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Abstract We study numerically the propagation of an
acoustic pulse through a loaded granular material under the
hypothesis that the conventional modeling of solid friction
used in soft sphere discrete element modeling remains valid
at acoustic time scales. As the pulse crosses the material, it
temporarily suppresses sliding contacts, making it difficult
to prepare states that correspond to experimental conditions.
The pulse speed is strongly affected by the loading in a
very anisotropic way, varying by as much as a factor of two
depending on the propagation direction.We separate the con-
tribution of the contact network from that of sliding contacts,
and show that sliding contacts can reduce the propagation
speed as much as changes in coordination number. Sliding
contacts have a characteristic acoustic signature: pulse speed
depends on sign (compression or rarefaction), even at very
small amplitudes.

Keywords Granular acoustics · Quasi-static ·
DEM simulations

1 Introduction

Several recent experiments use acoustical waves to probe the
deformation granularmaterials [1–5]: changes in the acoustic
transmission properties are shown to coincide with defor-
mation events [2] or changes in imposed shear [1]. These
techniques give information about the interior of the pack-
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ingwhile remaining non-intrusive, andwill probably become
more widespread in the future.

The weakness of these methods lies in their interpreta-
tion. One observes that acoustical changes are correlated to
deformation, but it is not clear exactly how. Explanations
usually advanced are changes in the coordination number
[1] or, in other situations, contact nonlinearity [2]. Recently,
other possible mechanisms have been proposed: intergranu-
lar collisions, frictional slip, and excitations of small groups
of grains or force chains [6].

One possible way forward is to examine numerical simu-
lations. While simulations are necessarily simplistic, they do
allow for precise control of parameters and detailed exami-
nation of results. If certain acoustical phenomena could be
reproduced in simulations, one could then determine their
origin, for in simulations, one has access to all the physical
variables. Accordingly, some numerical studies of granular
acoustics have appeared [7–13]. These works focus on the
propagation of a pulse through a packing subjected to an
isotropic stress, and focus on the geometrical disorder of
granular materials that prevents the application of methods
used in crystals.

But one often wants to probe packings subjected to an
anisotropic stress or undergoing deformation, where sliding
contacts play an important role. Recent experimental works
[14,15] have shown that the interaction between soundwaves
and tangential forces is complex. However, to our knowl-
edge, this work is the first numerical study of the interaction
between sliding and acoustics.

The numerical model of the tangential force used here is
very simplistic: it uses only a single, linear, stiffness, and a
constant friction ratio. Thus this work cannot describe many
effects such as contact ageing, sound wave-induced changes
in friction ratio [14], or nonlinear contact stiffness. Instead,
this work studies one effect, namely, the interaction between
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the sliding-nonsliding transition and acoustics. As will be
shown, this interaction can be very strong.

This studymust also confront the great difference between
the acoustic frequencies and the strain rate. Granular mate-
rials are probed at frequencies of order 100kHz, whereas
typical shear rates are of order 10−5 Hz [1]—a difference of
ten orders ofmagnitude. It is not possible to resolve both time
scales in the same way in a numerical model. But we show
how this difficulty can be overcome using the elementary soft
sphere “molecular dynamics” method.

This paper is organized as follows. In Sect. 2, we explain
and motivate the numerical setup, and introduce the differ-
ent numerical techniques used in the article. In Sect. 3, we
then examine the effect of sound waves on sliding contacts,
whereas the effect of sliding contacts on acoustic properties is
examined in Sect. 4. The paper concludes with Sect. 5 where
experimental evidence for the effects found in this paper are
discussed.

2 Numerical setup

2.1 Biaxial tests and checkpoints

We study two-dimensional quasi-static packings of N =
128×128 = 16384 grains confined by four walls, The grains
have a two-dimensional mass density ρ∗, and the total mass
of the packing is M∗. The packing was formed by compress-
ing a granular gas. During the compression, the bottom and
left walls were fixed, while the upper and right walls were
mobile. A constant pressure p∗ was applied to them, and their
motion was obtained by integrating Newton’s second law, as
if they were grains with a mass of about M∗/100. During
compression, the grains were frictionless, and a weak, diag-
onally directed gravitational forcewas applied to push rattlers
against the granular skeleton.

In this way, a very dense motionless state is obtained, that
will serve as the initial condition of the biaxial test. Friction
is “turned on” by setting the friction ratio μ = 0.2, although
grain-wall interactions remain frictionless. Note that all tan-
gential forces vanish, as the packing was constructed without
friction. This is different from the experimental initial con-
dition where friction is always active. A constant velocity is
imposed on the upper wall, but the right wall remainsmobile,
with the same pressure p∗ applied to it. Figure 1 shows two
resulting stress-strain curves that are typical for this kind of
numerical experiment. The curve marked “compression” is
obtained by moving the upper wall downward, and the curve
marked “extension” is obtained by moving the upper wall
upward.

As the packing is being deformed, a “checkpoint” is
written into a file periodically at regular strain intervals
Δε = 10−5. A checkpoint is a complete snapshot of the
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Fig. 1 Stress-strain curve for the simulations studied in this paper.
The first principal stress is σ1 and σ2 is the second principal stress.
In the compression test, the upper wall is lowered, and σ1 = σyy >

σ2 = σxx = p∗. In the extension test, the upper wall is raised, and
σ1 = σxx = p∗ > σ2 = σyy

system that can be used to restart the simulation. Their usual
purpose is to make the simulation program more robust. If
there is a power cut in the middle of a long simulation, one
does not need to restart the simulation from the beginning;
instead one can restart the simulation from the last check-
point recorded. In this paper, checkpoints are an essential
part of the numerical method, enabling us to probe a state at
different amplitudes, and to modify the imposed strain rate.

2.2 Signal generation

To acoustically probe the sample, we reload a checkpoint,
and restart the simulation. A signal is generated by adding a
perturbation on the constant force on the right hand wall:

p(t) = p∗ [1 + f (t)] . (1)

The same checkpoint can be reloaded many times, and
pulses with different amplitudes can be generated each time.
In this way, we can apply different signals to exactly the same
packing. If necessary, we can apply a zero-amplitude pulse,
i.e., simply replay the simulation without any change at all.

2.3 Why compression and extension?

We consider both compression and extension tests because
the acoustic properties a granular material subjected to an
anisotropic stress are also anisotropic. As will be described
above in Sect. 2.2, the mobile wall is used to generate signals
that propagate only in the horizontal direction, the vertical
direction being inaccessible. To overcome this difficulty, we
will assume that the vertical direction in the compression test
is equivalent to the horizontal direction in the extension test.
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compression: εyy = 1% initial condition: ε = 0 extension: εyy = 1%

Fig. 2 Propagation of a perturbation originating in the center of the packing. The grayscale indicates when the oerturbation arrives at each particle.
The strain rate is ε̇ = 4 × 10−7t−1

a in all panels

To support this assumption, and to illustrate the anisotropy,
we generate a wave at the center of the sample, and examine
its propagation. This is done by reloading a checkpoint, and
thenmultiplying the radius of one grain near the center by 1+
10−5 before beginning the simulation. This sudden change
of radius generates a perturbation in the packing that radiates
outward. The velocities of all the particles are recorded at a
high sampling rate.

To identify the changes introduced by the perturbation, a
second simulation is done with the same initial conditions,
except no particle radius is changed. The particle velocities
are recorded in exactly the sameway as in the first simulation.
Then, the perturbed velocity v of each grain is obtained by
subtracting the results of the second simulation from the first.

When we examine the perturbed velocity of each grain,
we find that it is zero until a well defined time when it sud-
denly begins tofluctuate.We interpret the appearance of these
fluctuations as the arrival of the disturbance generated at the
center. The arrival time is estimated as the time when |v| first
rises to 10% of its maximum value. Doing this for each grain
in three different simulations yields Fig. 2.

The level of gray in this figure is determined by the arrival
time of the disturbance, but we pass from white to black four
times. More precisely, we first calculate a normalized arrival
time at each particle i : τi = ti/t f , where ti is the pulse arrival
time at grain i , and t f is the duration of the simulation. Note
that 0 ≤ τi ≤ 1. Next, let J be the number of times to pass
from white to black. In Fig. 2, J = 4. We then calculate a
gray level gi , 0 ≤ gi < 1 by taking the non-integer part of
Jτi , or

gi = Jτi − floor(Jτi ). (2)

where the floor function returns the largest integer not
greater than its argument.

Figure 2 shows that the disturbance propagation speed is
strongly anisotropic when the packing is loaded—the distur-

bance travels much more quickly in one direction that the
other. The propagation velocity is determined by the first
principal stress direction: it propagates quickly in the direc-
tion where normal stress is a maximum (vertically on the left
of Fig. 2, horizontally on the right), and more slowly in the
other direction.

2.4 Particle interactions

We use the simple linear spring and dashpot model for the
particle–particle interaction. The normal force Fn at each
contact is

Fn = −KnDn − γn Ḋn, (3)

where Dn is the overlap between the two particles. In this
paper, we set the normal stiffness Kn = 2000p∗ unless indi-
cated otherwise. The damping coefficient γn is chosen to
obtain a restitution coefficient of about 0.92.

The tangential force is calculated in a similar way, but
with an additional condition to allow sliding. A candidate
tangential force F̂t is calculated:

F̂t = −Kt Dt − γt Ḋt , (4)

where Dt is the integral of the tangential component of the
relative motion, and Kt , γt are constants analogous to Kn ,
γn . In this paper, we use Kt = Kn/2, γt = γn/2.

After calculating F̂t , we check if it satisfies

|F̂t | ≤ μFn, (5)

where μ is the friction ratio (μ = 0.2 in this paper). If it
does, then the tangential force is set equal to the candidate:
Ft = F̂t . Otherwise, the contact is said to be “sliding”, and
Ft = ±μFn , choosing the sign so that Ft and F̂t have the
same sign. If the contact slides, we set Dt = −Ft/Kt . This
last step is necessary to model the sliding of the two surfaces.
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Thismodelization is standard, butwe repeat it here to draw
the reader’s attention to on important consequence, namely
that when the contact slides, the force is incrementally non-
linear, i.e., the derivative ∂Ft

∂Dt
does not exist. To see this, let

Fn be constant, and Ft = μFn > 0. If the motion is quasi-
static, Eq. (4) tells us that Dt = −μFn/Kt < 0. Then note

lim
h→0+

Ft (Dt + h) − Ft (Dt )

h
= −Kn, (6)

since h > 0 reduces F̂t so that F̂t < μFn , satisfying Eq. (5)
On the other hand,

lim
h→0−

Ft (Dt + h) − Ft (Dt )

h
= 0, (7)

since h < 0 increases F̂t so that Ft remains equal to its
maximum value μFn . This is the microscopic origin of the
incremental nonlinearity observed in granular materials [16].

In addition to the normal and tangential forces, a weak
rolling resistance is applied.

2.5 Units

The quantities p∗, M∗, and ρ∗ define the units used through-
out this paper. In twodimensions,ρ∗ has units ofmass divided
by length squared, and p∗ has units of force divided by length.
This implies that the unit of length is L∗ = √

M∗/ρ∗, the
unit of time is t∗ = √

M∗/p∗, and the unit of energy is
E∗ = M∗ p∗/ρ∗.

Since we are observing acoustical phenomena, it is use-
ful to measure time and velocity in appropriate units. A long
wave propagating through a line of grains interacting accord-
ing to Eq. (3) travels with a velocity

va = d

√
Kn

m
=

√
4Kn

ρ∗π
, (8)

where d is the particle diameter and m the particle mass.
The first expression is general, and the second applies to
disks with m = ρπd2/4. Note that for disks (but not from
spheres), this velocity is independent of particle size. The
acoustic velocity enables us to define an acoustic time scale
ta = L∗/va , the time for a wave to travel through a line of
length L∗.

An important dimensionless parameter is the ratio of the
acoustic time scale to the unit of time used in the simulation:

t∗
ta

=
√
4Kn

πp∗
. (9)

For most of the simulations in this paper, t∗/ta ≈ 50.

Table 1 Principal dimensionless parameters characterizing the simu-
lations presented here and the experiments [1,3]

Simulations Experiments

Container size L/d 128 O(100)

Wavelength λ/d 10–100 20

Grain stiffness G/p 2000 O(105)

Strain rate ε̇T O(10−6) O(10−10)

Acoustic strain rate ε̇a/ε̇ O(10−6)–1 O(104)

Explanation and method of calculation is given in the text

2.6 Dimensionless parameters

The values of the grain stiffness, system size, and defor-
mation rate are chosen for numerical convenience. The
capabilities of the computer impose constraints on these
parameters—for example, if there are too many particles, the
simulationswill take toomuch time. In the experiments, these
parameters are subjected to other constraints. For example,
the elastic properties of the beads are imposed by thematerial
used to make them.

When interpreting the simulations, it is necessary to take
these differences into account. This can be done by compar-
ing various dimensionless parameters that characterize both
the experiments and the simulations. To make our compari-
son concrete, we will consider two relatively small acoustic
transmission experiments [1,3] where the experimental para-
meters are clearly documented. The principal dimensionless
parameters and their values are shown in Table 1. As one can
see certain parameters are quite close while others are differ-
ent. The first two parameters describing the system size are
roughly similar, but those describing the grain stiffness and
the strain rate are very different. Accordingly, the effect of
these last two parameters will be carefully examined in the
paper.

In the rest of this subsection, we discuss the estimation of
each parameter.

2.6.1 Container size

The experiments are done with a grain diameter d of a bit
less than amillimeter (0.6mm < d < 0.8mm), in containers
sizes L of several centimeters (20mm < L < 60mm). This
leads to a non-dimensional container size of L/d ≤ 102 close
to the value used in the simulations. This is possible because
the simulations are two-dimensional while the experiments
are three-dimensional. Therefore, the simulation concerns
about (L/d)2 ≈ 104 grains while the experiments involve
(L/d)3 ≈ 106.

2.6.2 Wavelength

The wavelength given in the papers are λ ≈ 10mm [1] and
λ ≈ 15mm [3]. The wave length is thus roughly one order
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of magnitude larger than he particle diameter (λ/d ≈ 20),
and a bit smaller than the container (L/λ ≈ 3). Waves of this
length are easily generated in simulations.

Note that the wavelength is much larger than the grain
diameter. This means that we do not acoustically probe the
vibrational modes of the grains.

2.6.3 Grain stiffness

The confining pressures p0 cited in these articles are 206
kPa and 85–340 kPa, while the shear modulus G of glass
(the material of the grains) is given as 25 GPa. This leads to
a non-dimensional grain stiffness of order G/p0 ∼ 105. The
equivalent parameter in the simulations is Kn/p∗ = 2000, or
about two orders of magnitude lower. Raising Kn increases
simulation time, because the time step used to integrate the
equations of motion must be decreased. Nevertheless, we
will carry out a few simulations with a higher value of Kn to
assess its effect on the results.

The choice Kn/p∗ = 2000 was motivated by the obser-
vation [17] that quasi-static flows are independent of Kn if
Kn is several thousand times larger as the confining pres-
sure. This threshold occurs because variations in an applied
isotropic stress no longer modify the number of contacts.

2.6.4 Strain rate

In the experiments done with the shear cell [1], the imposed
shear velocity was 0.6µm/s. Given the relevant container
dimension (30 mm), this corresponds to a shear rate of ε̇ ≈
2 × 10−5s−1.

Since we want to study the relation between deforma-
tion and sound, one dimensionless number is the imposed
deformation per wave period T . The wave frequencies used
with the shear were 40 kHz, leading to a period of T =
2.5 × 10−5 s. The total externally imposed shear during one
wave period is thus ε̇T ≈ 5 × 10−10.

On the other hand, the shear rate in the simulations is
ε̇ = 2× 10−5t−1∗ , and wave periods are of order ta ≈ t∗/50,
leading ε̇T ≈ 4×10−7, or three orders ofmagnitude smaller.
The deformation rate in the simulation is thus very large. The
effect of this parameter will also be carefully examined. It is
very difficult to attain such values in numerical simulations.

2.6.5 Acoustic strain rate

Another non-dimensional number is the ratio of the acousti-
cal strain rate ε̇a to the imposed strain rate. In another
experiment [3], the range of displacement amplitudes of gen-
erated longitudinal waves is given as 2 nm ≤ U ≤ 50 nm,
with a wavelength of 15mm, and a frequency of 50 kHz.
Estimating ε̇a ≈ U/λT leads to ε̇a/ε̇ ∼ O(104) � 1.
In simulations, easily accessible values are in the range

O(10−6) ≤ ε̇a/ε̇ < O(1). The difference between the simu-
lations and the experiments is very large. In the experiments,
the strain is a small perturbation of the wave, whereas in the
simulations, the wave is a small perturbation of the strain.

2.7 Absorbing walls

The wall-grain interaction is usually assumed to be the same
as the grain-grain interaction, leading to a boundary that is
nearly a perfect reflector of acoustic energy. When a signal
crosses the packing and arrives at the opposite wall, it is
reflected back into the packing, and the situation becomes
much more complicated and difficult to analyze. In addition,
energy generated inside the packing remains trapped inside
the simulation, instead of radiating into the surroundings,
as it would in an experiment. These problems become more
acute as the size of the simulation in grain diameters becomes
large.

A nearly absorbing wall can be implemented by decreas-
ing the stiffness of the grain-wall interaction, and then
choosing a dissipation rate so that the dominant oscillation
frequency is critically damped. Specifically, the wall-grain
interaction has a stiffness of Kn/

√
N and a large damp-

ing coefficient. This choice maximizes the damping of the
longest vibration mode. Incoming higher frequency waves
are overdamped, and are mostly absorbed at the walls [18].

Soft walls, however, have the disadvantage of complicat-
ing the calculation of strain during the biaxial test. The strain
is usually calculated from the displacement of the external
walls. But in our case, the walls are so soft that a large part of
the deformation occurs between the wall and the first layer
of grains. Thus we return to the definition of the strain as
the gradient of the displacement. The following procedure
is used: The position (xi , yi ) of each grain i in a reference
state (initially the zero strain state) is recorded. Then, as the
simulation advances, the displacement (ui , vi ) of each grain
from its reference position is calculated. To obtain the yy-
component of the strain tensor, we do a linear regression on
the y-components, i.e.,we look for εyy, b such thatminimizes∑

i (vi − εyy yi − b)2, the fit parameter εyy being the strain.
When εyy increases above 10−5, the state of the simulation
is recorded, and it defines a new reference state.

Another disadvantage of the soft walls is that acoustical
signals generated by thewalls are not transmitted to the pack-
ing. Therefore, we do not soften the right, mobile wall, so
that we can use it to generate acoustical signals.

3 The effect of sound on sliding

In this section, we show that sliding contacts are very sensi-
tive to sound waves, showing that loaded granular packings
must be carefully handled (numerically and experimentally)
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if the effect of sliding contacts is to be studied in ameaningful
way.

3.1 Spontaneously generated noise

Vibrations in loaded granular materials suppress sliding con-
tacts. In Fig. 3, we show the number of sliding contacts in
the compression test. The envelope of the curve resembles
the stress-strain relation in Fig. 1, but the curve is punctuated
by numerous sudden drops in the number of sliding contacts,
followed by a rapid recovery to the original level.

In Fig. 4, we show two such events from the same sim-
ulation as in Fig. 3, but on a magnified time scale. The top
panel shows the number of sliding contacts, and the bottom
panel the kinetic energy. The events shown in this figure are
small compared to those in Fig. 3. Examining the larger of
the two events shows a distinct sequence of events. First, the
kinetic energy rises at an accelerating rate, due to an insta-
bility within the packing. Then suddenly drops, and at the
same time the number Ms of sliding contacts also drops due
to a sound wave that radiates from a particular location in the
sample [19]. Finally, Ms returns slowly back to its original
value.

Are these events quasi-static (governed by the global
strain) or dynamic (governed by equilibrated intergranular
forces and their resulting accelerations)? To examine this
question, the simulation of Fig. 4 was redone with the strain
rate divided by ten. The two events were again obtained, with
the same energy, both beginning at precisely the same values
of the global strain, indicating that such events are triggered
by events generated by the quasi-static evolution of the sys-
tem, as found in earlier work [19].

But the kinetic energy rise time, and the recovery time
of Ms are nearly independent of the strain rate, suggesting
that these are dynamic processes. This is confirmed by sim-
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Fig. 3 Number Ms of sliding contacts for the compression experiment
shown in Fig. 1
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Fig. 4 Two spontaneously generated events within the biaxial test of
Figs. 1 and 3. Top panel number Ms of sliding contacts, bottom panel:
total kinetic energy E

ulations with very stiff particles (Kn = 2 × 105). Measured
in units of ta (which takes into account grain stiffness), the
recovery time of Ms does not change. The energy rise times
(again measured in ta) are perhaps two times longer, but this
difference is small compared to the factor of 10 in ta .

3.2 Applied pulses

Now we want to study this phenomena in a more controlled
way. To do so, we use the technique of replaying the simu-
lation described above. We choose a time when there are no
events, and generate a pulse at the beginning of each “replay”
by exerting a δ-function stress on the mobile wall of varying
amplitude:

p(t) = p∗ [1 + paδ(t)] . (10)

In Fig. 5, we show the effect of the pulse on the num-
ber of sliding contacts. As the pulse propagates through
the material, it suppresses the sliding contacts as it goes
along. This accounts for the rapid, linear drop at the begin-
ning of the simulation. Then, there follows a slow recov-
ery.

Note that the initial loss depends strongly on the ampli-
tude of the pulse. At pa = 10−5, 2/3 of the sliding contacts
are lost, but the pa = 10−8 pulse leaves them almost
unchanged.

3.3 A random walk model

In this section, we present a simple model that explains why
shocks cause a drop (and not an increase) in sliding contacts,
followed by a slow recovery. This model is a biased random
walk with a threshold. Let us suppose that a crowd of drunk-
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Fig. 5 Number of sliding contacts after applied pulses of varying
dimensionless amplitude pa—see Eq. (10)

ards emerges at time t = 0 from a bar at x = 0. They then
execute independent biased random walks, with a steps Δx
drawn uniformly from the interval [μ̄−s, μ̄+s]with μ̄ > 0.
The parameter μ̄ gives the drunks a mean positive velocity
(they have a vague idea that they should go toward positive
x), while s characterizes their fluctuations about the mean
drift (s being perhaps proportional to the number of drinks).
There is a fence at x = 1 that prevents the drunkards from
entering the region x > 1. When a drunkard arrives at the
fence, he simple stops, and waits until he draws a negative
step. He then leaves the fence.

In this model, the position of the drunkard corresponds
to Fn − μ|Ft | that measures the distance of a contact from
its sliding threshold. The drunkards at the fence correspond
to sliding contacts. The contact forces and the drunkards act
in exactly the same way: when they arrive at a barrier (the
fence, or the Coulomb condition), the simply stop there until
they decide to move in the other direction. The bias of the
random walk represents the steady, constant imposed strain
rate. This strain rate causes a steady relative motion at each
contact that causes the contact forces to evolve in a constant,
steady way. Finally, the random part of the drunkard’s walk
correspond to vibrations that propagate through the packing.
In Fig. 6 we show the fraction of drunkards at the fence
during an experiment designed to mimic the passage of a
wave through a loaded granular material. For t ∈ [0, 49], we
set μ̄ = 0.1 and s = 0.2. The drunkards thus choose a step
distance in the interval [−0.1, 0.3]. When they arrive at the
fence, their probability of choosing a positive number, and
thus remaining at the fence, is 0.75. Note that this is very
close to the maximum fraction of drunkards that are stuck on
the fence.

To model the arrival of a pulse, s is increased by an order
of magnitude, modeling the increased fluctuations. In Fig. 6,
the pulse lasts for ten steps, 50 ≤ t < 60. Finally, at t = 60
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Fig. 6 Results from a biased random walk with a threshold used to
model the effect of vibrations on sliding contacts. 1000 drunkards were
released at x = 0 at t = 0. The graph shows the fraction of drunkards
stuck on the fence at x = 1. The step standard deviation is temporarily
multiplied by 10 in the interval 50 ≤ t < 60 (vertical lines)

we set s back to its original value. The drunkards who have
been scattered by the strong fluctuations, slowly return to the
fence. This part of the curve models the recovery of Ms after
the passage of a pulse.

Note that the only parameter in the model is the ratio
s/μ̄ that gives the strength of the vibration relative to the
steady bias. This suggests that the lowering the strain rate
(lowering μ̄) will make the sliding contacts sensitive to lower
amplitude pulses. This is indeed the case. Reducing the strain
rate also increases the the loss of sliding contacts. Indeed,
reducing the strain by a factor of 1000 and generating a pulse
with pa = 10−8 suppresses more sliding contacts than the
pa = 10−5 pulse in Fig. 5.

4 Effect of sliding contacts on sound

4.1 Procedure

In this section, we consider “tapping” the mobile wall with a
well defined amplitude, and study how the speed of the result-
ing pulse. We use the pulse generation technique described
above in Sect. 3.2 and in Eq. (10).

Note that the pulse amplitude pa can be positive or nega-
tive. If pa < 0, pressure is reduced momentarily on the right
hand wall, and a rarefaction wave is generated. On the other
hand, if pa > 0, a compression wave is generated.

To follow theprogressionof the pulse,we record the veloc-
ities of all the particles everyΔt = 0.005ta . We then subtract
the velocities of the pa = 0 simulation from each of the
pa 
= 0 simulations to obtain the perturbed velocity v of
each grain. If the pulse is superimposed in a linear way on
the ongoing deformation, this procedure should separate the
effects of the pulse from those of the imposed deformation.
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Fig. 7 The x-component of the perturbed velocity as a function of
time during pulse transmission experiments for selected grains, with
pa = 10−10. Top row a grain near right hand wall. Middle row a grain
near the center of the packing. Bottom row a grain near the left wall.
The vertical and horizontal scales on all graphs are the same. The pulse
appears as a negative velocity because the initial motion of the right
wall is inwards

Examples of the velocities obtained in this way are shown in
Fig. 7. This figure shows that the pulse broadens and dimin-
ishes in amplitude as it travels, in accord with previous work
[13].When the packing is loaded (right column in Fig. 7), the
dissipation and broadening become stronger, and the coda
(the vibrations after the passage of the main pulse) have a
much greater amplitude.

The next step is to identify the time the pulse arrives at
each grain. We do this simply by locating the time where vx ,
the x-component of the perturbed grain velocity, attains its
maximum absolute value. Results for each grain, are shown
for three different situations in Fig. 8. The pulse arrival times
are encoded in the same way as in Fig. 2.

Figure 8 shows the dramatic effect of the loading. The
left panel shows the pulse propagation through the initial
condition: the pulse propagates in an organized way. Each
grain feels the arrival of the pulse at about the same time as
its neighbors. When the sample is deformed (middle panel),
however, the pulse is spatially fragmented—small irregular
regions appear. Moreover, the size of these regions increases
from right to left. This is probably due to the broadening of
the pulse. If the deformation is stopped (using the procedure
that will be described in Sect. 4.3) before the pulse is sent, we
obtain the right panel. The pulse is no longer as fragmented
as in the middle panel, but the wave fronts remain ragged.

4.2 Pulse velocity

The pulse arrival time of each grain is plotted as a func-
tion of the x-coordinate of position in the upper panels of
Fig. 9. Before the load is applied (εyy = 0), all the points
are concentrated in a single narrow band whose slope gives
the pulse velocity. The loading changes two things: First, the
slope of the band changes, indicating a reduced pulse veloc-
ity, and second, many grains have their maximum velocity
after the passage of the pulse, showing that the “coda” is
much stronger.

The points in the upper panels of Fig. 9 are confined above
adiagonal linewhose slope is the inverse of the pulse velocity.
To calculate the pulse speed, therefore, we first divide the
domain into 128 vertical strips. In each strip, we sort the
particles by pulse arrival time (time of maximum vx ). Then
we identify the grain with the third smallest arrival time in
each strip. The results are shown in the lower panels of Fig. 9.
We fit the data of these lower panels to obtain a pulse speed.

4.3 The static limit

As discussed in Sect. 2.6, the zero strain rate limit is relevant
to experiments. Unfortunately, one can not abruptly slow or

initial condition: εyy = 0 ε = 1% εyy = 1%, static

Fig. 8 Time of pulse arrival at each grain. The pulse arrives at light particles before dark ones, but we pass from white to black six times during
the simulation. The simulation time is 3ta , so the time between two successive wavefronts is ta/2
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Fig. 9 Two examples of the measurement of pulse velocity. Upper
panels the time of the velocitymaximum for each particle.Lower panels
Third smallest pulse arrival time for the grains in thin vertical strips,
used to calculate pulse velocity. These data come from the left and
center panels of Fig. 8

stop the applied strain for the sliding contacts are extremely
sensitive to vibrations, and one would like to preserve them
in order to study their effect.We therefore approach the static
limit in two steps.

The first step is to reload a checkpoint, and “replay” it at
a reduced strain rate, multiplying all velocities by a factor
γ < 1 before beginning the simulation. Since the initially
simulation is quasi-static, this procedure should generate a
new equilibrium state with a strain rate multiplied by γ . The
resulting state is not precisely in equilibrium for some forces,
especially the forces involving the soft walls, do depend
on velocity. Therefore an adjustment occurs that suppresses
sliding contacts. These sliding contacts can be recovered by
applying an addition strain of Δε = 2 × 10−6. In this way,
we obtain states for γ = 0.1, 0.01, 0.001.

The second step is to reload the γ = 0.001 state, and then
stop the walls as gently as possible. Specifically, the velocity
of the upper wall is slowly decreased to zero:

vwall = v0(1 − cosπ t/ts), (11)

where ts can be given various values. Finally, the packing is
allowed to radiate its remaining energy over a time of about
100ta .

In Fig. 10, we show the pulse speed in samples obtained
in the way described above. First of all, let us examine the
effect of reducing the strain rate by a factor of γ . These sim-
ulations change most significantly for pa > 0. We observe
a rapid jump in velocity at a value of pa that appears to be
proportional to γ ; at pa ≈ γ /10−5. We interpret this drop
as corresponding to the amplitude where the pulse becomes
strong enough to suppress the sliding contacts as it travels.

-10-1 -10-3 -10-5 -10-7 -10-9 10-9 10-7 10-5 10-3 10-1
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γ=1, ..., 0.001

ts=5, 50, 500

Fig. 10 Convergence toward the static limit. The curves marked γ =
1 . . . 0.001 show the result of reducing the strain rate by a factor γ .
The curves marked ts/ta = 5 . . . 500 show the effect of stopping the
strain rate over a duration ts . All states are prepared from the εyy = 1%
checkpoint of the compression test

As the strain rate drops, weaker pulses can suppress the slid-
ing contacts. This interpretation is confirmed by examining
the number of sliding contacts.

Note that these simulations yield a pulse speed indepen-
dent of the sign of pa for very small pa (|pa | < 10−9). This
indicates that the pulses are linear. They are too weak to sup-
press any sliding contacts, that aremaintained by the imposed
shear rate.

Now let us examine the second series of samples, obtained
by stopping the γ = 0.001 sample over a time ts . In these
samples, the strain rate vanishes, so that any pulse, no mat-
ter how weak, can suppress sliding contacts. As a result, the
pulses are more rapid than those with finite strain rate. But
the most interesting feature is that the pulse speed depends
on the the sign of pa , even at very small pulse velocities.
Furthermore, it seems that if we could stop the strain rate
with an infinite gentleness, the pulse speed would be discon-
tinuous at pa = 0. This is an acoustical manifestation of the
incremental non-linearity of sliding contacts.

4.4 Physical processes affecting pulse speed

Figure 11 separates the different physical processes affect-
ing the pulse speed. Four different types of experiments are
shown:

1. Deforming The pulse propagates while the deformation
is ongoing (circles in Fig. 11).

2. Static The strain rate is slowly brought to zero as
described in Sect. 4.3 before generating the pulse
(squares).
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3. Non-sliding The same as the static experiment, except
that we set the friction ratio to 2 (instead of 0.2) to sup-
press the effect of sliding contacts (diamonds).

4. Undeformed The pulse travels through the packing
before any deformation is applied (stars).

The difference between the various experiments enables
us to isolate the various physical effects that reduce the
pulse speed. For example, the only difference between the
deforming and static experiments is that imposed strain rate is
nonzero in the first case, but zero in the second case. Thus the
difference between the two reveals the effect of the motion.

The difference between the static and non-sliding exper-
iments is that the first contains sliding contacts, or contacts
close to the sliding threshold, whereas the second case does
not. Thus the difference between these two shows the effect
of sliding contacts.

Finally, neither the non-sliding experiment nor the unde-
formed experiments contain sliding contacts, but their con-
tact networks do differ. The application of the load creates
an anisotropic contact distribution, whereas the undeformed
state has a nearly isotropic distribution. Thus the effect of this
change is given by the difference between these two cases.

The contribution of all these effects is summarized in
Table 2. The loss in sound speed at each step is given as
a fraction of the sound speed c0 in the undeformed sample.
Also appearing in Table 2 are the results of the same exper-
iments done on the extension experiments. In this case, the
changes in sound speed are much weaker.

4.5 Contact network anisotropy

To confirm the interpretations given in Fig. 11 and Table 2,
we examine the angular distribution of the contacts. The
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Fig. 11 Physical mechanisms affecting pulse speed. The two lower
curves are from Fig. 10

Table 2 Relative loss of sound speed Δc/c0, due to the three physical
processes tested in the simulations

Physical process Compression Extension

pa < 0 pa > 0 pa < 0 pa > 0

Loss of contacts −0.233 −0.236 −0.038 −0.037

Sliding contacts −0.260 −0.179 −0.090 −0.107

Non-zero strain rate −0.034 −0.115 −0.032 −0.014

Total −0.527 −0.530 −0.160 −0.158

The sound speeds are measured at |pa | = 10−9
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Fig. 12 Orientation of contacts: Horizontally oriented contacts: θ = 0,
vertically oriented contacts: θ = ±π/2. Circles all contacts, diamonds:
sliding contacts. Solid line undeformed sample, Dashed line deformed
sample (εyy = 1%)with non-zero strain rate.Dotted line loaded sample
with zero strain rate. Contacts with the walls are excluded

changes and anisotropy of the pulse speed should correspond
to changes in the contact network.

In Fig. 12, we show the number of contacts at a given
angle, per radian and per grain. The contact angle θ is the
angle between the x-axis and the line of centers. The two
states used to construct Fig. 11 are used, and both total and
sliding contacts are considered.

Let us consider first the total contacts. The global stiffness
of the packing should be proportional to the number of con-
tacts, and the sound speed is proportional to the square root
of the stiffness. Figure 12 shows that the loading depletes
horizontal contacts but not vertical ones: at εyy = 1%,
about a third of the horizontal contacts have been lost, but
none of the vertical ones. Assuming that the pulse is carried
mainly by the contacts aligned in the direction of propa-
gation, we find that the loss of contacts should reduce the
sound speed by a factor of about 1 − √

2/3 ≈ 0.184 in the
compression test, but not at all in the extension test. The
observed reductions are a bit larger, the difference between
the two could be explained by appealing to the non-affine
motion of the grains that reduce the stiffness, and are proba-
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bly more important when the coordination number is smaller
[21].

Now let us consider the sliding contacts. Figure 12 shows
that the largest number of sliding contacts have θ = ±π/4.
There is some asymmetry: there are more sliding contacts
for θ < 0 than for θ > 0. Bringing the strain rate to zero
reduces this asymmetry.

If we consider the fraction of contacts at a given θ that
are sliding, a different picture emerges. Due to the depletion
of horizontal contacts, nearly half the contacts are sliding
at θ = 0, between a half and a third at θ = ±π/4, and
only about one seventh at θ = ±π/2. Turning to now to
Table 2, we see that the sound velocities have the same
isotropy. The reduction in sound speed is between two and
three times greater in the compression test than in the exten-
sion test.

Note that there is no theoretical result for the influence of
sliding contacts. Neither are theymentionedwhen explaining
experimental results. These results suggest that they should
be taken into account.

The anisotropy of the wave propagation speed can also be
understood by considering the loaded granular material as a
superposition of a strong contact network and a weak one
[20]. The strong contact network consists of contacts with
above average normal force and acts as an anisotropic solid,
with the majority of the contacts aligned along the direction
of thefirst principal stress. Theweak contact network consists
of contacts with below average normal force, and is nearly
isotropic and dissipative. In the extension experiments, the
pulses travel along the direction of the first principal stress
and are carried by the strong network. Sliding contacts have
a minimal effect because most of them are in the weak net-
work. In the compression experiments, however, the pulses
are carried by the weak network, and sliding contacts have a
major effect.

4.6 Effect of particle stiffness

In Fig. 13, we show the effect of particle stiffness. Rescaling
the pulse velocities with va ∝ √

Kn . is sufficient to bring the
curves close together. The discontinuity of the speed when
pa changes sign is visible in both cases, indicating that the
use of relatively soft (Kn = 2000p∗) grains captures the
essential physics.

The harder particles are technically more difficult to han-
dle. The weak pulses do not propagate through the material,
and so the velocities are estimated using only the right half
of the simulation.

4.7 Dependence on load

Do the changes in Fig. 11 appear only near failure or are
they also visible in lightly loaded situations? To answer this
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Fig. 13 Effect of particle stiffness on pulse velocity. Both curves are
obtained in the same way: after imposing a deformation εyy = 1%, the
samples are then brought to a stop. The curve Kn = 2000p∗ is obtained
from a appears in Figs. 10 (curve ts = 500) and 11 (curve Static). Note
that Kn appears in the definition of the acoustic velocity va
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Fig. 14 Pulse speeds as a function of imposed deformation. All sim-
ulations are “static”, that is the strain rate is gently brought to zero, as
described above

question, we show in Fig. 14 how the pulse speed changes
as the load is increased. As one can see, the decrease in
sound velocity occurs in a continuous way, rapidly at first,
and then more slowly. The most important point of this fig-
ure, however, is that the discontinuity at pa = 0 appears
as soon as the loading begins. It is not a consequence of
being close to the failure threshold. One can furthermore
see that sound speed is not related in a simple way to
the number of sliding contacts. The sound speed decreases
monotonically between εyy = 0 and εyy = 1%, but the
number of sliding contacts is strongly non-monotonic (see
Fig. 3).
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5 Discussion and conclusion

To conclude this paper, we examine in Sect. 5.1 some exper-
iments for evidence of the reduction of sound speed due to
sliding contacts. The experimental results are indecisive: they
neither exclude nor confirm the action of sliding contacts. An
anisotropic reduction in sound speed is indeed observed, but
an explanation in terms of a simple change in the contact
network could be envisaged.

We then recall in Sect. 5.2 the assumption that the mod-
elization of sliding contacts used in the simulations applies at
acoustic time scales.We propose an alternative where sliding
contacts would not affect the acoustics, but still govern the
quasi-static stress-strain relation.

The paper concludes with Sect. 5.3 where the distinc-
tive acoustic signature of sliding contacts is discussed. The
modelization used for sliding contacts could be checked by
looking for this signature in experiments.

5.1 Is there experimental evidence of sliding contacts?

First of all, in the study used to dimension the simulations
[1], the loss of contacts could explain the reduction of the p-
wave speeds, but only have of the s-wave speeds. This paper
concerns only p-waves, and there are other ways of explain-
ing the slowing of s-waves. For example, the shear modulus
is much more sensitive to non-affine motions than the bulk
modulus [21,22]. An increase in these motions would affect
mainly the s-wave speed.

But it is the experiments of Agarwal and Ishibashi[4] that
correspond most closely to the situation studied in the paper.
They measured sound speed along different paths during
stress-controlled compression and extension tests. We also
use the more recent experiments of Khidas and Jia [5] who
measured sound speeds in an oedometric test. The most rel-
evant results are summarized in Table 3.

The experiments show the same anisotropy of the sound
speed as the simulations: the sound speeds are larger in the
direction of the principal stress (vertical in the compression
and oedometric test, horizontal in the extension test).

The experimental results of Table 3 can be compared to
the numerical results of Table 2. In general, we see that the
changes of velocity are greater in the simulations than in the
experiments, suggesting that sliding contacts do not need to
be invoked to explain the observations. Indeed, the change in
fabric (“Loss of contacts” in Table 2) is more than sufficient
to account for the observed change in sound speed.

A more detailed comparison is made difficult by the aug-
mentation of the experimental sound speeds with confining
pressure, which does not exist in the simulations. To get
around this difficulty, we consider the anisotropy of the sound
speeds:

Table 3 Changes in sound speedΔc/c0 measured in experiments [4,5]

p-wave s-wave

Compression [4]

Vertical +0.054 −0.057

Horizontal −0.134, −0.107 −0.049

Extension [4]

Vertical −0.168 −0.121

Horizontal +0.097, +0.080 −0.007

Oedometric [5]

Vertical +0.473 +0.616

Horizontal +0.296 +0.384, +0.419

Here = Δc = c0 − c f , where c f is the sound speed for the largest
available shear stress. The oedometric data are for the “decompaction”
initial condtion [5]. When two speeds are given, it is because there are
two independent directions or polarizations

Table 4 Anistropy for the experiments [4,5], as calculated using
Eq. (12), for p-waves

Compression Extension Oedometric

Initial −0.042, −0.016 −0.087, −0.096 0.018

Final 0.154, 0.150 0.188, 0.165 0.145

Table 5 Anisotropy from the simulations, for different numerical
experiments

pa < 0 pa > 0

Initial 0.002 −0.003

Non-sliding 0.228 0.228

Static 0.533 0.372

Deforming 0.562 0.563

The names of the the numerical experiments are taken from Fig. 11,
and the data from Table 2

A = 2
c1 − c2
c1 + c2

. (12)

Here, c1 is the sound speed along the direction of the first
principal strain (vertical for the compression test, horizon-
tal for the extension tests), and c2 is the speed measured in
the other direction. The anisotropy for different simulations
and experiments is given in Tables 4 and 5. Again, an expla-
nation of the anisotropy observed in experiments does not
require appealing to sliding contacts. We conclude therefore
that these experiments do not show evidence for sliding at
acoustic time scales.

5.2 Alternative models of sliding contacts

Sliding contacts are necessary to obtain realistic stress-strain
curves in a discrete element simulation of a triaxial test. It is
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therefore difficult to deny that sliding contacts simply do not
exist in the experiments. Perhaps they determine the stress-
strain curve but not the acoustic properties.

As we have noted in Sect. 3, sliding contacts are very deli-
cate and can be disrupted by applied vibrations. It is possible
that vibrations in the experiments suppress sliding contacts,
while still allowing sliding to occur.

Another possibility is that their modelization is not correct
at acoustic time scales. As pointed out in the introduction, the
work in this paper depends on the strong hypothesis that the
solid friction law discussed in Sect. 2.4 is valid at acoustic
time scales.

Let us propose an alternative formulation of the solid fric-
tion law that introduces a time scale τ related to the activation
of slip. We let Ft = −Kt Dt − γt Ḋt as in Sect. 2.4, but

Ḋt = vt − Θ(|Dt | − |Dc
t |)

Dt − Dc
t

τ
. (13)

Here vt is the tangential component of the relative velocity
traditionally used in the tangential force law, Dc

t = μFn/Kt

is the critical value of Dt at which the contact begins to
slide. The Heaviside function Θ assures that the second
term is active only when Dt exceeds Dc

t . The modeliza-
tion used in the paper is equivalent τ → 0, so that contact
react instantaneously to any possible violation of the condi-
tion |Ft | ≤ μFn . But if τ had a value intermediate between
the imposed strain rate and the acoustic time scale, contacts
would slide nearly instantaneously at long time scales, giv-
ing the correct stress-strain curve, but behave as non-sliding
contacts as far as sound waves are concerned.

5.3 The acoustic signature of sliding contacts

Thediscussion inSect. 5.1 does not show that sliding contacts
have no effect; it shows that sliding contacts are not needed
to explain any of the experimental results.

But what would be an clear sign of their presence? One
could look for the characteristic signature of sliding contacts
that appears throughout this paper: incremental non-linearity.
At low or zero strain rates, the pulse speed depends on the
sign of pa , even when pa is very small. This effect could be
searched for experimentally.

In many experiments, a wavelet that is a high order deriv-
ative of a Gaussian peak is used. Would the characteristic
signature of sliding contacts still appear?To answer this ques-
tion, we applied a fourth derivative of the Gaussian

f (t) = pa
(
3 − 6τ 2 + τ 4

)
e−τ 2/2. (14)

to the rightwall, andmeasured the progression of the pressure
signal through the material. The measured pulse speeds are
shown in Fig. 15. As one can see, the discontinuity of the
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Fig. 15 Speed of wavelets in the granular material

speed is reducedbut still visible. Thusweexpect that this non-
linearity could be detected experimentally, if contacts were
sliding at acoustic time scales. In this way, the applicability
of the model could be checked experimentally.
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