, and I0 are empirical constants.
Jop et al. [8] have also developed a constitutive law for
predicting the stress distribution and flow profile for well
developed granular flows, using the empirical friction law
described above. Other local and non-local continuum mod-
els have been developed for inertial flows. Each model takes
advantage of one of the empirical friction laws described
above [9–11]. These models have provided promising tools
for predicting the behavior of granular media in a variety of
flow configurations. However, investigative studies of iner-
tial granular flows continue on a more basic level in an
effort to understand the processes underlying frictional rate-
dependence and the microstructure that develops during an
inertial flow [12].

da Cruz et al. [2] studied the evolution of forces and
anisotropy in inertial granular flows, showing that the
anisotropy of the contact network can be explicitly related
to friction. Azema and Radjai similarly showed that a clas-
sical stress-force-fabric relation holds for inertial flows,
demonstrating another link between friction and contact net-
work anisotropy [13,14]. Hatano and Kuwano [15] provided
another interpretation of friction, using an energy balance
equation to derive a steady state friction law very similar to
that of rate-and-state theory. Jenkins [16] has provided inter-
esting links between friction andvarious attributes of inclined
plane flows by extending hydrodynamic equations valid for
rapid flows to the inertial regime. Sun et al. [17] have stud-
ied the energy characteristics of inertial granular flows and
revealed a number of correlations between the friction coef-

ficient and energy ratios. All of these studies have provided
valuable insight into the nature of effective friction in inertial
granular flows.

In this paper, we intend to contribute an additional inter-
pretation of effective friction in granular flows by explicitly
relating it to the inertial number, the coordination number, the
solid fraction, and grain-scale dissipation rates. In Sect. 2, we
develop the friction relationship for steady state simple shear
flows by performing an energy balance and a simple statis-
tical analysis. We discuss the resulting picture of friction
as a competition between dilation and grain-scale dissipa-
tion rates. In Sect. 3, we discuss numerical simulations of
simple shear flows and present results showing the accu-
racy of the proposed friction relation. Simulation results are
used to illustrate how the effective friction coefficient can
be decomposed into contributions from grain-scale dissipa-
tion mechanisms. An analysis of the scaling of each of each
term in the friction relationship elucidates the mechanisms
controlling rate-strengthening. In Sect. 4, we briefly com-
pare our friction law with others proposed in past research.
Finally, Sect. 5 offers concluding remarks.

2 The Friction law for simple shear

This section provides a derivation of our steady state friction
relationship for simple shear flows. Fig. 3a illustrates such
a well-developed flow in which the velocity profile in the
direction of flow is quasi-linear.

Similar to past analyses of simple shear flows [15,18], our
starting point is the energy balance relationship

d

dt
(T +U ) = Di jσ j i − � (1)

where T andU are the kinetic and potential energy densities,
respectively, Di j = ∂ui/∂x j is the velocity gradient tensor,
and � is the dissipation rate per unit volume. In steady state
simple shear flows, only one component of the velocity gra-
dient tensor is nonzero (Dxy = γ̇ in our case), and a time
average of Eq. (1) yields

γ̇ σyx = � (2)

where the (·) indicates a time-average. Defining the effective
friction coefficient as μ = σ yx/σ yy and assuming dissi-
pation occurs only at grain contact points, Eq. (2) can be
rewritten as

γ̇ μσyy = Nc〈�c〉
V

(3)

where Nc is the number of grain contacts in the system, V is
the volume of the system, and 〈�c〉 is the average dissipation
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Fig. 3 a A rendering of the simple shear flows featured in this paper.
The top-most and bottom-most particles are used as rough boundaries.
Colors indicate the magnitude of velocity, where vx is the imposed wall
velocity. b Coefficient of restitution e in a two-particle collision with
normal velocity vc

√
ρg/kn for data set 1 (dashed line) and data set 2

(solid line) (color figure online)

rate at grain contacts in the system. We have made use of the
fact that

∑Nc
c=1 �c = Nc〈�c〉.

Numerical simulations to be described in the next section
demonstrate that there is less than a 1% correlation in the
fluctuations in the terms in Eq. (3). We will therefore assume
averages of products can be written as products of averages
and we will drop all time-averaging symbols. Variables in all
following equations should be assumed to be time-averaged
unless otherwise noted. Equation (3) becomes

μ = Nc〈�c〉
σyy γ̇ V

(4)

We can further simplify Eq. (4) by noting: (1) the num-
ber of contact points is related to the coordination number
by Nc = ZNp/2 where Np is the number of particles in
the flow; (2) the number of particles can be related to the
solid volume of grain material Vs by defining d such that
Np(4/3)πd3/8 = Vs ; (3) Vs/V = φ where φ is the solid
fraction. The definition of d to satisfy (2) is consistent with d
being the grain diameter in the case ofmonodisperse spheres,
an average grain diameter in the case of polydisperse spheres,
and a characteristic grain size in flows of complex shaped
grains.

Combining the simplifications described above, Eq. (4)
becomes

μ = Zφ

I

(
3
√

ρg

πd2σ 3/2
yy

)

〈�c〉 (5)

where the quantity πd2σ 3/2
yy /(3

√
ρg) is a pressure dependent

term with units of energy dissipation rate. We therefore call
this quantity �̃ and rewrite Eq. (5) as

μ = Zφ

I

〈�c〉
�̃

(6)

Equation (6) is the most general form of our friction rela-
tionship. This expression makes no assumption of contact
law or grain properties and only imposes the restrictions that
the flow is in steady state and energy dissipation occurs at
contact points. This assumption does not prohibit the incor-
poration of material plasticity or fracture so long as such
processes are assumed to arise because of contact between
grains. In Sect. 3, Eq. (6) will be applied to a specific contact
law to discuss the results of numerical simulations.

Before discussing numerical simulations, we can provide
a physical interpretation of Eq. (6). The coordination number
Z and solid fraction φ convey the connectivity and compact-
ness of the granular material. Both of these quantities, as well
as Zφ/I taken together, can be assumed to decrease during
shearing dilation, a process by which the packing expands
at higher shear rates. In contrast, the grain-scale dissipation
rates 〈�c〉 may be expected to increase with shear rate due
to higher inter-particle forces and collision velocities. The
term �̃ remains constant when the confining pressure is held
fixed.

The friction law in Eq. (6) therefore conveys a competi-
tion between dilation and microscopic dissipation rates. At
low shear rates, Zφ/I is large and 〈�c〉/�̃ is small. At high
shear rates, Zφ/I is small and 〈�c〉/�̃ is large. The result
of this competition dictates whether the material is rate-
strengthening or rate-weakening and highlights the role of
dilation in effective friction. This interpretation of effective
friction is closely related to the interpretation of the inertial
number given in Fig. 2. The same time scales at work in the
inertial number, those of confinement andmacroscopic shear,
are at work in determining the effective friction coefficient.
The confinement time scale dictates the value of Zφ/I while
the macroscopic shear time scale dictates the frequency and
intensity of particle collisions.

3 Numerical simulations of simple shear

In this section, we discuss numerical simulations of simple
shear flows. The simulations explore the behavior of the vari-
ables in Eq. (6) and elucidate the competing roles of dilation
and microscopic dissipation rates during simple shear at a
variety of imposed shear rates. The numerical code used for
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the simulations is first discussed, followed by a discussion of
results.

3.1 Description of code

We use a discrete element code [19] to study the vari-
ous components of Eq. (6) in the inertial flow regime. Our
simulations use a modified version of the granular mod-
ule from the molecular dynamics code LAMMPS [20],
calledLIGGGHTS(http://www.liggghts.com).Details of the
LIGGGHTS code base are discussed in [21]. Grains are
modeled as spheres and interact with a Hertzian contact
model. The normal force, Fn = Fm

n + Fv
n , has a mechan-

ical portion, Fm
n = R∗knδ3/2ni j , and a viscous portion

Fv
n = √

δR∗meffγnvn , where R∗ = √
Ri R j/(Ri + R j ), kn

is a spring constant, δ is the particle overlap, ni j is a vector
from the centroid of particle j to the centroid of particle
i,meff = mim j/(mi + m j ), γn is a damping coefficient,
and vn is the normal component of the relative velocity vec-
tor. The tangential force, Ft = min(Fm

t , μp|Fn|), has a
mechanical portion, Fm

t = −√
δR∗kt�s , and a Coulomb

slider enforcing |Fm
t | < μp|Fn| where kt is a spring con-

stant, �s is the accumulated tangential displacement of the
grains, and μp is the inter-particle friction coefficient. The
accumulated tangential displacement of the grains is frozen
when grains are sliding. The constants kn and kt have units
of force per area, consistent with the model presented in [22]
and discussed in [21]. Thus, kn and kt are material proper-
ties that are independent of grain size and can be explicitly
linked to grain properties if desired [23]. The constant γn
prescribes a velocity-dependent coefficient of restitution of
a binary collision, consistent with experiments [24,25].

Simple shear is achieved by compressing approximately
10,000 bidisperse spheres between rough boundaries made
of grains and moving the boundaries at a specified velocity
in opposite directions, as shown in Fig. 3a. Grain radii are
(1±0.2)d̃ where d̃ is specified. The height of the flow h is
chosen such that h/d̃ ≥ 20. The rough boundaries are moved
in the y direction to maintain a constant confining pressure
throughout each simulation. Periodic boundary conditions
are used in the x and z directions.

Confining pressure and grain stiffness is chosen such that
(kn/σyy)

2/3 ≥ 104, making the grains “rigid” as described in
[2]. The parameter kt is chosen to be 1/2 of kn . Our primary
data (DS1) set features 26 simulations across the inertial flow
regime in which μp = 0.3 and γn is set to prescribe the
coefficient of restitution e shown as the dashed line in Fig. 3b.
The inter-particle friction coefficient of μp = 0.3 is chosen
to provide a balance between lower values found in recent
experiments [26] and slightly higher values used in recent
simulations [2,13].We found that changing this inter-particle
friction coefficient has minimal qualitative influence on the
results, and mainly acts to shift the μ(I ) curve up or down

as reported in [2]. A secondary data set (DS2) features 18
simulations throughout the inertial flow regime with μp =
0.3 and γn set to prescribe e as the solid line in Fig. 3b.
This data set is only referred to in order to illustrate how
grain viscoelasticity influences the material response. Unless
otherwise specified, data should be assumed to belong to the
primary data set. We leave an in-depth study of the effects
of varyingμp, γn , particle size distribution, and contact laws
for future work.

Stress is measured using the equation

σi j = 1

V

Nc∑

c=1

lci f
c
j (7)

where V is volume, c are contact point labels, Nc is the num-
ber of contacts in the material, lci is a branch vector pointing
from the centroid of particle j to the centroid of particle i , and
f cj is the force vector from particle j to i [27]. The effective
friction coefficient is computed using μ = σ yx/σ yy , where
averages are carried out over several thousand stress calcu-
lations once a steady state velocity profile has been reached.

Figure 4 comparesμ andφ found in our simulations (using
DS1) with available data from contact dynamics simula-
tions [13] and 3D annular shear cell experiments [3,12]. Our
simulations show an excellent collapse with the other data
sets both in terms of effective frictional response and solid
fraction. The effective friction coefficient increases from
its quasi-static value throughout the inertial flow regime,
approaching a plateau at the transition to the rapid flow
regime. The solid fraction decreases approximately linearly
throughout the inertial flow regime from a maximum quasi-
static value of 0.59.

InFig. 4, as in all figures in this paper, plotted quantities are
obtained as follows. First, a quantity of interest (e.g., coordi-
nation number) is computed at periodic times (approximately
5×104 times) once steady state flow has been achieved. The
total strain over which quantities are extracted is taken such
that averages over larger strains do not change the results.
Next, the average of these quantities is used to obtain the
plotted data points. Finally, the sample standard deviation is
used to obtain the error bars. Error bars are typically omitted
from inset plots for clarity.

3.2 Results: validity of friction law

Figure 5 displays the effective friction coefficients for our pri-
mary data set computed using the friction relationship in Eq.
(6) and the stress formula in Eq. (7). The figure demonstrates
that the proposed friction law excellently approximates the
effective friction coefficient throughout the inertial flow
regime.We have confirmed that a similarly accurate fit exists
for other grain properties.
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Fig. 5 A comparison of the effective friction coefficient calculated
from proposed friction relationship in Eq. (6) and the stress formula in
Eq. (7)

3.3 Results: grain-scale dissipation mechanisms

The contact law discussed in Sect. 3.1 implies that Eq. (6)
can be written as

μ = Zφ

I

〈�n〉 + 〈�s〉
�̃

(8)

where 〈�n〉 = 〈Fn ·vn〉 is the average viscoelastic dissipation
rate, averaged over all contacts, and 〈�s〉 = 〈|Ft ||vt |〉 is the
average dissipation rate from grain sliding, averaged only
over sliding contacts. An additive decomposition of Eq. (8)
into μ = μn + μs yields

μn = Zφ

I

〈�n〉
�̃

and μs = Zφ

I

〈�s〉
�̃

(9)

The effective friction coefficient can thus be written in a form
that clearly decouples contributions from the two grain-scale
dissipation mechanisms, viscoelasticity and grain sliding.

Figure 6a illustrates how the two terms in Eq. (9) evolve
throughout the inertial flow regime. At low shear rates, dissi-
pation from grain sliding is the primary contributor to effec-
tive friction.At higher shear rates, the contribution fromgrain
sliding remains constant or declines as the contribution from
viscoelastic dissipation becomes increasingly prominent.

3.4 Influence of material properties

In order to highlight how grain properties influence the rel-
ative contributions of microscopic dissipation mechanisms,
results from the secondary data set are also shown in Fig. 6
(the solid lines). We recall that the primary data set (DS1)
features the same grain properties as the secondary data set
(DS2) except for a lower coefficient of restitution, as shown
in Fig. 3b.

Figure 6a compares how the two terms in Eq. (9) evolve
as a function of shear rate for each data set. Compared to
DS1, DS2 features a larger effective friction contribution
from grain sliding and a smaller contribution from viscoelas-
ticity throughoutmost of the inertial flow regime. This occurs
because grain viscoelasticity dissipates less energy for a
given particle collision in DS2, leaving more kinetic energy
in the system to be dissipated by grain sliding. Despite the
difference in the grain-scale contributions to effective fric-
tion, both data sets feature similar values forμ until I ≈ 0.4,
as shown in Fig. 6b.

In past work [2,13], some researchers have ignored the
influence of the coefficient of restitution e in shear flows
because of the similarity of the effective friction coefficient
when measured in systems using different values of e. Sim-
ulations are therefore often carried out using e = 0 [13].
The finding in Fig. 6 illustrates that although effective fric-
tion may be similar, the grain-scale dissipation mechanism
responsible for friction is different in systems with differ-
ent values of e. It may be interesting to explore the range of
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in the additive decomposition of effective friction given in Eq. (9) for
the primary data set (dashed lines) labeled DS1 and the secondary data
set (solid lines) labeled DS2. b The total effective friction for the two
data sets as a function of I . Error bars are omitted from inset plots for
clarity

grain-scale behaviors that emerge from varyingμp and e and
the reason that they have such a minor influence on effective
friction below I ≈ 0.4. We leave such an investigation as
future work.

Increasing or decreasing the inter-particle friction coeffi-
cient has the effect of shifting the effective friction curves in
Fig. 6b up or down, respectively, but does not significantly
affect their shape or themagnitude of viscoelastic dissipation.
Thus, the inter-particle friction coefficient primarily sets the
baseline magnitude of effective friction while the coefficient
of restitution controls the grain-scale contributions.

3.5 Results: dilation and dissipation rates

The evolution of each term in Eq. (6) is shown in Fig. 7.
Shearing dilation is captured in the evolution of Z , φ, and
Zφ/I in Fig. 7a, b and d, respectively. At low shear rates,
Z and φ maintain maximum quasi-static values that depend

upon properties such as the inter-particle friction coefficient
and particle shape. For our primary data set, these quasi-static
values are approximately 4 and0.59 for Z andφ, respectively.
As shear rates increase throughout the inertial flow regime,
both Z and φ decrease as the material dilates. At all shear
rates investigated, Z is well described by

Z ≈ Z1 + Z2

b + I
(10)

and φ is well described by

φ ≈ φmax − mI (11)

where Z1, Z2, b, φmax, and m are constants. These approx-
imations hold for both data sets set discussed here and for
simulations with different values of μp and γn , and different
particle size distributions which we do not discuss here.

When combined, Eqs. (10) and (11) suggest the two
scaling regimes of Zφ/I shown in Fig. 7d. The scaling
Zφ/I ∝ I−1 arises because Z and φ maintain quasi-static
values at the low end of the inertial regime. The scaling
Zφ/I ∝ I−2 arises because Z and φ decrease in agreement
with Eqs. (10) and (11) at higher shear rates. This decreasing
contribution of Zφ/I in Eq. (6) reflects a decrease in both
number of contact points and total solid fraction as shearing
dilation increases. From an energy perspective, this decay
conveys the decrease in internal surface area over which the
material can dissipate energy.

While Zφ/I decreaseswith shear rate due to shearingdila-
tion, average grain-scale dissipation rates increase as shown
in Fig. 7c. Both viscoelastic and grain sliding dissipation
rates approximately follow a power-law dependence on I
throughout the inertial flow regime, with 〈�n〉/�̃ ∝ I 2.4 and
〈�s〉/�̃ ∝ I 1.87, as shown in the inset of Fig. 7c. We gener-
ally expect 〈�n〉/�̃ to scale at least as fast as I 2 for our chosen
contact law because collision velocities scale approximately
with I and viscous normal contact forces scale with col-
lision velocity. Surprisingly, we also find 〈�n〉/�̃ to scale
at least as fast as I 2 when we impose sub-linear depen-
dence of viscous normal forces on grain collision velocities.
This likely occurs because the correlation between collision
velocities and viscous normal contact forces implies that
〈�n〉 ∝ 〈Fv

n · vn〉 > 〈Fv
n〉 〈vn〉 ∝ I 2.

We have not found a similar argument for the scaling of
〈�s〉/�̃ with shear rate, but we have always observed this
term to scale slower than 〈�n〉/�̃.

3.6 Results: rate-dependent friction

When combined, the competing processes of shearing dila-
tion and grain scale dissipation rates give rise to a rate-
strengthening effective friction coefficient in our data sets, as
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The dashed line is the fit from Eq. (10). b The solid fraction φ as a
function of inertial number. The dashed line is the fit from Eq. (11).
c The average grain-scale dissipation rates 〈�n〉/�̃ and 〈�s〉/�̃ as a
function of inertial number. The dashed lines are power-law fits, with

〈�n〉/�̃ ∝ I 2.4 and 〈�s〉/�̃ ∝ I 1.87 d The quantity Zφ/I as a func-
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shown in Fig. 6b. Rate-strengthening seems to occur because
Zφ/I never decays faster than I−2 while 〈�n〉/�̃ increases
at least as fast as I 2 in the inertial regime.

Data sets using other values forμp and γn , as well as other
simple contact laws (linear springs or nonlinear dependence
of viscous normal force on collision velocity) have been
investigated and yield similar results: Zφ/I never decays
faster than I−2 and 〈�n〉/�̃ always increases at least as fast
as I 2 in the inertial regime. Velocity-strengthening there-
fore appears to be a generic system response for bidisperse
spheres interacting with many viscoelastic contact models in
the inertial regime.We have not observed a transition to rate-
weakening friction at low shear rates as observed in some
recent experiments [15]. Given the variety of grain proper-
ties and particle size distributions we have studied (but not
discussed here), we suspect such a crossover, if it exists, to be
caused by processes not captured by the current viscoelastic
contact model, such as flash heating [15].

In Fig. 7c, dissipation rates approach 0 as I → 0. This
seems to suggest effective friction also approaches 0 as
I → 0; however, I appears in the denominator of Eq. (6). The
scaling of dissipation rates with I is therefore the quantity
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Fig. 8 The inset of Fig. 7c, showing the average grain-scale dissipation
rates as a function of inertial number on a log-log scale. The dashed
lines illustrate the scaling of each dissipation rate discussed in the text,
as well as the scaling proportional to I at the transition to quasi-static
flow

controlling the approach to a quasi-static value of effective
friction, not the absolute value of dissipation rates. To clarify
this, we enlarge the inset of Fig. 7c in Fig. 8. At the tran-

123



294 R. C. Hurley, J. E. Andrade

sition from inertial to quasi-static flow, close to I = 10−3,
both dissipation rates trend toward scaling as 〈�i 〉/�̃ ∝ I .
In the quasi-static regime below I = 10−3, both dissipation
rates reach this scaling. When this occurs, the effective fric-
tion coefficient reaches a quasi-static value and the strength
is rate-independent. This transition is significant for under-
standing the onset of rate-dependent behavior and deserves
further investigation in future work.

4 Discussion

The primary finding of the past two sections are: (1) effec-
tive friction in inertial granular shear flows can be interpreted
as a competition between shearing dilation and grain-scale
dissipation rates; and (2) rate-strengthening effective fric-
tion occurs in the inertial flow regime for many viscoelastic
contact models and grain properties because grain-scale dis-
sipation rates win the competition with shearing dilation.
Although the first finding may seem intuitive, Eq. (6) pro-
vides a quantitative means of studying it. Equation (9) also
provides a method of tracing macroscopic frictional energy
loss down to the grain-scale.

The interpretation of steady state effective friction given in
this paper complements interpretations offered by past work
[2,13]. In these past works, researchers explicitly linked fric-
tion to the anisotropy of the contact network. An increase in
normal force anisotropy was implicated with causing rate-
strengthening. This interpretation offers an understanding
of how the structural organization of grains may influence
macroscopic frictional response. The interpretation of fric-
tion in the current paper, however, makes no mention of
structural organization and rather relies upon energy dis-
sipation to explain changes in the macroscopic frictional
response. That each interpretation can independently explain
the change in effective friction as a function of shear rate is
interesting and deserves further investigation.

Several other interesting behaviors were observed dur-
ing the simulations carried out for this work. Many of these
behaviors warrant future investigation. First, a similarity in
the effective friction coefficient was observed for simulations
using different values for the coefficient of restitution e. This
similarity persisted even while differences were observed in
the grain-scale contributions to friction (see Fig. 6). This
behavior has been noted by previous authors [2,13] and has
not yet been explained. A number of interesting changes in
behavior behavior were also observed to occur near I ≈ 0.1.
Authors in [13] noted a number of topological transitions
occurring at this shear rate. In this paper, we observe the tran-
sition from Zφ/I ∝ I−1 to Zφ/I ∝ I−2 close to I ≈ 0.1.
We also observe a dramatic increase in the fraction of sliding
contacts at I ≈ 0.1, regardless of the inter-particle friction
coefficientμp used in simulations. Finally, we have observed

that Eq. (6) holds for other contact laws and holds locally in
layers of roughly constant inertial number in systems and
flow configurations where the inertial number varies spa-
tially. It would be useful to investigate such systems in more
detail in future work to determine whether the quantitative
results of this paper persist.

5 Conclusion

We have presented a relationship between steady state
effective friction, the inertial number, coordination number,
solid fraction, and grain-scale dissipation rates in a gran-
ular shear flow. This relationship elucidates the rate- and
porosity-dependent nature of effective friction in granular
flows. Numerical simulations of simple shear flows have
been used to illustrate how effective friction is furnished by
grain-scale dissipation mechanisms. Rate-strengthening was
seen to occur because terms encompassing shearing dilation
decay more slowly with shear rate than terms encompassing
grain-scale dissipation rates increase. We discussed how our
findings compare with other interpretations of effective fric-
tion and mentioned several observations that warrant future
investigation.
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