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Abstract Based on the configuration principle of the dis-
crete element method, local Delaunay mesh, and distance
control the method, the overlapping discrete element clus-
ter, non-overlapping discrete element cluster are employed
to model mesoscopic geotechnical particles using discrete
elements comprised of disks (or spheres). A kinetic com-
patibility procedure is established for adjusting the disk (or
sphere) densities. Based on overlapping discrete element
cluster modeling method, a new method, named boundary
filling discrete element cluster method, has been put for-
ward. The applicability of each method is considered by
means of a numerical experiment. Of the three methods lab-
oratory test considered, the boundary filing discrete element
cluster modeling method demonstrated the highest calcula-
tion efficiency, followed by the overlapping discrete element
cluster modeling method. Relative to these methods, the
non-overlapping discrete element cluster modeling method
is applicable to simulation of the deformation and fracture of
particles, although the method demonstrates lower computa-
tional efficiency. All three methods can be readily applied to
three-dimensional cases; thus, the discussed modeling meth-
ods will be beneficial in the field of mesoscopic analysis of
geo-materials.
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1 Introduction

The mechanical properties of geomaterials are influenced by
mesoscopic characteristics such as particle size, gradation,
outer contour, and roughness. To analyze the characteris-
tics of deformation and strength, experiments are typically
conducted to study the relationships among particle size,
gradation, and mechanical properties. Recently, with the
development of analysis methods for evaluating mesoscopic
characteristics, particle surface characterization methods
have received increasing attention.

With the application and development of the discrete
element method (DEM), computational research into the
mechanical properties of materials with consideration for
mesoscopic characteristics has achieved substantial progress
[1–5]. For example, DEM simulation using the particle flow
code (PFC) package adopts discrete elements comprised of
disks (or spheres) or multiple bonded disks (or spheres) to
form clusters, and then simulates the mechanical properties
of granular matter. However, it is difficult to construct a real-
istic particle with accurate mesoscopic characteristics such
as outer contour, roughness, and texture by DEM [6–8].

To construct more realistic particle models, numerous
scholars have proposed techniques to model irregularly
shaped particles using discrete elements comprised of disks
(or spheres), which are then bonded to form clusters.
Presently, two main methods have been developed for con-
structing discrete element clusters: the dynamic method and
the mathematical filling method. The dynamic method firstly
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generates a series of small disks (or spheres) within the par-
ticle domain, and then the radii of the disks (or spheres) are
progressively increased until the particle domain is filled out
to the inner edge of the particle contour [9]. The mathemat-
ical filling method generates a series of disks (or spheres)
within the contour of the particle domain according to some
mathematical rules, and, through changing the radii of the
discrete elements, a cluster is formed with various outlines,
roughness, and texture [10].

Overlap between disks cannot be avoided in a cluster
modeled by the dynamic method, and numerical simula-
tions aimed at particle deformation and fracture result in a
release of strain energy. Therefore, to obtain an ideal discrete
element cluster model, expansion and dynamically iterative
calculations are usually required [11,12]. However, the math-
ematical filling method can control the degree of overlap
through the mathematical tangent condition between disks or
spheres, making the iterative process unnecessary and result-
ing in a wider application purview.

In some certain conditions, particles can be regarded as
rigid bodies, overlap between disks (or spheres) is allowed.
Hereby this perspective, Yun [13] and Markauskas [14] com-
bined disks according to linear superpositiona and proposed
that irregular particles can be equivalent astreated as spherical
or ellipsoidal particles by controlling the number and radii of
disks. Based on DEM, Höhner et al. [15] arranged a series of
positioning points along the particle boundary, and formed
a simple polyhedron model by connecting these points to
construct edges and triangular surfaces that effectively mod-
eled various polyhedron shaped particles by controlling the
number of triangular surfaces. Ashmawy [16] proposed a
technique based on overlapping rigid clusters that can form
particles with complicated shapes using only a few overlap-
ping disks to fill a particle domain, which has been used
to great effect. Based on fourier analysis, Das et al. [17]
provided a new method for building three-dimensional (3D)
particles by synthesizing the shape of a two-dimensional (2D)
projection of a particle into a 3D shape skeleton, and using
spheres to fill out the particle domain. If particles are to be
subjected to deformation or fracture, the overlapping dis-
placement between disks must not be too large. Jensen et al.
[18–20] simulated particles of various roughness using clus-
ters comprised of disks with various radius, and particles
modeled by this method can even be subjected to inelastic
deformation under load. Particles modeled by the methods
described above are generally configured as ellipsoids or
spheres, and, for actual particles with complex roughness and
texture, there are greatly difference simulation results often
deviate markedly from reality [21]. Moreover, a combination
of disks (or spheres) is likely to result in kinematic parame-
ters (such as centroid and moment of inertia) that deviate
from the actual conditions, which will also result in unreal-
istic mechanical properties.

In this paper, the mesoscopic characteristics of particles
are considered, and three discrete element cluster modeling
techniques are proposed whereby the kinematic parameters
are matched with actual values by adjusting the densities
of the discrete elements. Lastly, the resulting modeled char-
acteristics of the different methods are verified by a set of
experiment of piston movement, and the discrete element
cluster modeling methods are discussed.

2 Two-dimensional description of particle shape

Through the analysis of mesoscopic geotechnical particles
by the DEM, the shape, roughness, and texture of the surface
are key factors that affect macro-mechanical properties. The
boundary of particles can be depicted by closed polyline in
2D space, and every polyline can be constituted from a series
of points that can be obtained through field measurements,
digital image processing, or computerized tomography scans.

PFC is generally used to analyze interactions between par-
ticles, which fills the internal region of a particle by discrete
elements with different combination forms. To ensure the
kinetic geometrical characteristics of particles, the barycen-
tric position of particles must first be determined, and the
area, centroid coordinates, inertia moment, and inertia rota-
tion of a particle are subsequently calculated, all of which
can be obtained with the aid of constrained Delaunay trian-
gulation [22].

The boundary of a particle is obtained from a digital image
or field measurement, as shown in Fig. 1a. When the bound-
ary of an arbitrarily shaped particle is described by polygons,
units with smaller control dimensions can be used in con-
strained delaunay triangulation, as shown in Fig. 1b. From
this structure, basic particle information is calculated respec-
tively with the help of the discrete triangles illustrated in
Fig. 1c.

The calculation of basic particle information is as follows.

Particle area: Sp =
N∑

i=1

si (1)

Here, si is the area of triangle i of Delaunay triangulation the
mesh.

Particle centroid coordinates:

xp =
(

N∑

i=1

si xi

)/
Sp (2)

yp =
(

N∑

i=1

si yi

)/
Sp (3)
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Fig. 1 Calculation of the basic
information of an arbitrarily
shaped particle. a The outline of
the particle. b The effect
drawing of applying Delaunay
triangulation. c An arbitrary
triangle of Delaunay
triangulation mesh, where the
given parameters are used to
calculate the inertial moment

(a) (b) (c) 
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Here, xi is the x coordinate i and yi is the y coordinate of the
centroid of triangle i , respectively.

Mass moment of inertia around the particle centroid:

Ip =
N∑

i=1

[
si (xi − xc)

2 + si (yi − yc)
2 + Iti

]
(4)

Here, Iti is the rotational inertia moment of triangle i around
the triangle centroid. Taking the triangle in Fig. 1c as an
example, its rotational moment of inertia is as follows:

Iti =
(
d1h

3 + d2h
3 + hd3

1 + hd3
2

)
/36.

3 Two-dimensional description of overlapping
discrete element clusters

3.1 Modeling rules

To package the region with disks in the particle domain shown
in Fig. 1a, and to decrease the number of disks to the small-
est number possible, the number of line segments along the
particle boundary can be appropriately increased to prevent

the length of some segments from being too large. Then, the
boundary of the particle can be regard as a polygon, which
is made up of N boundary points, as shown in Fig. 2a.

The first disk is applied with its center lying at the cen-
troid of the particle, as shown in Fig. 2b. Meanwhile, the disk
must have the largest possible radius without containing any
boundary points. This disk is regarded as the first-generation
disk.

Regarding the lines connecting boundary points on each
side of a given boundary point as vectors, the angular bisector
vector of every boundary point is calculated. The center posi-
tion of the disks is changed along the angular bisector within
the particle boundary. At every center position, the radius
of disk is increased gradually until a single boundary point
is on the disk boundary. Disks with different center posi-
tion are compared with each other, and the disk having the
largest radius is reserved as the largest disk for that boundary
point. N disks are then obtained by a cyclic examination of
all boundary points, and, from these, the largest among the N
disks is selected as the second-generation disk, as shown in
Fig. 2c. According to this rule, a single disk will be selected
at each iteration until the coverage meets the requirements. A
complete filling of the particle domain by disks is illustrated
in Fig. 2d, and the generated particle is shown in Fig. 2e.

(a) (b) (c) (d) (e) 
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Fig. 2 The particle filling process. a Schematic diagram of boundary
points along the particle outline. b The center of the first disk lies at the
position of the particle centroid, and the radius takes its maximum value.

c The second-generation disk is obtained by an iterative procedure.
d The particle is completely filled by disks. e The generated particle
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Usually, the ideal shape of a particle can be achieved with
about a dozen disks, and the modeling method is very simple.
In addition to controlling the filling process according to the
boundary points, the process can also be controlled by the
vector normal to each boundary segment, with the advantage
that all disks are tangent to the boundary.

The coverage area of the disks should be calculated dur-
ing the particle filling process. However, it is very difficult to
update the coverage area at each iteration because of com-
plex overlapping between new and existing disks. Therefore,
Delaunay triangular mesh can be used to evaluate the cover-
age according to whether or not a triangle centroid is located
within a disk. If a triangle centroid lies within a disk, the
triangle area belongs to the coverage area, and the cover-
age area is approximated by summation areas of the triangle
located within disks. The obtained approximate coverage
area is close to the real value if the size of the Delaunay
mesh is sufficiently small.

3.2 Geometrical feature matching of particles

Because of the overlap among disks, a uniform disk density
can be estimated on the basis of the total disk area and the
particle area.

The estimated uniform disk density is:

ρe = ρ · Sp∑n
i=1 πr2

i

(5)

Here, ri is the radius of disk i (for a total of n disks), ρ is the
real particle density, and Sp is the real particle area.

However, to ensure the optimal coverage of a particle, the
distribution of disks is uneven, which leads to a variety of
parameters such as the position of the center of gravity and the
mass moment of inertia, affecting the kinetic characteristics
of the particle. Therefore, it is necessary to adjust the density
of each disk to accurately represent the real particle.

Firstly, the total disk mass is set equal to the actual mass
of the particle.

n∑

i=1

ρiπr
2
i = ρSp (6)

Secondly, the centroid coordinates of the disk cluster are set
to agree with the actual coordinates.

n∑

i=1

ρiπr
2
i (xi − xc) = 0 (7)

n∑

i=1

ρiπr
2
i (yi − yc) = 0 (8)

Thirdly, the mass moment of inertia around the centroid of
the disk cluster is set to agree with the mass moment of inertia
of the particle.

n∑

i=1

ρiπr
2
i

[
(xi − xc)

2 + (yi − yc)
2 + 0.5r2

i

]
= Ip (9)

3.3 Analysis of the matching process for the kinematic
parameters of the particle

From the above, four disks selected from the disk cluster
are given unknown densities, and the density of the remain-
ing disks is set to ρe as the known condition. The densities
of the four disks are then obtained by solving the match-
ing Eqs. (6–9). If the densities of all four disks are positive,
the requirement is met. If not, the mass of disks with calcu-
lated density is non-positive is set as two percent of the total
matching mass, and the mass of the other disks is reduced in
the same proportion. Then, the process is repeated until the
relative densities of all disks are >0. Taking the disk cluster
shown in Fig. 2d as an example, an analysis of the matching
process is shown in the Table 1.

The purpose of the Sect. 3 is making sure that the kine-
matic parameters of whole cluster of filling particle are the
same as the real particle. Compared with Galindo-Torres
et al. [23], this method mentioned in this paper modify
kinematic parameters(mass, centroid coordinates and mass
moment of inertia around the centroid of the disk cluster) of
the filling particle by adjusting density of partly disks, so the
kinematic parameters of the filling particle will not affect the
results of numerical simulation.

As shown in Fig. 2d, the particle domain is filled with
disks, and the kinematic parameters of the particle are com-
pared with those generated from different methods in Table 2.

Table 2 shows that, if only the average density is used,
the position of the centroid changes significantly while the
total mass of the particle remains the same. The deviation
of the mass moment of inertia is as great as 23.7 %, and
it can be predicted that the kinetic characteristics trajectory
of the modeled particle would be widely different from the
actual particle. However, these problems can be overcome by
adopting the matching rule for kinematic parameters, which
parameters are basically identical of real particles.

4 Two-dimensional description of non-overlapping
discrete element clusters

A cluster structured by overlapping disks cannot be subjected
to deformation or fracture under a loading process. Other-
wise, strain energy release causes distortion of the numerical
results. Therefore, a new modeling method with a reduced,
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Table 1 An example of the matching process for the kinematic parameters of the particle (based on Fig. 2d)

Iteration number Disk
number

Initial relative density Matching density Matching mass Relative
mass

Relative
density

The first iteration 1 0.47333 7.101985 36335.59 4357.3 0.851648

11 0.47333 30.00406 13,222.38 1585.6 3.597995

5 0.47333 −6.648343 −22,163.44 123.8 0.037139

3 0.47333 −5.063195 −21,204.08 123.8 0.029564

The second iteration 4 0.47333 −2.889376 −25,523.12 174.4882 0.019753

6 0.47333 1.716308 10365.33 2189.7290 0.362579

9 0.47333 −4.794166 −5398.52 174.4882 0.154955

10 0.47333 12.03376 29280.72 6185.7060 2.542195

The third iteration 1 0.85165 0.252937

2 0.47333 0.859075

9 0.15496 0.814797

7 0.43333 2.803048

Table 2 Comparison of the
actual kinematic parameters
with those estimated by different
methods (based on Fig. 2d)

Property parameter Actual
particle

Average density
method

Mass matching
method

Area (mm2) 120,798 120,798 120798

x Coordinate of centroid (mm) 7.645602 8.3928217 7.645602

y Coordinate of centroid (mm) 0.921489 −0.5415063 0.921489

Mass moment of inertia (mm2) 2.9676E+9 2.263845E+09 2.9677E+09

or zero, superposition of disks is necessary for solution of
this problem.

4.1 The distance between points and the boundary

In arbitrary connected domain, the distance between a given
point and the domain boundary defines the degree to which
the point is nearby the boundary, as shown in Eq. (10):

d = λ · min
i

‖d‖si , (10)

where ‖d‖si is the distance between the point and the bound-
ary. λ is a flag of within or outside of the boundaries, if
the point is within the boundary λ = 1, then the function
value is positive. Otherwise, λ = −1 it is outside of the
boundaries. Union, difference, and intersection can be used
when the boundary is a simple combination form, as given
by Eq. (11). Where, A and B represent different type seg-
ments which constitute of the particle boundary. dA and dB
respectively represents the distance of the disk center to A
type segments and B type segments, as shown in Fig. 3.

⎧
⎨

⎩

dA∪B = min(dA, dB)

dA/B = max(dA,−dB)

dA∩B = max(dA, dB)

(11)

If this is applied to a particle domain, and the object of
interest is a disk of radius r, the following conditions hold.

A B Disk 

Ad
Bd

Particle boundary 

Fig. 3 Different type segments of the particle boundary

When d is greater than r, the disk is located in the particle
domain. When d is equal to r, the disk is tangent with the
particle boundary. If d is less than r and >0, the disk is the
boundary disk. To couple the boundary disk with the bound-
ary, the radius of the boundary disk should be reduced. When
d is <0, the disk is outside of the particle boundary, and the
disk should be discarded.

4.2 Initial filling point

To ensure filling efficiency, the distance between the center
of arbitrary meshes (as shown in Fig. 1b) and the boundary
should be calculated firstly. The center of the triangle mesh
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(a) (b) (c)

(d) (e) (f)

Fig. 4 Building process of a non-overlapping discrete element cluster.
a The position of the seed based on seed center A. b Three generations
of disks, where disks with the same color belong to the same generation.
Here, the seed is regarded as an algebraic extending center. c The treat-

ment of boundary disks once the disks have extended to the boundary
location. d Local Delaunay mesh inside the front edge of extension. e
Completion of the filling corresponding process. f The resulting particle
shape

that has a maximum distance to the boundary is set as the
initial filling position of the seed, as shown in Fig. 4a.

For the 2D problem, the initial filling point (known as the
seed) consists of three disks that are tangent with each other,
and attain the maximum density in the local area. The size of
each disk is provided according to the distribution law given
by the user, and each disk is located in a given zone in the
manner described below. Arbitrarily complex particles can be
built up by an expansion filling method, which means new
disks are generated around existing disks in the front. The
front is then constantly updated, finally a compact particle
can be generated [24].

Assuming r1, r2 and r3 are the radius of the three disks
which formed the seed as shown in Fig. 4a. The center of
the three disks can form a triangle, and the centroid of the
triangle is called the seed center A, and the position vector of
A can be described as �p. The positions �d1 and �d2 of the first
and second disks, respectively, can be randomly determined
by �p:

�d1 = �p + �n · r1; �d2 = �p − �n · r2, (12)

where �n is a random unit vector. �d3 is the position of the third
disk, which can be determined by the condition of tangency
with the first and second disk.

If the center coordinates and radii of two disks are known,
the position of a new disk of radius r can be determined for
a 2D case. P1(x1, y1) and P2(x2, y2) respectively represent
the coordinates of the two known disks, and r1 and r2 repre-
sent their radii. The position of the new disk P(x, y) can be
obtained by solving Eq. (13).

{
(x − x1)

2 + (y − y1)
2 = (r + r1)

2

(x − x2)
2 + (y − y2)

2 = (r + r2)
2 (13)

After solving Eq. (13), it is necessary to test the two roots
of the equation. If the new disk is located in the particle
domain and does not overlap with other disks, the new disk
is accepted.
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After the initial position and the radii of the seed disks
are known, the smallest circle whose center is located at the
initial position with a radius R that covers the three seed disks
is defined as seed region. R is defined by Eq. (14).

R=max
{∣∣∣ �d1 − �p′

∣∣∣+r1;
∣∣∣ �d2− �p′

∣∣∣+r2;
∣∣∣ �d3− �p′

∣∣∣+r3

}

(14)

4.3 Localized Delaunay triangulation

The positions of the seed and the first three disks are taken as
reference points, and the localized Delaunay method is used
to generate triangle meshes for 2D cases. Triangles contain-
ing the seed position and one side length Li j (the connected
line between No.i and No.j vertexes of every triangle) of
which satisfy Li j − ri − r j ≥ 2Rmax (where ri is the radius
of disk located at vertex No.i) are discarded, the three vertices
of the remaining triangle are used as centers to generate new
disks with known radii, as shown in the Fig. 4b. A new disk
is judged whether it overlaps with existing disks or the par-
ticle boundary, and disks that overlap with existing disks are
abandoned. However, if a disk overlaps the particle bound-
ary, its radius and position coordinates are evaluated. If the
radius of the disk is in the range [Rmin, Rmax], it is accepted.
Otherwise, it is abandoned. Repeat this process until no new
disks are generated. This process of generating disks is called
disk expansion.

From the standpoint of computational efficiency, it is
impossible that all disk positions are chosen as reference
points for Delaunay triangulation at every expansion process
in the sequence of expansion. Therefore, disks that are gen-
erated during a given expansion process are equivalently
labeled, as shown in Fig. 4b. The disk generation number
increases with the expansion sequence, where the disks that
compose the seed are defined as generation zero. Disks whose
generation number differs from the current generation num-
ber within a specified value are denoted as wavefront, and
the specified value is defined as the wavefront thickness.
There is overlapping between two adjacent wavefronts, the
overlapping region can be repeatedly filled when a complex
shaped particle is modeled. When the thickness of the wave-
front is greater, the probability of repeated filling is higher.
While a high filling coverage can be achieved when the wave-
front thickness is large, which contributes to satisfying the
specified bulk density and size distribution, computational
efficiency will certainly be sacrificed.

The radius of a new disk is generated at random or in
accordance with the requirements of the user in the advanc-
ing process of the wavefront, and, in some places, the new
disk may not be ideally placed on the unit of the wavefront.
If so, largera void will be generated in the position where the
disk cannot be placed. However, for a wavefront with a cer-

tain thickness, the larger void may be filled by a subsequent
expansion process and the filling density increased.

4.4 Coupling of boundary disks

When the filling region is a polygon, the radius r of a newly
generated disk that overlaps with the boundary must satisfy
Eq. (15).

nx (x − xb) + ny(y − yb) = r (15)

Here, nx and ny are the tangent vectors of the boundary edge,
and xb and yb are the coordinates of a point on the boundary
edge.

A disk judged to be a boundary disk is not necessarily
tangent with the boundary. Therefore, the restriction of the
disk radius is usually reduced to ensure that the boundary
disk is tangent with boundary, which can closely couple the
disk with the boundary. To ensure that the disk is tangent to
the boundary, the proper radius of the disk can be searched
by optimization algorithm. Supposing that the radius of a
boundary disk is r0, the undetermined radius is in the range
[0, r0]. However, for disk radius infinitesimal, the number
of disks will be extremely large. A practical method reduces
the radius of the boundary disk by a factor k0, based on the
required minimum radius rmin. The range of the radius of
the boundary disk is [k0rmin, r0], where k0 is >0 and <1.0.
The coordinate of circle center can be calculated through
triangle mesh and known disks. Then, the distance between
circle center and a complicated boundary can be obtained as
follows:

f = ∣∣d ′ − r ′∣∣ (16)

where d ′ is the distance between the new generated disk cen-
ter and the boundary and r ′ is the trial radius.

4.5 Process of repeated filling

When a particle is modeled using the non-overlapping
method, reducing the proportion of disks in a state of imbal-
ance are very necessary in the simulation of materials by
DEM.

The particle area is divided into an m × n rectangular
grid, the disk centers are extracted in every mesh, and local
Delaunay triangulation and the refilling process (filling the
space between filled disks) is carried out. To ensure that voids
can be filled by disks, the minimum radius of a disk must
be less than the required minimum radius. After Delaunay
triangulation, the new disks will be generated for meeting
the requirement. Once there is a solution, the radius of a
disk is gradually enlarged until the new disk is tangent with
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Fig. 5 The process of
two-dimensional boundary filing
of particles. a The boundary of a
particle. b Disks are filled at the
angles of the boundary, and the
sections between disks are
numbered. c Section 1 shown in
b is completely filled by disks.
d All sections are completely
filled by disks. e The completely
filled particle boundary

(a) (b)  (c) (d)  (e) 

other disks. The above process is repeated for the current disk
system, until no new disks are generated.

5 Two-dimensional description of the boundary
filling method for discrete element clusters

If the boundary of a particle must be captured with the highest
fidelity, disks can be generated only along the inside bound-
ary. This technique ensures that the surface of the particle
is more realistic, and is here referred to as the boundary
filing discrete element cluster modeling method. However,
this method also requires density adjustment according to
Eqs. (6–9).

The basic method approach of the boundary filing method
is to generate disks at every angle of the particle boundary, as
shown in Fig. 5a, and the sections between adjacent disks are
numbered, as shown in Fig. 5b. The radius of a filled disk can
be adjusted according to the angle and the side length of the
boundary to provide the best filling effect. The degree of over-
lap between disks can be adjusted when locating disks along
every section within the range [0, 2R], such that two adjacent
disks may be tangent with each other but may also completely
coincidence. As shown in Fig. 5c, Sect. 1 is first completely
filled with disks, and the remaining sections are filled succes-
sively. Figure 5d illustrates the stage of the process where all
sections are completely filled by disks, and Fig. 5e illustrates
the filled particle boundary.

6 Discussion

The overlapping discrete element cluster technique can use a
small number of disks to model a complicated particle, which
provides for rapid calculation. However, a large amount of
strain energy is released when particle breakagethe simulated
is subjected to deformation or fracture, which would provide
distorted simulation results. Use of the non-overlapping dis-
crete element cluster technique requires a large number of
disks, resulting in a slow calculation speed, but the results

will be more realistic when particle breakage deformation
or fracture is simulated, even in the absence of kinematic
parameter matching. Therefore, the numerical simulation
technique should be selected according to the requirements.

To verify the rationality of the above described discrete
element cluster modeling methods, the PFC2D particle flow
package is used to simulate the laboratory test shown in
Fig. 6a. The experimental device is comprised of a wooden
container and piston. Motion morphology and position of
particles are measured and recorded as the piston moves
upward. All rock blocks in the container are numbered from
1 to 68. The particle boundaries are obtained from the digital
image. From the obtained boundaries, particle cluster models
are constructed according to the overlapping discrete ele-
ment cluster, non-overlapping discrete element cluster, and
boundary filing discrete element cluster modeling method.
The numerical models by above three modeling methods
are respectively shown in Fig. 6b–d. The matching of kine-
matic parameters is carried out in the building process of
the overlapping discrete element cluster and boundary fil-
ing discrete element cluster modeling models. Figure 6b–d
demonstrate that all three modeling methods reflect meso
characteristicthes of the particles in Fig. 6a reasonably well.
In the laboratory test, the piston moves upward at a speed of
0.01 m/s, and the final displacement of the piston is 0.1 m,
and these values are applied to the numerical simulations for
comparability between the different discrete element cluster
modeling methods. When the piston stops, the particle posi-
tions of the laboratory and numerical simulation experiments
are recorded, as shown in Fig. 6e–h. The numerical simula-
tion results of the three modeling methods are observed to
uniformly coincide with the results of the laboratory test.

It can be seen from Table 3 that the overlapping discrete
element cluster modeling method executes with a signifi-
cantly fewer number of disks and two-thirds the number of
operational time steps compared with the non-overlapping
discrete element cluster modeling method. The boundary dis-
crete element cluster modeling method can be regarded as a
particular case of the overlapping discrete element cluster
modeling method. Although the number of disks employed
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Fig. 6 Comparison between experimental of piston movement and
DEM simulations using different discrete element cluster modeling
methods. a, e Photographs of the laboratory test model and results,
respectively. According to the particle boundaries shown in a, numer-

ical models are built using the overlapping discrete element cluster,
non-overlapping discrete element cluster, and boundary filing discrete
element cluster modeling methods, as shown b–d, respectively, and the
simulated results are respectively shown in f–h

Table 3 Comparison of the three different discrete element cluster modeling methods

Number
of disks

Operational time steps
(ten thousand steps)

Centroid position Applicable to particle
deformation and fracture

Overlapping discrete
element cluster

388 400 Equivalent to actual particle
centroid

No

Non-overlapping discrete
element cluster

3211 1200 Equivalent to actual particle
centroid

Yes

Boundary filing discrete
element cluster

2731 120 Equivalent to actual particle
centroid

No

by the boundary discrete element cluster modeling method is
seven times that of the overlapping discrete element cluster
modeling method, the operational time steps are reduced by
70 %.

The kinematic parameters matching process ensures that
the centroid of the modeled particle coincides with the
position of the actual particle centroid for all three mod-
eling methods. While the matching process has little effect
upon the non-overlapping discrete element cluster model-
ing method, deviations from the actual centroid position of
30 % occur for the overlapping and boundary filing discrete
element cluster modeling methods without the matching
process.

The outline of a 2D particle can be represented by con-
tinuous polylines while the outline of a 3D particle can
be obtained by a combination of triangles. The 2D filling
methods described above can be conveniently generalized
to 3D cases. A sphere with maximum radius is firstly filled
at the center of gravity of particle through 3D method of
Overlapping Discrete Element Cluster, which is similar to

construction of 2D Overlapping Discrete Element Cluster.
The process of filling disks relies on angles of particle
in three-dimensional particle, and the corresponding filling
process of three-dimensional particle depends on surfaces of
particle boundary. Due to the number of surfaces is numer-
ous, the probability theory can be used to select some surfaces
randomly, and spheres are filled through those surfaces. Fur-
thermore, the number of filling sphere can be controlled by
the range of radius of sphere and the probability value.

For construction of 3D non-overlapping discrete element
cluster, first four spheres are filled at the center of gravity
of particle as initial filling point in 2D case, and then new
spheres are generated by expansion filling method. When
spheres reach the particle boundary, the sphere radius is
usually reduced to ensure that the boundary disk is tangent
with boundary, which can closely couple the sphere with the
boundary. Figure 7 shows graphical depictions of a particle
built by the 3D overlapping discrete element cluster and non-
overlapping discrete element clusters modeling methods. The
contour characteristics of the particle can be well represented
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Fig. 7 Modeling methods applied to three-dimensional mesoscopic
particles. a Is the shape of a real particle. b–d Graphical depiction
effect drawings of a particle built by the three-dimensional overlapping
discrete element cluster modeling method, and the numbers of spheres
are respectively 104, 147, and 230 from left to right. e–h Graphical

depiction effect drawings of a particle built by the three-dimensional
non-overlapping discrete element cluster modeling method, and the
numbers of spheres are respectively 636, 1268, 2035, and 5995 from
left to right

with 200–300 spheres in the 3D overlapping discrete element
cluster modeling method, while the number of filling spheres
increases by a factor of ten if the same aim is achieved using
the 3D non-overlapping discrete element cluster modeling
method.

7 Conclusions

In terms of mesoscopic geotechnical particles, the overlap-
ping discrete element cluster and non-overlapping discrete
element cluster modeling methods, adopting distance con-
trol and Delaunay mesh, have been proposed based on the
2D boundary characteristics of a particle. In addition, the
boundary discrete element cluster modeling method has been
derived from the overlapping discrete element cluster mod-
eling method. The Advantages and disadvantages of these
three modeling methods have been discussed, and several
conclusions can be obtained as follows.

1. The technique involved with the overlapping discrete
element cluster modeling method is simple, it can greatly
reduce the required number of disks (in 2D), and can
accurately depict particle characteristics such as the par-
ticle boundary outline contour. The overlapping discrete
element cluster method is characterized by high calcula-
tion efficiency, and the centroid position of the modeled
particle can be made to coincide with the actual particle
centroid position by the kinematic parameters matching
procedure, which ensures that the simulation results of
moving particles are reasonable. However, the method is
limited for simulation of particle deformation and frac-
ture under an applied external force due to the rigid
characteristics of the modeled particle.

2. The non-overlapping discrete element cluster model-
ing method, based on the tangency condition between
disks (in 2D), fills the particle domain with disks at a
high filling rate using distance control and Delaunay
mesh, where the disks are made to couple with adjacent
disks or with the boundary. The method is suitable for
building particles with arbitrarily connected regions, and
can better realize simulations and analyses of the defor-
mation and failure mechanism of complex mesoscopic
geomaterials, although the method employs a relatively
large number of disks and requires a correspondingly
increased calculation time.

3. The boundary filing discrete element cluster modeling
method is derived from the overlapping discrete element
cluster modeling method. According to the experimen-
tal test conducted, the number of operational time steps
required for the boundary filing discrete element cluster
modeling method is reduced by seventy percent relative
to that of the overlapping discrete element cluster mod-
eling method, although the number of disks required
is much greater, which therefore demonstrates a much
higher efficiency. Particles modeled by this method
belong to a rigid cluster, so the method cannot be used to
simulate the deformation and fracture processes of par-
ticles. However, it can finely simulate surface friction
problems between particles.

4. Three modeling methods not only can be used to fill
arbitrarily shaped particle, and the applications can be
extended further. Other studies have shown that poly-
hedron can simulate and predict structure form of nano
and colloidal structure [25]. More discussions will be
made on the applications of the three filling methods
in nano, colloidal and proteinic scale systems in the
future.
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8. Kačianauskas, R., Tumonis, L., Džiugys, A.: Simulation of the nor-
mal impact of randomly shaped quasi-spherical particles. Granul.
Matter 16, 339–347 (2014)

9. Cundall, P.A., Strack, O.D.: A discrete numerical model for gran-
ular assemblies. Geotechnique 29(1), 47–65 (1979)

10. Ferellec, J.-F., McDowell, G.R.: A method to model realistic parti-
cle shape and inertia in DEM. Granul. Matter 12, 459–467 (2010)

11. Eliá š, J.: Simulation of railway ballast using crushable polyhedral
particles. Powder Technol. 264, 458–465 (2014)

12. Askarishahi, M., Salehi, M.-S., Molaei Dehkordi, A.: Numerical
investigation on the solid flow pattern in bubbling gas–solid flu-
idized beds. Powder Technol. 264, 466–476 (2014)

13. Yun, T., Kim, Y.: Evaluation of particle simulation methods using
aggregate angularity and slump tests. Constr. Build. Mater. 66, 549–
566 (2014)

14. Markauskas, D., Kacianauskas, R., Dziugys, A., Navakas, R.:
Investigations of adequacy of multi-sphere approximation of ellip-
tical particles for DEM simulations. Granul. Matter 12(1), 107–123
(2010)

15. Höhner, D., Wirtz, S., Scherer, V.: A study on the in fluence of
particle shape and shape approximation on particle mechanics in a
rotating drum using the discrete element method. Powder Technol.
253, 256–265 (2014)

16. Ashmawy, A.K., Sukumaran, B., Hoang, A.V.: Evaluating the influ-
ence of particle shape on liquefaction behavior using Discrete
Element Method. In: Proceedings of the Thirteenth International
Offshore and Polar Engineering Conference (ISOPE 2003) Hon-
olulu, Hawii, May (2003)

17. Das, N., Giordano, P., Barrot, D., et al.: Discrete element mod-
eling and shape characterization of realistic granular shapes. Int.
Offshore Polar Eng. Conf. Proc. 2, 525–532 (2008)

18. Jensen, R., Bosscher, P., Plesha, M., Edil, T.: DEM simulation of
granular media-structure interface: effect of surface roughness and
particle shape. Int. J. Numer. Anal. Methods Geomech. 23, 531–
547 (1999)

19. Alonso-Marroquin, F.: Spheropolygons: a new method to simulate
conservative and dissipative interactions between 2D complex-
shaped rigid bodies. EPL Europhys. Lett. 83(1), 14001 (2008)

20. Phillips, C.L., et al.: Optimal filling of shapes. Phys. Rev. Lett.
108(19), 198304 (2012)

21. Kruggel-Emden, H., Rickelt, S., Wirtz, S., Scherer, V.: A study on
the validity of the multi-sphere discrete element method. Powder
Technol. 188, 153–165 (2008)

22. Liu, Y., Lo, S.H., Guan, Z.Q., Zhang, H.W.: Boundary recovery
for 3D Delaunay triangulation. Finite Elem. Anal. Des. 84, 32–43
(2014)

23. Galindo-Torres, S.A., Munoz, J.D., Alonso-Marroquin, F.:
Minkowski-Voronoi diagrams as a method to generate random
packings of spheropolygons for the simulation of soils. Phys. Rev.
E 82, 056713 (2010)

24. Bagi, K.: An algorithm to generate random dense arrangements
for discrete element simulations of granular assemblies. Granul.
Matter 7(1), 31–43 (2005)

25. Damasceno, P.F., Engel, M., Glotzer, S.C.: Predictive self-assembly
of polyhedra into complex structures. Science 337, 453–457 (2012)

123

www.letpub.com

	Discrete element cluster modeling of complex mesoscopic particles for use with the particle flow code method
	Abstract
	1 Introduction
	2 Two-dimensional description of particle shape
	3 Two-dimensional description of overlapping discrete element clusters
	3.1 Modeling rules
	3.2 Geometrical feature matching of particles
	3.3 Analysis of the matching process for the kinematic parameters of the particle

	4 Two-dimensional description of non-overlapping discrete element clusters
	4.1 The distance between points and the boundary
	4.2 Initial filling point
	4.3 Localized Delaunay triangulation
	4.4 Coupling of boundary disks
	4.5 Process of repeated filling

	5 Two-dimensional description of the boundary filling method for discrete element clusters
	6 Discussion
	7 Conclusions
	Acknowledgments
	References




