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Abstract A model predicting the ultimate state surface and
critical state of soils is established based on a non-equilibrium
thermodynamic approach known as granular solid hydrody-
namics. It offers a pressure- and density-dependent approach
to assessing the elastic potential energy density of soils while
taking soil cohesion into account. The ultimate state surface
is quantitatively determined by the convex condition of the
elastic potential energy density function with respect to the
elastic strain and is compared with the state boundary sur-
face in the critical state soil mechanics. The elastic stress is
expressed by a hyper-elastic relationship. Both the critical
state and the non-elastic deformation of soils depend on the
evolution of elastic relaxation and granular fluctuation, which
can be expressed in terms of dissipative forces and dissipative
flows. The proposed model allows analysis of the soils criti-
cal state, its granular temperature and its effective stress. The
predictions of triaxial compression tests of Toyoura sand and
Q3 loess show that the model adequately predicts the ultimate
state, the critical state and the dilation/contraction or hard-
ening/softening of soils. Limitations of the proposed model
in reproducing the density dependency of drained peak shear
strength and the rate dependency of critical state are also
discussed.
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1 Introduction

Based on a series of laboratory studies on the mechanical
behavior of saturated clays, Roscoe et al. [1] proposed the
well-known concept of the critical state. The critical state is
a state in which the shearing deformation of soils or other
granular materials continues infinitely with no changes in
the effective stress and volume. In the critical state, soils are
supposed to flow like frictional fluids [1]. The steady state
concept was proposed for sands, according to experimental
studies on their undrained triaxial shearing behavior. The
steady state requires that the soil shear deformation velocity
must remain constant [2]. Nevertheless, the critical state and
the steady state are considered to be identical [3], and thus
the critical state concept is used in this paper. The critical
state is assumed to be an intrinsic property of soils. For a
particular soil, all critical states fall on the same line, called
the critical state line (CSL), in the space defined by effective
mean pressure (p′), shear stress (q) and void ratio (e) (i.e.,
the p′−q −e space). The CSL is commonly considered to be
unique for each specific soil, irrespective of the initial state
of soil.

Another important concept for modeling soil behavior is
the state boundary surface (SBS). The SBS is an envelope
surface of all possible states or paths in the p′ − q − e
space. Under no conditions can any states beyond the SBS
be reached. Critical state soil mechanics (CSSM) [4], based
on laboratory observations, combined the classical elasto-
plastic framework with the CSL and the SBS. In CSSM, the
SBS is composed of a tension cutoff surface, a Roscoe sur-
face and a Hvorslev surface (as shown in Fig. 1). Any states
must, on yielding, be located on the SBS, and the CSL is con-
sidered to be the intersecting line of the Roscoe surface and
the Hvorslev surface. In triaxial shear tests, the stress paths
for normally consolidated (NC) soils always move along the

123



254 Z. Zhang, X. Cheng

Fig. 1 Schematic diagram of the state boundary surface and the critical
state line in CSSM

Roscoe surface to the critical state. The over-consolidated
(OC) soils are first elastic within the SBS and then yielding
after reaching the SBS, following either the Roscoe surface
or the Hvorslev surface to the critical state.

The mathematical models for the SBS and the CSL have
been continually developed for CSSM based on laboratory
observations (Fig. 1). Such observations have been mainly
in line with the linear elastic-associated hardening plasticity
theory. The most popular SBS models in CSSM are the well-
known Cam-Clay models [5] in both their original and sim-
plified versions. It is worth noting that the Cam-Clay mod-
els are not rate dependent. And the Cam-Clay models are
applicable only to reconstituted clays in which the true cohe-
sion is considered to be inexistent [6]. However, some stud-
ies revealed that the true cohesion should not be neglected
in reconstituted OC clays and natural clays [6–9]. For exam-
ple, Shanghai Clay is a lightly overconsolidated clay with the
true cohesion or bonding [10]. In fact, even for reconstituted
or NC natural clays, a small cohesion may still exist due to
the electrostatic attraction and the interlocking forces among
soil particles [11]. Soil cohesion is preferably considered in
the advanced models.

This paper proposes a new theoretical approach called
granular solid hydrodynamics (GSH), which is based on non-
equilibrium thermodynamics [12,13]. In this approach, a sur-
face bounding all accessible soil states in the p′−q −e space
can be naturally derived according to the elastic instabil-
ity condition derived from the elastic potential energy func-
tion. In contrast to the SBS in CSSM, this surface is open
in p′ direction and is not directly associated with the non-
elastic (or plastic) response of soil. Therefore, it is called
ultimate state surface (USS), following the concept of ulti-
mate state line in the Desai model [14], in order to distin-
guish it from the SBS. On the other hand, the non-elastic
response of soil is described using the dissipative flow-force
relationship defined in the non-equilibrium thermodynamics.
This relationship is time and rate dependent and naturally
allows rate dependent behavior of soil. This new approach is
used to investigate the critical state of soil and USS of soil,
giving a unified consideration of the possible soil cohesion.

Both the critical state and USS can be analytically derived,
interpreted and modeled through this new approach to GSH,
which has not received detailed discussion in previous GSH-
related studies.

2 Theory based on GSH: governing equations

In the GSH approach, soils can be interpreted as transient
elastic materials. As a result, the states and the unrecoverable
deformation of soils can be determined by their elastic energy
potential and their elastic relaxation. The following series of
governing equations are thereby developed.

2.1 Effective stress formulation and elastic potential

In this paper, all stresses and strains are taken as positive
under compression. For saturated soils, the total stress σi j

can be expressed as the sum of the effective stress σ ′
i j and

the pore water pressure u:

σi j = σ ′
i j + uδi j , (1a)

σ ′
i j = ∂ωe

∂εe
i j

(1b)

where ωe is the elastic potential energy density and εe
i j is the

elastic strain. The relation Eq. (1a) is simply the effective
stress principle in soil mechanics [15]. Also, σ ′

i j is expressed
by a hyper-elastic relationship [16], as shown in Eq. (1b).
The stress ∂ωe/∂ε

e
i j is called elastic stress in GSH. Other

possible stresses included in σ ′
i j (e.g., the viscous stress) are

not considered here.
A formulation of ωe for dry cohesiveless granular solids

was proposed by Jiang and Liu [17]. Their model is an exten-
sion of the Hertz contact model, in which the contact stiffness
between solid spheres is dependent on the sphere overlap to
a power of 1/2. It is proposed that, for cohesionless granular
solids containing many particles, Ke (Ge) ∝ εe

v
β , where Ke

(Ge) is the secant elastic bulk (shear) modulus, εe
v = εe

kk
is the elastic volumetric strain, and β is a positive material
constant.

For cohesive granular solids such as clays and silty soils,
the elastic volumetric strain can be negative. Also, the shear-
wave velocity and thus the elastic shear modulus Ge of sat-
urated clays at the free stress state (i.e., εe

i j = 0) can be
nonzero [18]. These two facts can be considered by taking
Ke (Ge) ∝ (εe

v+c)β , where c ≥ 0 is a cohesion-related mate-
rial constant representing the maximum permissible elastic
tensile volumetric strain and determining the elastic modulus
of soils at free stress state. It is assumed that, this cohesion
parameter can reflect the interlocking-induced cohesion as
well as the true cohesion due to the cementation and elec-
trostatic attraction among soil particles [11]. The following
relationships can then be defined:
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p′ = ∂ωe

∂εe
v

= Keε
e
v +� (2a)

q = ∂ωe

∂εe
s

= 2Geε
e
s (2b)

where εe
s =

√
ee

i j e
e
i j is the second invariant of εe

i j (ee
i j = εe

i j −
εe
vδi j/3), p′ = σ ′

kk/3 is the effective mean stress, and q =√
si j si j is the deviatoric effective stress (si j = σ ′

i j − p′δi j ). It
should be noted that q is coupled with εe

v and that ∂p′/∂εe
s =

∂q/∂εe
v (because ∂2ωe/∂ε

e
v∂ε

e
s = ∂2ωe/∂ε

e
s∂ε

e
v). p′ thus

must be coupled with εe
s . This relationship is designated by

the term � in Eq. (2a). Next, we define

Ke = B(εe
v + c)β (3a)

Ge = Bξ(εe
v + c)β (3b)

B = B0 exp(B1ρd) (3c)

where B is a density dependent variable with the same dimen-
sion as the stresses, and ξ (the ratio of Ge to Ke) is considered
to be constant. In Eq. (3c), B is defined as a function of the
dry density of soil (ρd ), in which B0 and B1 are two mater-
ial constants. Equation (3c) is defined based on experimental
observations of the relationship between p′ and ρd at the crit-
ical state (see Sect. 3.2). Obviously, Ke and Ge of clays at
the free stress state increase with the dry density increased.
This is consistent with the conclusion reached by Mainsant
et al. [18], i.e. the shear-wave velocity of saturated clays at
the free stress state decays with the water content increased.

Then, from the condition ∂p′/∂εe
s = ∂q/∂εe

v , we arrive at

� = Bξ(εe
v + c)β−1εe

s
2 (4)

Therefore, we can obtain the following formulation of ωe

from Eqs. (2, 3):

ωe = B(εe
v + c)β

[
εe
v

2

β + 2
+ cβεe

v − c2

(β + 1) (β + 2)
+ ξεe

s
2

]

+ Bcβ+2

(β + 1) (β + 2)
(5a)

When taking c = 0, Eq. (5a) is reduced to the model for
cohesionless granular solids [17]:

ωe = Bεe
v
β

(
1

β + 2
εe
v

2 + ξεe
s

2
)

(5b)

2.2 Elastic relaxation and granular fluctuation

Under external loadings, soils tend to exhibit unrecoverable
deformation due to elastic relaxation, which is an important
feature of transient elastic materials. Accordingly, we divide
the total strain of soil εi j into the elastic strain and the non-
elastic strain εD

i j , i.e., εi j = εe
i j + εD

i j . In GSH, εD
i j evolves

only when the so-called granular fluctuation is stimulated.
Moreover, the non-elastic strain rate is simply the dissipa-
tive flow of the elastic relaxation with a dissipative force of
∂ωe/∂ε

e
i j . In that case, the granular fluctuation represents

the random disordered deviation between the movements of
individual particles of granular solids and their macro average
movements. In other words, this fluctuation implies relative
movements between soil particles such as sliding, collisions
and rotations, all of which are important sources of the unre-
coverable deformation.

Following the concept of entropy, the concept of gran-
ular entropy was proposed in GSH to describe the severe
degrees of granular fluctuation. Similar concepts have also
been introduced by other researchers [19,20]. Based on non-
equilibrium thermodynamics and the relaxation time con-
cept, the following evolution law for εD

i j has been proposed
[13]:

dtε
D
i j = λs Tg

aee
i j + λvTg

aεe
vδi j (6)

where dt is the material derivative operator; λs and λv are
migration coefficients; a is a material constant, and Tg (called
the granular temperature) is the conjugate variable of the
granular entropy. The granular fluctuation can be excited by
“shear and compressional flows” of the soil skeleton [13]
so that the strain rate is used as a driving force of the granu-
lar fluctuation. In addition, the granular fluctuation displays a
characteristic of relaxation, which means that once triggered,
the granular fluctuation can be attenuated into the macro dis-
sipation over time due to the non-elastic inter-particle con-
tacts. In other words, a conversion from the granular entropy
to the (real) entropy should be considered. Thus, according to
GSH, the granular entropy should obey a balanced equation
similar to the equation for the entropy:

ρddtυg = ηgTgv
∗
i jv

∗
i j + ζgTgv

2
v

Tg
− γ Tg (7a)

υg = bTg (7b)

where υg is the specific granular entropy; b is a mater-
ial constant; vv = dtεkk is the volumetric strain rate, and
v∗

i j = dt (εi j −εkkδi j/3) is the deviatoric (or shear) strain rate.
ηg (ζg) is the migration coefficient for the granular fluctua-
tion excited by the shear deformation (compressional defor-
mation), and γ is the migration coefficient for the relaxation
of granular fluctuation.

3 Critical state and ultimate state surface based on GSH

Based on the governing equations developed above, the theo-
retical expressions for the critical state and USS of saturated
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soils are given in this section, and the comparisons between
the GSH approach and the classical CSSM approach are dis-
cussed.

3.1 Ultimate state surface (USS)

As the effective stresses of soils can be approximated by
the elastic stresses derived from the GSH approach, the USS
that bounds all accessible states of a soil can be given by
the elastic stability condition, which requires that ωe be a
convex function of the elastic strain. This convex condition
of ωe is equivalent to the positive definiteness condition of
the Hessian matrix [Hi j ] = ∂2ωe/(∂Xi∂X j ) (i , j = 1, 2;
X1 = εe

v , X2 = εe
s ), which is also the tangential elastic

stiffness matrix. This condition can be further determined by
the positive conditions of all of the leading principal minors
of [Hi j ], in which the following condition can be used to find
the USS of soils in the p − q − ρd space:

∂2ωe

∂εe
v

2

∂2ωe

∂εe
s

2 −
(
∂2ωe

∂εe
v∂ε

e
s

)2

> 0 (8)

Substituting Eq. (5a) into Eq. (8) results in

(εe
v + c)[(β + 1)εe

v + c] > 2β(β + 1)ξεe
s

2 (9)

Equating the left and right sides of the inequality Eq. (9),
an elastic stability line (ESL) in the εe

v − εe
s space can be

determined. According to Eqs. (2, 3, 5), for a given ρd ,
all values εe

v and εe
s on the ESL form a ultimate state line

(USL) in the p′ − q space. All USLs corresponding to dif-
ferent ρd therefore form an USS in the p′ − q − e space
(void ratio e = Gs/ρd − 1, where Gs is the intrinsic den-
sity of the soil particles). Apparently, the USS based on the
GSH approach corresponds to the states at which the tangen-
tial elastic stiffness matrix becomes singular and the con-
vex condition of ωe with respect to the elastic strain is ini-
tially violated. For any elastic strain variation X = [δεe

v, δε
e
s ]

(δ being the variation operator), this convexity implies that
X [Hi j ]X T = δπi jδε

e
i j > 0. The ultimate state thus also cor-

responds to the violation of the positive condition of the work
done by the effective stress variation on the induced elastic
strain variation.

Figure 2 shows an example of the USL for a given ρd .
Taking εe

s = 0 in Eq. (9), the intercept of the USL on the p′
axis (which can be referred to as the tensile strength of the
soil) is derived as follows:

p′
t = B(εe

vt + c)βεe
vt , εe

vt = max

{
−c,− c

β + 1

}
(10)

Apparently, the parameter c controls the cohesion of soils. As
in Fig. 2, a larger c leads to a larger allowable tensile effective

Fig. 2 Ultimate state line (USL) for various c values

(a) (b)

Fig. 3 Schematic diagram of the ultimate state surface as defined in
this paper

stress region. When c = 0, states in the tensile region are
impossible, which is just the situation found in sands. The
ESLs for c �= 0 are non-linear, but those for c = 0 are linear.
As a result, the USS in the p′ − q − e space for clays is a
curved surface, but for sands it is a plane surface, as shown in
Fig. 3. Moreover, the projection of the USS for clays on the
p′−q plane is a surface, and the projection for sands is a line.
From Eqs. (3) and (10), the cohesion is dependent on the dry
density and the stress history. The USL for NC clays with
low dry densities is a line approximately passing through the
original point (i.e., p′

t is very small but nonzero), while the
USL for OC clays possesses a much larger p′

t due to their
higher dry densities (the USLs for NC or OC clays are the
intersecting lines of the USS and the surface that is parallel to
the q axis and passes through the NCL or the rebound curve,
see Fig. 3a). This OCR dependency of the cohesion for clays
is consistent with the conclusions reported by literatures [7–
9,11].

Outside the USS, soils are mechanically unstable [13], and
therefore soils cannot reach states beyond the USS. Having
noted that p′ and q can be determined if the elastic strain
invariants and the dry density are given, we can examine
the USS represented by p′ and q by following any arbi-
trarily selected evolution paths of εe

v , εe
s and ρd . In Figs. 4

and 5, two types of path in the p′ − q − ρd space are exam-
ined: (1) the constant volume (or constant ρd ) shear test, as
shown in Fig. 4, and (2) the triaxial compression test in which
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Fig. 4 The p − q paths (right)
under the assumed loading paths
in the εe

v − εe
s space (left) with a

constant dry density

Fig. 5 Triaxial shear paths (�p′ = �q/3) in the p − q − ρd space
(parameters used are the same as those shown in Fig. 4; εe

v = 0.02, and
εe

s varies from 0 to 0.1)

�q/�p′ = 3 (� is the increment sign), as shown in Fig. 5. In
both cases, εe

v is first fixed arbitrarily, and then εe
s is increased

continuously. In the case (2), ρd is calculated according to
Eqs. (2b and 3c) as a function of q, εe

v and εe
s . The results

show that the p′ − q − ρd paths become tangent to the USS
(or USL) when the εe

s − εe
s paths reach the ESL. However,

these paths never cross the USS under any condition, even if
the elastic stability condition (Eq. 9) is violated.

3.2 Critical states

3.2.1 Definition and analytical expressions

From Eq. (6) and the relation εi j = εe
i j +εD

i j , the elastic strain
rates can be written in terms of the elastic strain invariants
and total strain rates as follows:

dtε
e
v = vv − 3λvT a

g ε
e
v (11a)

dtε
e
s = ee

i j

εe
s
(v∗

i j − λs T a
g ee

i j ) (11b)

For the critical states, the soil volume and the effective stress
should be kept constant, and the deviatoric (shear) strain

rate v∗
i j �= 0. Therefore, according to Eqs. (2, 3), the elastic

strain invariants must be constant at the critical state. Noting
Eqs. (7) and (11), this condition further requires a constant
v∗

i j at the critical state. In fact, it can be found that vv = 0
and v∗

i j = constant are the two necessary and sufficient con-
ditions for deciding whether the critical state can be reached.
If these two conditions can be satisfied, soils will be sheared
at a constant deviatoric strain rate without any changes in the
granular temperature Tg , the dry density ρd and the elastic
strain invariants (εe

v and εe
s ). This state is then referred to as

the critical state defined in this paper. As discussed above,
the critical state cannot be reached if the total strain rate is
varying. Therefore, the condition of shearing at a constant
strain rate (or at “constant velocity of deformation”, as pro-
posed for the steady state [2]) is one of necessities for the
critical state based on the GSH approach.

The critical state can also be interpreted as a state in which
the following special situations of energy dissipations apply:
(1) the granular fluctuation excited by shear deformation bal-
ances the relaxation of granular fluctuation, i.e., ρddtυg = 0
(see Eq. 7); (2) all of the input mechanical energy is dissi-
pated by the elastic relaxation, and no more elastic potential
is stored, i.e., dtεi j = dtε

D
i j or dtε

e
i j = 0. Thus, from Eqs. (2,

7, 11), one can derive the following expressions for soils at
the critical state:

(Tg)cr = ηgv
∗
i jv

∗
i j

γ
, (12a)

(λvε
e
v)cr = 0 (12b)

(εe
s )cr = λ−1

s

(
γ

ηg

)2a

(v∗
i jv

∗
i j )

1−2a (12c)

p′
cr = B0 exp[B1(ρd)cr ][(εe

v)cr + c]β−1 ·
[(εe

v)
2
cr + c(εe

v)cr + ξ(εe
s )

2
cr ] (12d)

qcr = 2B0 exp[B1(ρd)cr ][(εe
v)cr + c]βξ(εe

s )cr (12e)

where symbols with the subscript “cr” represent the corre-
sponding values at the critical state.

According to Eqs. (12d, 12e), the critical states are located
on a linear CSL (critical state line) in the ln p′

cr − lnqcr −
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Fig. 6 Schematic diagram of the critical state line (CSL) (“I” repre-
sents the initial-state point and “C” represents the critical state point)

(ρd)cr space, as qcr/p′
cr is constant and (∂ln p′

cr )/(∂(ρd)cr ) =
B1, as shown in Fig. 6. This conclusion can be validated by
many experimental studies of the CSL [3,21,22].

It should be noted that if the migration coefficient λv is
taken as a constant, then the elastic volumetric strain at the
critical state has to vanish according to Eq. (12b). If so, i.e.,
(εe
v)cr = 0, then the critical shear strength qcr will always be

zero for soils without cohesion (in which c = 0) (see Eq. 12e).
However, many experimental studies show nonzero qcr for
sands [3], and the level of qcr depends on the density of sand.
To deal with this problem, the migration coefficientλv should
be a state-dependent variable, and (λv)cr = 0 at the critical
state. The λv can be modeled according to the experimental
observation that the critical state is usually close to the USS
[2,3,5,23,24]. In fact, there are also laboratory data showing
critical states that are far away from the USS [25]. The under-
lying mechanism for this difference is not yet clear. However,
from the point view of modeling, the relation between the
critical state and the USS can be simply defined through a
positive dimensionless parameter ψ . When ψ = 1, the criti-
cal state is exactly located on the USS. Accordingly, noting
the condition Eq. (9), λv can be defined as

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λv = λv0

⎛
⎝1 − ψ

√√√√ β (β + 1) ξ
(
εe

s

)2

(
εe
v + c

) [
(β + 1) εe

v + c
]
⎞
⎠

λv ≥ −λsee
i j si j

3εe
v p′

(13)

where λv0 is a material constant. Apparently, taking ψ �= 1
results in critical states that are beneath the USS. The energy
dissipation rate R = σ ′

i j dtε
D
i j = T a

g (3λvε
e
v p′ + λsee

i j si j ).
Noting that λv will become negative for the states beyond
the CSL, λv ≥ −λsee

i j si j/(3εe
v p′) is required in Eq. (13) to

ensure R ≥ 0.

3.2.2 Rate and initial-state dependency

One of the features of the critical state as described in this
paper is the strain-rate dependency. As shown in Eq. (12c,
12e), the critical shear strength may vary with the strain rate,

depending on the value of the parameter a. Some experimen-
tal studies [23] show that clays usually have larger critical
shear strengths under larger shear strain rates. Such results
imply that a < 0.5 for clays (a = 0.455 is assumed in this
paper). However, the mechanical behavior of sands is usually
considered to be strain-rate independent [3], which requires
1−2a = 0 (i.e., a = 0.5) in the proposed model. Meanwhile,
according to Eqs. (12d, 12e), the critical state friction angle
represented by the slope of CSL kcr = qcr/q ′

cr is also depen-
dent on the strain rate. However, it is more likely that kcr is a
constant independent on the strain rate [26]. In order to repre-
sent this feature by the model, Eq. (13) should be redefined as

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λv = λv0

[
1 −

√
(εe
v + c)ξεe

s

kcr [
(
εe
v

)2 + cεe
v + ξ

(
εe

s

)2]

]

λv ≥ −λsee
i j si j

3εe
v p′

(14)

Equation (14) can also be interpreted as that the parameter
ψ in Eq. (13) is no longer a constant. But in the following
analysis, Eq. (13) with constantψ was used, as the strain rate
dependency of mechanical behavior of soils is out of focus
of the present study.

The critical state described by Eq. (12) is dependent
on the initial state of the soil. Here, we consider only the
rate-independent case, i.e., a = 0.5. The critical state in
undrained shears is uniquely determined by the initial dry
density (which remains constant in the undrained shears). For
example, in Fig. 6, the initial-state points I1 and I2, which
have the same density but different confining pressures, cor-
respond to the same undrained critical state (C1). Meanwhile,
the initial points I1 and I3, which have the same initial con-
fining pressure, correspond to different undrained critical
states (C1 and C2). For drained shears, we define a constant
stress increment ratio �q/�p′. (For triaxial drained shears,
�q/�p′ = 3.) Then, the drained critical states in the p′ − q
space are uniquely determined by the initial confining pres-
sure. As in Fig. 6, the initial points I1 and I3 (although they
have different initial dry densities) correspond to the same
drained critical state (C3). However, the volumetric defor-
mation from the initial state to the critical state is primarily
dependent on the initial dry density (ρd)0. The soil under-
goes a contraction when (ρd)0 < (ρd)cr (I1–C3 in Fig. 6
(right)) and undergoes a dilation when (ρd)0 > (ρd)cr (I3–
C3 in Fig. 6 (right)). Using the GSH approach, the initial-state
dependency discussed above can be accurately predicted. The
predictions regarding this issue are presented in Sect. 4.1.

3.2.3 Drainage conditions

In the above discussions, vv = 0 and v∗
i j = constant are taken

as two basic requirements for the critical state to be attained.
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Fig. 7 Drained shear paths in the p′ − q space

However, the state of shearing without any change in the
soil volume cannot always be reached, as this state depends
on the drainage condition and the stress path. For undrained
shear loadings, vv = 0 is naturally satisfied, and thus the
critical state can always be reached if the shear strain rate is
controlled to be constant. For drained shears, whether vv = 0
can be eventually reached depends on the stress increment
ratio�q/�p′. We denote the slope of CSL in the p′−q space
as kcr = qcr/p′

cr . As shown in Fig. 7, provided that the shear
strain rate is kept constant, the critical state can be reached
when �q/�p′ > kcr or �q/�p′ < 0. In that case, the
soil volume will eventually stop changing. However, when
0 ≤ �q/�p′ ≤ kcr , the critical state can never be reached,
and the soil volume will develop continuously. This stress-
path dependent feature of the critical state is validated in the
simulation results given in Sect. 4.1. To sum up, the necessary
and sufficient conditions under which the critical state can be
reached are as follows:

⎧
⎨
⎩
v∗

i j = constant

�q

�p′ ∈ [−∞, 0) ∪ (kcr ,+∞] (drained shear)

v∗
i j = constant (undrained shear)

(15)

3.3 Comparisons between GSH and classical CSSM

The main differences between GSH and classical CSSM
include the following:

1. The definition of critical state as used in this paper
involves more state variables and energy processes than
the definition used in classical CSSM. The critical state
described in this paper depends on the evolutions of gran-
ular fluctuation and elastic relaxation. Both of these fac-
tors are described by the concepts of dissipative force and
dissipative flow, which lead to a time- and rate-dependent
model. As a result, the critical state can only be reached
at a constant shearing rate. However, the critical state in

the classical CSSM is based on the associated plastic flow
rule in the elasto-plastic framework and is therefore time
and rate independent.

2. In CSSM, the plastic deformation is determined by the
flow rule depending on the plastic potential surface which
is also the SBS when associated flow rule is assumed.
However, in this study there is no surface that is directly
associated with the plastic soil deformation. Instead, the
responses of the soil are completely calculated by the
evolutions of energy storage (elastic potential) and energy
dissipations (elastic relaxation and granular fluctuation).
Correspondingly, the concept of yield surface or plastic
potential surface is not used in this study.

3. Even without the concept of SBS, the present model is
capable of predicting the fundamental behavior of soils
such as the ultimate state, the critical state and also the
asymptotic state. The asymptotic state is defined as the
state reached after a sufficiently long proportional stretch-
ing with a constant direction of the strain rate [27]. The
analytical expressions for the asymptotic state can be
derived using the same method for the critical state pre-
sented in Sect. 3.2.1, simply by introducing the strain-
controlled loading conditions (e.g., va = constant and
vv/va = constant for the axisymmetric stress and strain
states, where va is the axial strain rate). Therefore, the crit-
ical state is a special asymptotic state at which vv = 0.
Figure 8 gives some simulation results of asymptotic
states reached under three different strain rate paths: con-
fined compression (curves A), undrained shearing (curves
B), and rebounding expansion (curves C). For all the three
paths, the asymptotic states at which p′/q = constant and
lnp′ ∝ ln(1 + e) are finally reached.

4 Model predictions for sand and clay

Based on the theory described above, the critical state and
the ultimate state of Toyoura sand [28] and Q3 loess [29]
under triaxial conditions are predicted in this section. Under
triaxial conditions, the stress and strain tensors are diagonal,
with σ1 = σ11, σ2 = σ22, σ3 = σ33, ε1 = ε11, ε2 = ε22

and ε3 = ε33, where the subscript 1 represents the axial
direction. In triaxial compression tests, σ2 = σ3, ε2 = ε3

and �q/�p = 3, where

q = σ1 − σ3, p = σ1 + 2σ3

3
= p′ + u (16)

The σ3 and the axial strain rate (dtε1) are usually con-
trolled to be constant in tests. Under drained conditions,
u = 0, and dtεv = dt (ε1 + 2ε3)/3 = 0. Then, using
Eqs. (2, 3, 5–7 and 11), the triaxial responses of soils can
be calculated. The needed parameters are listed in Tables 1
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Fig. 8 Simulation results of
asymptotic states using the
model in this study (σa and σr
are the axial and radial stresses,
respectively; the initial states are
arbitrarily selected; parameters
used: B0 = 10 kPa,
B1 =0.0075 m3/kg, ξ = 0.59,
β = 1.5, c = 0, λv0/λs = 0.2,
γ /b = 5000 kg/m3/min,
(λs)

1/aηg/b =
7.5 × 107 kg/m3/min and
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Table 1 Model parameters for Toyoura sand

B0 = 1 Pa; B1 = 0.0129 m3/kg; ξ = 0.59 β = 0.5

c = 0; λv0/λs = 0.167; γ /b = 5000 kg/m3/min

(λs)
1/aηg/b = 2.62 × 106 kg/m3/min

ζg/ηg = 2; ψ = 1.5; a = 0.5

Table 2 Model parameters for Q3 loess

B0 = 14.8 Pa; B1 = 0.0094 m3/kg; ξ = 0.33 β = 1.5

c = 0.0462; λv0/λs = 0.15; γ /b = 1500 kg/m3/min

(λs)
1/aηg/b = 8.66 × 104 kg/m3/min

ζg/ηg = 1; ψ = 1; a = 0.455

or 2. It should be noted that determining four relative values
between the six migration coefficients (λv0, λs , ηg , ζg , γ and
b) is sufficient to solve the equations. The parameters can be
calibrated according to conventional laboratory tests such as
the isotropic compression and undrained (or drained) triaxial
compression tests. Once this calibration is done, more tests
can be predicted using the calibrated parameters. The para-
meters used in this paper for Toyoura sand and Q3 loess are
listed in Tables 1 and 2, respectively.

4.1 Predictions for Toyoura sand

Figures 9 and 10 show the simulation results of undrained
and drained triaxial compression tests for Toyoura sand [28].
Only the test with an initial void ratio of e0 = 0.753 and
an initial confine pressure of p′

0 = 1000 kPa is used in the
parameter determination. Thus, in Figs. 9 and 10, all other
tests are predicted using the same parameters (the axial strain
rate is 5 %/min in the predictions). The predicted results are
fairly consistent with the measured results. Under undrained

conditions, the sand samples with the same ρd reach the same
critical state even if they are under a different p′

0. However,
the undrained responses before the critical state are signifi-
cantly affected by p′

0. Under the same e0, a smaller p′
0 results

in a stronger dilatancy, a smaller shear modulus and a larger
axial strain under which the critical state is reached. As shown
in Fig. 10, the same critical state is reached for drained sand
samples under the same p′

0, irrespective of the initial ρd .
In that case, contraction and dilation are observed for sam-
ples with an initial ρd lower or higher than the critical ρd ,
respectively. The mechanism of the initial-state dependency
predicted above has been given in Fig. 6.

Furthermore, noting that ψ (see Eq. 13) is taken as 1.5
in this case, the critical state is located beneath the USS (or
USL), and the ultimate state is reached only for strongly
dilative samples, as shown in Figs. 9 and 10. For the drained
test with e0 = 0.81 (Fig. 10), a minor contraction is first
observed with the strain hardening. Then a significant dila-
tion begins after the ultimate state is reached, followed by the
strain softening. In comparing the three stress–strain curves
in Fig. 10, it is clearly more difficult for the soil samples with
relatively heavy dilatancy (e0 = 0.81) or heavy contraction
(e0 = 0.96) to reach the critical state. Moreover, a larger
initial dry density (or a smaller initial void ratio) results in
a larger drained peak shear strength (as shown in Fig. 10).
During the drained triaxial compression tests of sands the
USL in the q − ρd space under a particular p′

0 is in paral-
lel with the ρd -axis so that the dependency of drained peak
shear strength on dry density disappear when the critical state
is located on the USL (i.e. ψ = 1). This is a limitation of
the present model, which needs to be improved in the future
research.

As predicted above, the critical state can be reached
under drained triaxial shearing. However, as discussed in
the Sect. 3.2.3, the critical state cannot always be reached
under every drained shear loading. Under drained condi-
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Fig. 9 Prediction of undrained
triaxial compression tests of
Toyoura sand

Fig. 10 Prediction of drained
triaxial compression tests of
Toyoura sand (ρd = Gs/(1 + e)
and Gs = 2700 kg/m3)

Fig. 11 Effect of shear path on
the drained shearing responses
of Toyoura sand (p′

0 = 500 kPa
and e0 = 0.886)

tions, the critical state can be observed only when the stress
increment ratio, �q/�p′, meets the condition shown in
Eq. (15) (from Fig. 9, the kcr for Toyoura sand is about
1.27). Figure 11 shows the simulation results of the drained
shear responses under six different values of�q/�p′. Obvi-
ously, when 0 < �q/�p′ < 1.27, the volumetric strain
is continuously increased without reaching the critical state
at which dtεv = 0 is required. The same conclusion
can be drawn for the deviatoric stress q. However, when
�q/�p′ > 1.27 or �q/�p′ < 0, the critical state can
always be reached. Moreover, a larger positive �q/�p′
or a larger negative �q/�p′ results in a more significant
dilation.

4.2 Predictions for Q3 loess

Figure 12 shows the prediction results of the undrained tri-
axial compression tests for Q3 loess [29], in which the test
with e = 0.54 is used to determine the model parame-
ters. The loess samples are first K0-consolidated to different
non-isotropic stress states and then triaxially sheared under
undrained conditions. The prediction results are also in agree-
ment with the measured data. Takingψ = 1 for the loess (see
Table 2), the critical states predicted are always located on
the USS, and the p′ −q paths become tangent to the USL for
the corresponding void ratio e. It should be noted that unlike
the USLs for sands, the USLs for the different given e (or
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Fig. 12 Prediction of
undrained triaxial compression
tests of Q3 loess
(Gs = 2750 kg/m3; the dots are
measured data from [29]; the
circular symbols represent the
critical states)

ρd ) of clays do not coincide with each other. However, the
critical states for different e values fall on the same CSL in
the p′ − q space.

5 Concluding remarks

A model predicting the ultimate state surface (USS) and crit-
ical state has been established for saturated soils based on the
GSH approach. This approach differs from that used in classi-
cal critical state soil mechanics (CSSM). This new approach
improves understanding of the USS and the critical state from
the perspective of thermodynamics. The GSH approach also
predicts the mechanical behavior of soils more accurately.
The main contributions of this paper include the following:

1. A model is proposed that assesses the elastic potential of
soil and takes the degree of soil cohesion into account. It is
shown that the USS of soil corresponds to the convexity of
the elastic potential energy density function with respect
to the elastic strain. Using this model, a curved USS for
clays and a plane USS for sands in the p′ − q − ρd space
are determined quantitatively.

2. Granular soil deformation is controlled by elastic relax-
ation and granular fluctuation, which are thermodynam-
ically defined as time- and rate-dependent functions of
the elastic strain and the granular temperature. The criti-
cal state of soils is analytically formulated based on this
approach. This analysis reveals that the critical state of
soils is dependent on the initial state, rate and drainage
conditions. A clear and analytical explanation of this
important concept is given.

3. Without the concepts such as SBS (or the yield surface)
and the plastic potential that are needed in the classical
CSSM, the proposed model based on the extended GSH
can also predict the fundamental behavior of soils, such
as the ultimate state, the critical state and the asymptotic
state. However, the density dependency of drained peak
shear strength for sands cannot be appropriately predicted
when taking the parameter ψ = 1. Meanwhile, the rate

independency of the slope of CSL is not considered in the
simulations made in this study. Both deficiencies of the
present model need to be improved in the future study.
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