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Abstract To investigate the origin of the stress-level
dependency of soil elasticity, a series of stress-path exper-
iments were simulated for loose and dense soil specimens
with three different contact surfaces. In the discrete element
analyses, an assumption was introduced in which the con-
tact body had the geometry of an elastic sphere with local,
axi-symmetric irregularity. To evaluate the cross-anisotropic
elastic shear moduli, small-strain cyclic shear tests were
simulated under stress conditions along four stress-probing
paths. For dense specimens with high coordination numbers,
the internal structure was represented by the degree of fabric
anisotropy and the coordination number remained unchanged
during shearing, thus leading to the coincidence of the sum
of the exponents in the contact stiffness model. For the loose
specimens with low coordination numbers, the fabric struc-
ture evolved continuously during shearing, which resulted
in the increase of the exponents in the power function of the
elastic modulus. The rearrangement of particles and the tran-
sition of contact-force chains, along with the evolution of the
fabric, manifested as increasing dependency of the elastic
moduli on the stresses in such loose specimens.
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1 Introduction

Stress-level-dependent elasticity is a major feature of soil
behavior that needs to be investigated independently within
the framework of micromechanics theory. The nonlinear
anisotropic elastic response, which has commonly been
observed in a large amount of experimental data, can be
represented by a well-known empirical equation of three-
dimensional elastic moduli [1] given by the following equa-
tion:

Gi j = Ci j pa f (e)(σ ′
i /pa)m(σ ′

j/pa)n (1)

where Gi j is the elastic shear modulus in the i– j plane, Ci j is
a dimensionless constant relating to the directional properties
of the elastic shear moduli, pa is the atmospheric pressure,
used as a normalizing constant, f (e) is the void ratio func-
tion, σ ′

i and σ ′
j are the principal stresses in the i and j direc-

tions respectively, and the exponents m and n are material
constants. The sum of exponents m and n (hereafter referred
to as s) determines the magnitude of the stress-level depen-
dency of the elastic stiffness of soils. While the stress-level
dependency of soil elasticity has long been known, the phys-
ical origin of this relationship has not yet been clarified.

The particular form of the power function in Eq. (1)
has drawn researchers to investigate an explicit relationship
between the elastic response of soils and theoretical contact
equations. For instance, Hardin and Blandford [1] explained
that in Eq. (1), s is analog to the power of 1/3 in the clas-
sical solution of the elastic moduli for a regular assembly
of elastic spheres [2]. Cascante and Santamarina [3] argued
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(a)

(b)

Fig. 1 Geometry of contact surface. a Contacting particles with local irregularities, b geometry of contact surface (after Jäger [12])

that under conditions of isotropic stress, s is determined
by the contact-force–displacement relationship, regardless of
what mechanisms caused the contact deformation. Jung and
Chung [4] investigated the stress-level dependency of cross-
anisotropic elastic moduli in granular soils via the analytical
micromechanics theory. They showed that under conditions
of isotropic stress, the power function of normal contact stiff-
ness manifests itself in the sum of exponents, s, whereas
under conditions of anisotropic stress, the evolution of the
fabric also has a significant influence on s in the power func-
tion.

In experiments, a recent survey of data from resonant col-
umn testing [5] for both sands and clays showed that s has

been found to vary between approximately 0.4 and 0.6, with
a value of 0.5 having been observed by many researchers. By
comparing wave velocities, Lee and Huang [6] showed that
s becomes larger as the grains of sand became more angular.
Kohata et al. [7] reported that s was nearly 0.5 for various
sands with minor angles on their contact surfaces, zero for
soft mudstone and tuff featuring flat contact surfaces, and 0.8
for weathered granite, which likely had an angular contact
surface.

Clayton [8] recently proposed three factors that might
influence the shear modulus of a granular material at very
small strain levels: the void ratio, inter-particle contact
stiffness, and deformation and flexing within individual
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(a)

(b)

(c)

Fig. 2 Three types of contact geometry. a Conical contact surface, b
spherical contact surface, c flat contact surface

Table 1 Model parameters used in the DEM simulations

Number of particles 10,000

Radius of particle 0.5 mm

Initial specimen size 20 mm × 20 mm × 20 mm

Inter-particle friction angle 26.5◦

Elastic properties of particles Elastic shear modulus: 30 GPa

Poisson’s ratio: 0.15

Boundary conditions Rigid boundary condition (Rigid Wall)

Fig. 3 Assembly of particles after preparation

Table 2 Configuration of the initial specimens after isotropic compres-
sion

Contact geometry Density Initial Cn Initial void ratio

Conical contact Dense 5.90 0.555

α = 1 Loose 3.91 0.567

Spherical contact Dense 5.73 0.558

α = 1 Loose 3.50 0.572

Flat contact Dense 5.62 0.559

α = ∞ Loose 3.53 0.572

Fig. 4 Applied stress paths and the stress points for cyclic loadings

Table 3 Triaxial experiments performed for stress probe tests

Test Description

RTXE Reduced triaxial extension test, decreasing
axial stress with constant radial stress

TXC Triaxial compression test, increasing axial
stress with constant radial stress

RTXC Reduced triaxial compression test,
decreasing radial stress with constant
axial stress

TXE Triaxial extension test, increasing radial
stress with constant axial stress

particles. When considering minor changes in the void ratio
and limited particle deformation under service loading in
granular soils, it is obvious that the shear modulus the value
of s is mostly affected by the inter-particle contact stiffness,
which itself depends on particle mineralogy, angularity and
roughness.
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Fig. 5 Three different shearing modes for small cyclic tests

While the contact stiffness likely determines the power
equation of soil elastic stiffness, some other factors may
also influence the elastic modulus. Houlsby and Schnaid [9]
showed that the value of s increased as the density increased
despite significant scatter in the loose sands testing data. Ahn-
Dan and Koseki [10] showed that there was no apparent pat-
tern in the magnitude of s in relation to variations in sample
density. Makse et al. [11] pointed out the importance of the
increasing number of contacts under pressure to explain the
pressure dependence of elastic shear moduli. Unfortunately,
the combined effect of the major factor (i.e., contact stiff-
ness) and minor factor (i.e., density of the specimen) on soil
elasticity has not yet been scrutinized.

To investigate the origin of the stress-level dependency of
soil elasticity, we focused on the significance of microscopic
parameters such as contact geometry, the evolution of the
contact distribution, and changes in contact densities. We
conducted a systematic investigation via the discrete element
method to simulate small-strain, cyclic-loading tests. Two
synthetic specimens, one loose and the other dense, were used
for the simulations. The stress path experiment was simulated
under various contact conditions, from which the patterns of
stress-dependent elastic stiffness were analyzed.

2 Microscopic contact model

Let our hypothesis be that the power law of the contact model
at the microscopic scale determines the power law of the
elastic modulus at the macroscopic scale. To investigate this
argument, it is necessary to employ a versatile model which
is able to express various contact conditions. Thus we intro-
duce a model proposed by Jäger [12] which assumes the
geometry of the contact body to be an elastic sphere with
local, axi-symmetric irregularity. Figure 1 illustrates contact-
ing particles with small irregularities and the geometry of the
contact surface with locally elastic half-space. The irregular-
ity is expressed as Aαrα where r is the radius from the center
of the rigid irregularity, Aα is the geometric constant, and α is
the exponent determining the shape of the irregularity. In this
study, three contact geometries are chosen: a conical irreg-
ularity (α = 1), a spherical irregularity (α = 2), and a flat
surface (α = ∞). Figure 2 shows the three different contact
geometries.

The general expression of the contact normal force–
displacement relationship is given by

kn = d fn/dδn (2)

where kn is the contact normal stiffness, fn is the contact
normal force, and δn is a contact normal displacement. In the
case of the contact conditions shown in Fig. 1, the relationship
between the contact force and displacement is defined as

fn = cn(δn)1+1/α

where cn = 4Ggα

(1 − νg)(α + 1)

(
�

(
α+1

2

)
√

π Aα�
(

α+2
2

)
)1/α

(3)

where Gg and νg are the elastic shear modulus and Pois-
son’s ratio of elastic particle grains respectively, and �(x)

is the gamma function. For example, the contact force–
displacement relationship is fn = cn(δn)2 for the conical
asperity (α = 1), fn = cn(δn)3/2 for the spherical surface
(α = 2), and fn = cnδn for the flat contact surface (α = ∞).

Differentiating and rearranging Eq. (3) with respect to fn

allows the tangent value of the contact normal stiffness kn to
be stated as

kn = d fn

dδn
=

(
1 + 1

α

)
c

α
1+α
n ( fn)

1
1+α (4)

Consequently, the contact normal stiffness for the conical
contact surface with α = 1 can be expressed as

kn =
(

10Gg

π(1 − νg)

)1/2

( fn)1/2 (5)
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(a) (b)

(c) (d)

(e) (f) 

Fig. 6 Macroscopic stress ratio–axial strain relationships. a Conical contact in dense specimen, b conical contact in loose specimen, c spherical
contact in dense specimen, d spherical contact in loose specimen, e flat contact in dense specimen, f flat contact in loose specimen

Table 4 Macroscopic friction angle at failure

Contact geometry Density TXC (◦) RTXC (◦) RTXE (◦) TXE (◦)

Conical contact Dense 26.8 26.7 29.2 29.2

α = 1 Loose 27.2 27.1 29.4 30.6

Spherical contact Dense 26.0 25.7 28.0 28.5

α = 2 Loose 26.1 25.8 28.3 30.0

Flat contact Dense 26.2 25.9 28.0 29.0

α = ∞ Loose 26.5 25.9 27.3 28.6

Using Eq. (4), the contact normal stiffness for the spherical
contact surface with α = 2 becomes

kn =
(

2Gg
√

2R

3(1 − νg)

)2/3

( fn)1/3 (6)

Note that Eq. (6) is identical to the Hertzian contact model.
The contact normal stiffness for the flat surface is indepen-
dent of the contact force because α = ∞ in Eq. (4), thus
removing the term including fn , so that

kn = 4Gg

1 − νg
(7)

Discrete element modeling (DEM) codes were modified to
accommodate the three contact models described above.
Regarding the tangential contact stiffness, we employed the
expression proposed by Walton [13] which assumes that the
tangential contact stiffness kt has a linear relationship with
kn which can be stated as

kt/kn = 2(1 − νg)/(2 − νg) (8)
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(a) (b)

(c) (d)

(e) (f) 

Fig. 7 Macroscopic volumetric strain–axial strain relationships. a Conical contact in dense specimen, b conical contact in loose specimen,
c spherical contact in dense specimen, d spherical contact in loose specimen, e flat contact in dense specimen, f flat contact in loose specimen

3 Discrete element simulations

Axi-symmetric stress loadings on an assembly of spherical
particles were simulated using a non-commercial DEM code
called OVAL developed by Kuhn [14,15]. The simulations
performed in the present study involved a three-dimensional
assembly of 10,000 uniform spheres with a particle diameter
of 0.5 mm.

To prepare an initially isotropic granular assembly within
a specified volume (20×20×20 mm), 10,000 seed particles
with an artificially smaller diameter (0.1 mm) than the desired
value were evenly distributed. Subsequently, the particles
were numerically expanded until their diameters reached the
desired value of 0.5 mm. The void ratio of the assembly at
the completion of particle expansion was 0.56. This gener-

ation method involves multiple collisions between particles
such that the particles push each other into an evenly-dense
arrangement [16]. During expansion, the friction between the
particles was purposely ignored for better stabilization. The
external boundaries remained fixed during the expansion of
the particles, and thus the particle configuration was locally
adjusted to attain equilibrium. The model parameters for the
simulation are summarized in Table 1.

The increment of time needed for stable computation is
proportional to the square root of the particle mass divided
by the sum of the stiffnesses acting on the particles. This
suggests that the simulation of particles of high stiffness
demands extremely small time increments and thus signifi-
cant computational costs. To complete the simulations within
a reasonable timeframe, the mass scaling technique [15,17],
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(a) 

(b)

(c)

Fig. 8 Stress–strain curve obtained from the small strain cyclic shear
tests for Ghh. a Linear response at η = 0, b non-linear response at
η = 0.5, c unstable response at η = 1.1

which assumes a fictitious mass density for the particles,
was employed to ensure stable and expedient simulations.
Figure 3 shows the initial assembly of particles prior to stress
path probing.

Both loose and dense specimens were prepared by adjust-
ing the frictional coefficient between the particles. For the
dense specimen, the particles began in a frictionless condi-
tion and a hydrostatic pressure of 10 kPa was applied to all
the faces of the isotropic specimen. To obtain a loose speci-
men, friction was activated prior to applying the hydrostatic
pressure such that the movement of the particles was more
restrained than it was for the dense specimen. As mentioned

previously, three contact stiffness models were selectively
employed so that a total of six specimens with different com-
binations of contact stiffness and density were prepared for
the simulations. Table 2 summarizes the initial conditions of
the six specimens. Note that small differences in the void
ratio between the loose and dense specimens is common in
discrete element methods [18].

Prior to stress probing, the specimen was loaded by
increasing the hydrostatic pressure from 10 to 100 kPa, and
this isotropic loading is called ISO. Four different stress
paths—TXC, RTXC, RTXE, and TXE—were chosen for
stress probing. Figure 4 shows the stress paths where the
mean normal effective stress p′ and deviator stress q are
defined as

p′ = (σ ′
x + σ ′

y + σ ′
z)/3 and q = σ ′

z − σ ′
h (9)

where σ ′
z is the vertical (axial) effective stress, σ ′

x and σ ′
y are

the two horizontal stresses respectively, and σ ′
h is the aver-

age value of the two horizontal stresses. Table 3 summarizes
the notation used to describe the stress paths in Fig. 4. Note
that instead of the minor principal stress, σ ′

h was used to
define the deviator stress and q to account for the minor dif-
ferences in the two horizontal stresses from the simulations.
The difference between the two horizontal stresses was con-
sistently less than 1 kPa. From the same initial stress point,
the axial stress increased along the TXC path, the radial stress
decreased along the RTXC path, the axial stress decreased
along the RTXE path, and the radial stress increased along
the TXE path. The stresses were servo-controlled by mov-
ing the rigid boundary walls in accordance with continuous
calculation of the wall stress defined as the average reaction
force acting on the rigid wall divided by the area of the wall.

To measure the macroscopic elastic moduli along the
stress path, a number of small-strain, cyclic-loading tests
which are frequently performed in soil experiments [19] were
simulated. We took advantage of the numerical simulation in
that a specimen under a specific stress condition was “frozen”
and later used for the small-strain, cyclic-loading tests. Every
detail of information on the status of the assembly (e.g., the
location of every particle and the contact force distribution)
was stored at a specific stress point indicated by a small solid
circle in Fig. 4. The stresses at which the cyclic loading tests
were conducted were chosen at intervals of 10 kPa along the
ISO path of increasing p′ and at every increment of the stress
ratio (η = q/p′) of 0.05 along the other stress-probing paths.

The small-strain, cyclic-loading test was conducted by tilt-
ing a pair of opposite rigid walls towards a given direction
while holding the normal component of the wall stresses
constant via a servo-control algorithm. Assuming that the
“frozen” specimen preserved its cross-anisotropic nature
likely induced from the initial depositional preparation, three
tilting directions were chosen as shown in Fig. 5. The elastic
shear modulus Ghh can be measured by slightly distorting

123



30 C.-K. Chung et al.

(a) (b)

(c) (d) 

(e) (f)

Fig. 9 Elastic shear moduli for conical contact in dense specimens. a η –Ghh, b p′–Ghh, c η –Ghv, d p′–Ghv, e η –Gvh, f p′–Gvh

the specimen in the horizontal plane as shown in Fig. 5a. As
illustrated in Fig. 5b, c, the small-strain cyclic loadings in the
vertical plane were used to measure the elastic moduli Gvh

and Ghv respectively, which should be identical according to
the theory of cross-anisotropic elasticity.

4 Results and discussion: macroscopic responses

Figure 6 shows the variation of the stress ratio during shear-
ing. Stress–strain curves typical of frictional material were
observed. One response to the axial compression was that the
curves for TXC and RTXC overlapped; another was the axial
extension of RTXE and TXE. The stress–strain curve for the
dense specimens exhibits sharp stress peaks, while the curve
for the loose specimens shows a mild change of slopes at the
yield stress. The mobilized friction angles at the maximum

stress ratios in Fig. 6 are summarized in Table 4. The fric-
tion angles at the failure range from 26◦ to 31◦, close to the
inter-particle friction angle of 26.5◦ given by the frictional
coefficient between particles. Particular variations caused by
different contact geometries and densities were not observed.

Unlike the friction angle, the macroscopic stiffness rep-
resented by the initial slope of the stress–strain ratio curves
is highly dependent on the initial density of the specimens.
Figure 6 shows that the stress–strain curves of the dense spec-
imens had a sharper slope than did the stress–strain curves
of the loose specimens. As shown in Fig. 6, the stress–strain
curves for the dense specimens consistently maintain linear-
ity before a clear peak in stress, whereas the loose specimens
show mild nonlinearity in the stress–strain curves before
failure. Figure 7 shows that for both the loose and dense
specimens, the volume expands similarly during shearing.
This dilatancy might be expected if the void ratio values are
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(a) (b)

(c) (d)

(e) (f)

Fig. 10 Elastic shear moduli for spherical contact in dense specimens. a η –Ghh, b p′–Ghh, c η –Ghv, d p′–Ghv, e η –Gvh, f p′–Gvh

relatively low (e.g., 0.56–0.57) in both the dense and loose
specimens, as summarized in Table 2.

Figure 8 shows three typical shear stress–strain curves
obtained from the small cyclic loading tests on the dense
specimen with a conical contact surface along the TXC path.
An apparently linear and elastic stress–strain response was
observed at the beginning of the shearing when η = 0 as
shown in Fig. 8a. When = 0.5 in Fig. 8b, the stress–strain
response exhibits nonlinear hysteresis, indicating energy dis-
sipation due to friction. At η = 1.1 (close to the value at
failure), the hysteretic stress–strain curve is not enclosed as
shown in Fig. 8c. Except for a few cases near the point of
failure, the initial linear portion of the stress–strain curve was
used to define the elastic moduli Ghh, Gvh and Ghv.

Figures 9, 10 and 11 present variations among the three
elastic shear moduli during stress probing on dense speci-
mens. The effect of the packing density will be discussed after

providing data for the loosely packed specimens in Figs. 12,
13 and 14. The results show that Gvh is practically identi-
cal to Ghv , which confirms that the specimens preserve the
cross-anisotropic nature induced by the deposition process
during preparation. As described in Eq. (1), both Gvh and
Ghv increase as p′ increases. However, such increases do
not continue as the stress ratio approaches a critical value
corresponding to frictional failure. For example, the value of
Ghv in the TXC path increased until η = 0.9 and then fell
sharply as shown in Fig. 9. For the RTXC and RTXE paths
in which the axial or radial stress decreased, the elastic shear
moduli Gvh and Ghv decreased as predicted by Eq. (1) and
subsequently fell sharply as η neared the failure values of 0.9
and −0.7 respectively. According to Eq. (1), it is expected
that Ghh relates only to horizontal stress, as can be seen in
Figs. 9, 10, 11, 12, 13 and 14. Along the TXC and RTXE paths
in which the horizontal stress remained constant, the value
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(a) (b) 

(c) (d)

(e) (f)

Fig. 11 Elastic shear moduli for flat contact in dense specimens. a η –Ghh, b p′–Ghh, c η –Ghv, d p′–Ghv, e η –Gvh, f p′–Gvh

of Ghh remained approximately constant until η = ±0.6. A
significant drop in the value of Ghh near the point of failure
also appears as it does for Gvh and Ghv .

It should be noted that the elastic shear moduli for flat con-
tact surfaces are insensitive to variations in stress. As shown
in Fig. 11, all of the elastic moduli remained approximately
constant until η = ±0.6. This also means that the exponents
in the empirical expression of Eq. (1) are zero in that the
elastic shear modulus is independent of these stresses. The
exponent used in Eq. (1) is closely related to the value of α

used in the microscopic contact law in Eq. (4). For flat con-
tact, the value of α is infinite, so the value of 1/(1+α) in Eq.
(4) becomes zero and is independent of the contact normal
force as in Eq. (7). Consequently, the macroscopic responses
reflect the microscopic behavior of the particle contacts.

Unfortunately, the relationship observed between the
macroscopic response and microscopic cause in dense spec-
imens does not seem to be valid in loose specimens.
Figures 12, 13 and 14 show the simulation results for the

different elastic shear moduli of loose specimens. For the
loose specimens with conical contact surfaces, Gvh and Ghv

increase along the TXC and TXE paths, but not as quickly
as they did with the dense specimens. In addition, a sharp
reduction of the elastic moduli as η neared the failure value
is not observed in the loose specimens. As shown in Fig. 14, it
appears illogical to assume that the elastic moduli are inde-
pendent of the variations in stress for specimens with flat
contact surfaces.

The differences in the responses of dense and loose spec-
imens can be investigated further by quantitatively evalu-
ating the relationship between the elastic moduli and the
stresses. Figure 15 summarizes the value of s, which is the
sum of exponents m and n, by fitting the data shown in
Figs. 9, 10, 11, 12, 13 and 14 into Eq. (1). The Levenberg–
Marquardt iterative algorithm [20] was employed for non-
linear regression analysis to estimate the two exponents. The
void ratio function in Eq. (1) is assumed to be f (e) = (2.17−
e)2/(1+e) as suggested by Hardin and Richart [21]. Note that
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(a) (b)

(c) (d)

(e) (f)

Fig. 12 Elastic shear moduli for conical contact in loose specimens. a η –Ghh, b p′–Ghh, c η –Ghv, d p′–Ghv, e η –Gvh, f p′–Gvh

interpolations of data were made for stress ratios ranging
between −0.6 and +0.6 to exclude irrelevant data points cor-
responding to sharp drops in value when near failure. Note
also that the reliability of the shear elastic moduli near fail-
ure, suggested in Figs. 9, 10, 11, 12, 13 and 14, is low due to
severe nonlinearity in the stress–strain curves as illustrated in
Fig. 8c. The parameters obtained from the regression analysis
are summarized in Table 5.

As can be seen in Fig. 15, for a given contact surface con-
dition, there is no difference among the values of s for the
different elastic shear moduli. For the different contact sur-
faces, however, the values of s are quite different. As shown
in Fig. 15, the dense specimens have values of s = 0.5 for
conical contact surfaces, s = 0.33 for spherical surfaces,
and s = 0.0 for flat surfaces. Surprisingly, these values are
exactly the same as the exponents for the expressions of
microscopic contact stiffness in Eqs. (5)–(7). These results

also confirm the conclusion reached by Jung and Chung [4]
that the power function of normal contact stiffness manifests
itself in the stress-level-dependent elastic moduli.

However, the values of s for the loose specimens (0.24–
0.67) are much higher than they are for the dense specimens
(0.02–0.51), with an average difference between the loose
and dense specimens of approximately 0.2 for each contact
surface condition. To explain the higher value of s in the
loose specimens, we need to further investigate the differ-
ences in the microscopic responses of the loose and dense
specimens.

5 Results and discussion: microscopic responses

The microscopic status of an assembly is statistically
described by two quantities. The first is the coordination
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(a) (b)

(c) (d)

(e) (f)

Fig. 13 Elastic shear moduli for spherical contact in loose specimens. a η –Ghh, b p′–Ghh, c η –Ghv, d p′–Ghv, e η –Gvh, f p′–Gvh

number Cn , which is the average number of contacts per par-
ticle and is a measure of the packing density. Table 2 summa-
rizes the initial values of Cn for the different contact models.
Second is the contact distribution function E(γ, β), which
measures the spatial distribution of contacts with respect to
angular orientations γ and β in the spherical coordinate sys-
tem. Figure 16 shows the spherical coordinate system used in
this study. The contact distribution function for a symmetric
assembly to the vertical axis [4,22,23] can be expressed as

E(γ, β) = 3(1 + a cos 2γ )

4π(3 − a)
(10)

which has a symmetry such that E(γ + π) = E(γ ) and is
also independent of β. Using Eq. (10), a single parameter
a, denoted as the degree of fabric anisotropy, can be used
to describe the status of the contact normal distribution of
the axi-symmetric assembly. The value of a can fall between

−1.0 and 1.0. The internal fabric structure becomes isotropic
when a = 0. The majority of the contact normals are distrib-
uted vertically for positive a, whereas the contact normals
are distributed horizontally for negative a. Figure 16b illus-
trates different probability distributions of the contact normal
expressed by Eq. (10) with positive, negative and zero values
for a. A detailed summary of the expressions of the contact
distribution is given in Jang et al. [23].

Microscopic parameters Cn and a were evaluated using
the data obtained from a “frozen” assembly, which was also
used for the small-strain, cyclic-loading tests. Figures 17, 18
and 19 show the variations of Cn and a in loose and dense
specimens with different contact models. For the dense speci-
mens, the values of Cn and a remain constant within the range
of stress ratios measuring between −0.6 and 0.6. Beyond this
range of stress ratios, the value of Cn dramatically decreases,
which is surprisingly similar to the macroscopic response—a
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(a) (b)

(c) (d)

(e) (f)

Fig. 14 Elastic shear moduli for flat contact in loose specimens. a η –Ghh, b p′–Ghh, c η –Ghv, d p′–Ghv, e η –Gvh, f p′–Gvh

sudden drop in the value of the elastic shear moduli in dense
specimens. So long as the value of Cn remains constant, the
value of a also remains constant at zero, implicating isotropy
in the fabric structure. Beyond this range of constant value,
the value of a significantly increases for stress ratios larger
than 1.0 and decreases for stress ratios of less than −0.6.

The patterns observed in the loose specimens, however,
are quite different from those observed in the dense speci-
mens. For the conical contact model, the value of Cn varies
nonlinearly—initially increasing and then decreasing—on
the TXC and TXE paths, whereas the value of Cn gradually
decreases without any constancy on the RTXC and RTXE
paths. Unlike the dense specimens, the loose specimens do
not exhibit a dramatic decrease of Cn near the failure values
of the stress ratio. For the spherical and flat contact condi-
tions, the value of Cn steadily increases. The variations of a
in the loose specimens are also considerably different from

those in the dense specimens. Unlike the dense specimens,
the loose specimens do not display a constant value of a for
the stress ratios between −0.6 and 0.6. Instead the value of
a nonlinearly varies with the stress ratio. This implies that
the change of fabric structure manifested by the variation of
a is much easier for the loose specimens than it is for the
dense specimens. As shown in Table 2, a lower value of Cn

for the loose specimens provides a higher degree of freedom
in particle movement than for the dense specimens such that
the contact points are continuously reallocated in favorable
directions. In the dense specimens with high Cn values, the
movement of particles is highly restrained but these restraints
are eventually released at high stress ratios accompanying an
abrupt reduction of in the value of Cn . Similar responses have
also been observed by Maeda et al. [24].

The macroscopic response shows large values for s for
the loose specimens, which implies that, with respect to
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Fig. 15 Sum of exponent, s = m + n, for different contact geometries

Table 5 Parameters of empirical fitting equation with f (e)

Model Density G m n s=m+n C

Conical contact
surface

Dense Ghh 0.475 21.03

Ghv 0.273 0.237 0.510 21.45

Gvh 0.234 0.275 0.509 21.43

Loose Ghh 0.662 12.99

Ghv 0.322 0.353 0.677 13.31

Gvh 0.354 0.325 0.679 13.32

Spherical contact
surface

Dense Ghh 0.361 71.95

Ghv 0.189 0.160 0.349 73.74

Gvh 0.162 0.190 0.352 73.75

Loose Ghh 0.551 29.92

Ghv 0.176 0.357 0.533 29.59

Gvh 0.345 0.189 0.534 29.56

Flat contact
surface

Dense Ghh 0.020 99.20

Ghv 0.013 0.012 0.025 100.8

Gvh 0.013 0.013 0.026 100.9

Loose Ghh 0.271 31.36

Ghv 0.058 0.188 0.245 34.11

Gvh 0.180 0.064 0.244 34.07

elastic shear moduli, the loose specimens are more depen-
dent on stresses than the dense specimens are. The gap
between the values for the loose and dense specimens sup-
poses that the loose specimens have a causal agent other
than contact stiffness, which has already been reflected in
the low values for s for the dense specimens. It is estimated
that microscopic variation in the particle contacts causes
the additional dependency of the elastic shear modulus on
the stresses in the loose specimens. Due to a lack of con-
straints corresponding to low Cn values, the loose specimens
experience the continuous rearrangement of their particles as
well as the transition of contact force chains during shearing.

(a)

(b)

Fig. 16 Contact normal distribution function of axi-symmetric condi-
tion in spherical coordination system. a Spherical coordinate system, b
contact normal distribution function

This mobility in the contacts of the loose specimens eventu-
ally increases the dependency of the elastic shear moduli on
stresses.

6 Conclusions

To investigate the origin of the stress-level dependency of
soil elasticity, a series of stress-path experiments were con-
ducted on loose and dense specimens with three different
contact surface shapes (i.e., conical, spherical and flat). An
analytical model assuming the geometry of the contact body
as an elastic sphere with a local axi-symmetric irregular-
ity was introduced in the discrete element simulations. To
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(a) (b) 

(c) (d) 

Fig. 17 Evolution of microscopic parameters for conical contact. a η –Cn in dense specimens, b η –Cn in loose specimens, c η –a in dense
specimens, d η –a in loose specimens

(a) (b) 

(c) (d) 

Fig. 18 Evolution of microscopic parameters for spherical contact. a η –Cn in dense specimens, b η –Cn in loose specimens, c η –a in dense
specimens, d η –a in loose specimens
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(a) (b) 

(c) (d) 

Fig. 19 Evolution of microscopic parameters for flat contact. a η –Cn in dense specimens, b η –Cn in loose specimens, c η –a in dense specimens,
d η –a in loose specimens

evaluate the cross-anisotropic elastic shear moduli, small-
strain, cyclic-loading tests were simulated on assemblies
under the stress conditions along four stress probing paths.
To study the stress-level dependency of soil elasticity, the
sums of the exponents in the expression relating the elastic
shear moduli and stresses has been focused upon.

For the dense specimens, the contact geometry had a deci-
sive influence on the sum of the exponents, expressed as s.
The simulation results show that s = 0.5 for the conical con-
tact surface, 0.33 for the spherical surface, and 0.0 for the
flat surface. Surprisingly, these values are exactly identical
to the value of the exponents for the expressions of the con-
tact stiffness equation. For the loose specimens, however, the
value of s is much higher than it is for the dense specimens
such that there is no correlation between the value of s and
the exponent in the contact stiffness model.

Microscopic data explains the reason why the loose and
dense specimens exhibit different degrees of stress-level
dependency with regard to the elastic shear moduli. For the
dense specimens with high Cn values, the internal structure
represented by the degree of fabric anisotropy and the Cn

value remain unchanged during shearing, thus leading to the
coincidence of the s value and the exponent in the contact
stiffness model. For the loose specimens with a low Cn value,
however, the fabric structure evolves continuously during
shearing, which results in an increase in the exponents in the

power function of the elastic modulus. The rearrangement
of particles and the transition of contact force chains with
the evolution of the fabric manifest themselves as increasing
dependency with regard to the elastic moduli on the stresses
in the loose specimens.
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