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Abstract Due to the nonlinear nature of the inter-particle
contact, granular chains made of elastic spheres are known
to transmit solitary waves under impulse loading. However,
the localized contact between spherical granules leads to
stress concentration, resulting in plastic behavior even for
small forces. In this work, we investigate the effects of plas-
ticity in wave propagation in elasto-plastic granular sys-
tems. In the first part of this work, a force–displacement
law between contacting elastic-perfectly plastic spheres is
developed using a nonlinear finite element analysis. In the
second part, this force–displacement law is used to simu-
late wave propagation in one-dimensional granular chains.
In elasto-plastic chains, energy dissipation leads to the for-
mation and merging of wave trains, which have characteris-
tics very different from those of elastic chains. Scaling laws
for peak force at each contact point along the chain, velocity
of the leading wave, local contact and total dissipation are
developed.
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1 Introduction

Granular materials have unique wave propagation properties
due to the inherently nonlinear nature of their contact. These
properties are being envisioned to be exploited in the design
of systems for impact protection, blast wave resistance, and
those experiencing high pressure load fluctuations. Over the
last few decades, extensive studies have been conducted on
wave propagation in elastic granular systems [1–4]. These
systems are typically modeled by spherical granules charac-
terized by a point contact or a small area of contact, which
leads to high stress concentrations in the contact regions. In
real systems subjected to high loads, these stress concentra-
tions lead to plastic deformations, and the effects of plas-
ticity become significant. This work aims at a fundamental
understanding of the role of plasticity in wave propagation in
granular media, and is intended to form the basis of designing
systems for stress wave tailoring applications.

Several models have been proposed to extend Hertz’s clas-
sical theory of elastic contact [5] and account for plastic
deformations in contacting spheres. One of the most widely
used models for force–displacement in elastic-perfectly plas-
tic contacting spheres is due to Thornton [6]. However,
as recently shown by Wang et al. [7], while the Thornton
model captures key features of the loading and unloading
responses, it substantially under-predicts the experimental
force–displacement behavior. The problem of two identical
contacting spheres is equivalent to that of a sphere press-
ing against a rigid flat surface, and the latter problem has
been extensively studied in the literature. One of the early
examples in this line of work is due to Abbot and Fire-
stone [8], who assumed fully plastic conditions, and thus
that the contact area is the area intercepted by the translation
of the rigid flat surface. The contact force is obtained by mul-
tiplying the contact area with the average contact pressure,
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which is assumed to be the hardness. Zhao et al. [9] devel-
oped an elasto-plastic model which interpolates smoothly
between the elastic (Hertzian) and fully plastic model in a
transition region. Vu-Quoc [10] assumed that the contact area
can be additively decomposed into elastic and plastic com-
ponents, and developed an implicit relation between force
and displacement using finite element simulations. Kogut and
Etsion [11] and Jackson and Green [12] performed extensive
finite element simulations and constructed empirical mod-
els for contact force–displacement response. It should be
noted that the models developed by Vu-Quoc [10] and Kogut
et al. [11] operate in relative displacement ranges much
smaller than those considered in wave tailoring applications
of interest in the present study. Additionally, most of the
above models focus only on the loading response. However,
to simulate the dynamic response of spherical contacting
beads, we need a simple and accurate model to describe initial
loading, unloading and reloading.

As shown by Nesterenko [13], a monodisperse elastic
chain of uncompressed spherical beads in contact produces
compact stress waves called solitary waves when subjected
to an impulse loading. The system can be modeled by
point masses connected by nonlinear springs, with the force
between contacting spheres described by the Hertzian law.
While a solitary wave travels unattenuated across the chain in
a non-dissipative elastic system, a dissipative system exhibits
a very different behavior with the peak force decreasing along
the chain. Vergara [14] developed a dissipative model for vis-
coelastic beads in contact by parametrizing the contact law to
include a viscoelastic contribution. Rosas et al. [15,16] stud-
ied the dynamics and energy decay in dissipative granular
chains where the damping was proportional to the relative
velocity of the grains and observed a two wave structure.
In Carretero-Gonzalez et al. [17], the authors modeled dis-
sipation by adding a power law of relative velocities to the
Hertzian law, with the power law exponent determined from
experiments to fit the simulation data. A key observation
from that study is the existence of secondary waves below a
critical exponent. Most of the studies on wave propagation
in granular chains have been conducted on monodisperse
elastic chains. Recently, Khatri et al. [18] demonstrated the
existence of solitary waves in chains of cylindrical particles.
Nguyen and Brogliato [19] studied dispersion in tapered and
stepped chains using a multiple impact model. There have
also been a few studies in the literature on the dynamics of
random contacting spheres and their force propagation and
dispersion characteristics [20,21].

The present work attempts to model systematically the
effect of plasticity in wave propagation in granular chains by
developing a contact force–displacement law and incorpo-
rating it into a dynamic model of wave motion in a 1-D chain
of elastic-perfectly plastic spheres. In the first part of this
paper, finite element simulations are used to develop force–

displacement laws for a wide range of material properties
and a large relative displacement range, under both loading
and unloading conditions. This law, first derived for identical
spheres in contact, is then extended to incorporate spheres of
distinct radii made of the same material. The contact force–
displacement law is then used to study the dynamic response
of uncompressed spherical beads in contact, analyze the dis-
tinct characteristics of plastic waves, and characterize the
decay in peak force and wave velocity. That aspect of the
study includes the development of scaling laws for energy
dissipation in the granular system.

2 Contact force displacement model

The objective of this section is to construct a model to
compute the contact force for a given relative displacement
between the centers of two contacting spheres. Detailed
finite element simulations are performed to obtain the force–
displacement solution for two rate-independent elastic-
perfectly plastic spheres in contact, and this solution is com-
pared with experimental data [7] and with the Thornton
model [6]. The limitations of the Thornton model are pre-
sented, and a new model having a wider applicability is con-
structed based on the finite element solutions.

2.1 Finite element simulations

The boundary value problem of two elastic-perfectly plastic
spheres under contact is presented schematically in Fig. 1a,
together with a close-up of the mesh in the vicinity of the
contact surface. To extract the relation between the contact
force and the relative displacement between the center of the
spheres, two half-spheres in contact are considered in the
problem setup. A static, axisymmetric finite element struc-
tural analysis is performed to extract the force–displacement
data for a rate-independent material, based on the assump-
tion that the time scale of dynamic wave propagation across
the chain is much larger than that of elastic wave propagation
within the sphere [13]. One end of a half sphere is fixed, while
a uniform vertical displacement is imposed on the entire flat
surface of the other half-sphere. The flat surfaces of both
the half-spheres are free to move in the horizontal direction,
while the curved surfaces are traction free. Since the spheres
in this first set of simulations are identical, the bottom sphere
could be replaced by a rigid flat surface. However, we use
two half-spheres since spheres of dissimilar radii are later
modeled using the same problem set-up.

The finite element analysis software ABAQUS is used to
solve the above problem. First-order axisymmetric quadrilat-
eral (CAX4R) and triangular (CAX3) elements are used with
the master–slave contact algorithm at the contact surfaces.
The half-spheres are meshed with approximately 72,000
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(a)

(b)

Fig. 1 Problem description. a A schematic of the axisymmetric prob-
lem with boundary conditions. A close-up of the mesh at the contact
surface is also shown, emphasizing the fine structured mesh used in the
vicinity of the contact surface. b Variation of prescribed displacement
over the loading history used in the simulation

elements, with a fine layer of structured mesh along the
contact surface, and an unstructured mesh in the remaining
domain. To match the experimental results described later,
the radii of the spheres are chosen to be 3/8′′ (4.76 mm).
The Young’s modulus (E = 115 GPa) and Poisson ratio
(ν = 0.30) are chosen to correspond to brass, although the
results are presented hereafter in a non-dimensionalized way.
Finite element simulations are performed for a range of yield
strength values from 400 to 1,500 MPa. Coulomb friction is
introduced between the contact surfaces with a friction coef-
ficient 0.30 to keep the solution symmetric with respect to the
contact surface. In the absence of friction, the numerical solu-
tion deviates from symmetry and becomes unstable at large
relative displacements. The presence of friction stabilizes the

solution, but the solution itself is found to be independent of
the specific value of a sufficiently large friction coefficient.
Large deformation static solutions are performed with load-
ing and unloading cycles as shown in Fig. 1b. In that figure,
the prescribed displacement α is normalized by R∗, which is
the effective radius of the two spherical surfaces in contact
given by

R∗ = R1 R2

R1 + R2
, (1)

where R1 and R2 are the radii of the two contacting surfaces.
The total contact force F is computed by summing the reac-
tion forces acting on all the nodes at the top or bottom flat
surfaces of the half-spheres.

2.2 Force–displacement model

2.2.1 Loading

The force–displacement data extracted from finite element
solution is normalized as follows. The displacement α

between the sphere centers is normalized by αy , the displace-
ment at the onset of yielding given by Thornton [6]

αy = π2

4

( py

E∗
)2

R∗. (2)

In (2), E∗ is the effective modulus of the solids in contact,
defined as

1

E∗ = 1 − ν2
1

E1
+ 1 − ν2

2

E2
= 2

(
1 − ν2

)

E
,

and py is the contact yield stress, which is related to the
material yield strength σy by py = 1.60 σy for materials
with Poisson ratio ν = 0.30 [5]. This relation is found to
be consistent with our numerical solutions, where yielding
starts when the peak pressure on the contact surface reaches
py . The contact force F is normalized by Fy , the force at the
onset of yield obtained from Hertzian law [5] as

Fy = 4

3
E∗ R∗1/2

α
3/2
y . (3)

Figure 2 shows the normalized force–displacement data
extracted from the finite element solution for σy = 550 MPa.
The monotonic curve starting from the origin corresponds to
plastic loading, while the steeper curves originating from
this loading curve correspond to unloading and reloading.
Also shown in the figure is the Hertzian solution, which
is much steeper, and deviates from the elasto-plastic solu-
tion for small values of contact force, emphasizing the key
role played by plasticity. For the material properties used
in this study, the force required to cause yielding Fy (3) is
quite small and is around 5 N, which corresponds to unity
in Fig. 2. Due to residual plastic deformations for contact
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Fig. 2 Force–displacement response of two contacting elastic-
perfectly plastic spheres for the loading profile in Fig. 1b. The monotonic
curve starting from the origin corresponds to plastic loading, while
the steeper curves correspond to elastic unloading and reloading. Also
shown are the elastic (Hertzian) solution and the prediction provided
by the Thornton model [6] for the same system and loading conditions

forces exceeding Fy , a displacement is observed when the
force goes to zero during unloading. Furthermore, subse-
quent reloading follows the unloading curve until the force
level at which unloading started, implying that the unloading
and reloading are elastic.

The Thornton model [6] predicts the following linear vari-
ation of force with relative displacement

F = Fy + πσy R∗ (
α − αy

)
(4)

in plastic loading, and it assumes the following power law in
unloading and elastic reloading:

F = 4

3
E∗ R∗

p
1/2 (

α − αp
)3/2

, (5)

where

R∗
p = 4E∗

3Fmax

(
2Fmax + Fy

2πσy

)3/2

(6)

is the effective radii at contact during unloading [6], Fmax

is the contact force at the onset of unloading and αp is the
residual displacement, obtained by satisfying Eqs. (4) and
(5) at the onset of unloading. The Thornton model is shown
for comparison in Fig. 2. Though qualitatively similar to the
finite element solution, it clearly under-predicts the contact
force during plastic loading.

To explain this discrepancy, one should examine in detail
the two key contributions to the contact force F = p̄ A, that
is, the average contact pressure p̄ and the contact area A.
Figure 3 shows the variation of contact pressure (traction
stress in the axial direction) along the contact surface. The

Fig. 3 Pressure distribution along the contact surface for identical
elasto-plastic spheres, evaluated using FEA for ten values of the applied
relative displacement α. For high α, the pressure is almost uniform over
the contact surface. The dotted line shows the pressure distribution pre-
dicted by the Thornton model for α/R∗ = 0.20

numerical solution shows the pressure to rise beyond py and
reach a maximum value of about 2.5 σy . Similar trends have
been observed by Jackson and Green [12], who related the
contact pressure to the hardness of the material. For large
relative displacements, the pressure is nearly constant along
the contact surface, allowing characterization of the surface
contact pressure by an average value p̄.

Figure 4 shows the variation of the normalized average
pressure

(
p̄/σy

)
with applied relative displacement α for

multiple values of material yield strengths, with γ = σy/E∗.
As shown there, the average pressure increases sharply to a
constant value as α increases and we thus construct a simple
model that transitions between the two regimes. At the onset
of yielding, the pressure distribution along the contact sur-
face is elliptic [5], as described by the Hertzian solution and
the average surface pressure is evaluated as

p̄ = 1

πa2

∫

A

py

√
1 −

( r

a

)2
d A = 2

3
py = 1.07σy, (7)

where a and A are the contact radius and area, respectively.
An exponential correction in the transition regime from elas-
tic to larger displacement fully plastic regime leads to the
following relation:

p̄

σy
= c1 − (c1 − 1.07) exp (−c2(α̃ − 1)), (8)
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Fig. 4 Average contact pressure ( p̄) versus applied displacement for
eight values of the normalized yield stress

(
γ = σy/E∗). The variation

of normalized average pressure with displacement seems to follow a
single law for different yield strengths. For small displacements, there
is a transition from the elastic Hertzian solution to the almost constant
value observed for large relative displacements

where c1 = 2.48, c2 = 0.098 and α̃ = α/αy is the normal-
ized displacement. Relation (8) is shown as a dashed curve
in Fig. 4.

To complete the force–displacement relation in loading,
we now characterize the evolution of the contact area A
with the applied displacement α. The contact radius a can
be extracted numerically by capturing the point along the
contact surface where the pressure p drops to zero. The con-
tact area

(
A = πa2

)
is normalized by the contact area at the

onset of yielding Ay , obtained from Hertzian contact law as

Ay = πa2
y = π R∗αy, (9)

where R∗ and αy are given by (1) and (2), respectively.
Figure 5 presents the contact area distribution for different
values of yield strength σy , showing the existence of a single
‘master’ curve. For all displacements, the Thornton model [6]
assumes a linear variation of contact area with displacement
following the Hertzian law. The numerical results obtained
in this study show that the contact area indeed varies almost
linearly, but with a different slope than that assumed by the
Thornton model. For small displacements after the onset of
yielding, the contact area follows a power law in the transition
regime as

Ã = A

Ay
=

{
α̃c3, if α̃ < α0,

(c4α̃ − c5), otherwise
(10)

where c3 = 1.14, c4 = 2.37, c5 = 59.96 and α0 = 177.6 is
the displacement α̃ where the power law and linear fit curves
intersect. Relation (10) is shown as a dashed curve in Fig. 5.

Fig. 5 Contact area versus displacement for eight values of yield stress(
γ = σy/E∗). When normalized by their respective values at the onset

of yield, the area-displacement curves collapse to a single curve

The Thornton model [6] assumes that the maximum con-
tact pressure does not increase beyond py , the maximum con-
tact pressure along the surface at the onset of yield. However,
the numerical solution (Fig. 3) shows the pressure increasing
beyond py and reaching a maximum of about 2.5σy . The dif-
ference in the plastic loading regime between the numerical
solution and Thornton model thus arises from two factors:
the contact pressure is about 2.31 times the surface contact
pressure assumed in the Thornton model, and the contact area
is about 2.1 times the contact area assumed in the Thornton
model. Recently, Wang et al. [7] used a modified Thornton
model, where the contact yield stress is related to the yield
strength as py = f σy , where f is a fitting parameter derived
from matching a Thornton model curve with the maximum
load levels attained by experiments. Thus, a combination of
these two effects gives a factor close to 4.7, the parameter
used by Wang et al. [7] in the modified Thornton model.
Furthermore, both our data-fitted model and the Thornton
model are linear for large displacements, and hence a modi-
fied Thornton model [7] gives a good fit in the loading regime.

2.2.2 Unloading

The unloading response of the contacting spheres is charac-
terized by the displacement αmax and corresponding force
Fmax at the onset of unloading. Since the unloading and sub-
sequent reloading curves overlap (cf. Fig. 2), unloading is a
completely elastic process. Let αR be the residual displace-
ment at zero contact force. For a given unloading curve, the
displacement can be scaled as

αs = α − αR

αmax − αR
, (11)
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Fig. 6 Unloading force–displacement curves obtained for different
onsets of unloading characterized by the maximum previously achieved
value of displacement αmax and force Fmax

while the force is scaled by Fmax. As shown in Fig. 6, the
normalized unloading contact curves obtained numerically
for ten values of αmax collapse to a single curve. Unloading
curves for other yield strength values also show the same
behavior. Thus a single law suffices to describe the unloading
response in the form

F

Fmax
=

(
α̃ − α̃R

α̃max − α̃R

)n

, (12)

where n is the unloading exponent, and all displacements
have been normalized by αy . To compute the force during
unloading using (12), we need to determine the residual
displacement αR for a given displacement at the onset of
unloading αmax. As shown in Fig. 7, the variations of resid-
ual displacement α̃R = αR/αy with maximum displace-
ment α̃max for different yield strengths all follow a single
‘master’ curve. A linear fit captures the variation well at larger
displacements, but it deviates for small displacements. There
is a transition regime between zero residual displacement at
the onset of yield and the linear variation regime at large
displacements. Again, an exponential correction is added to
capture the variation in this transition regime:

α̃R = αR

αy
= c6α̃max − c7 + (c7 − c6)

exp (−c8 (α̃max − 1)), (13)

where c6 = 0.95, c7 = 25.94 and c8 = 0.015. The exponent
for all yield strength values and for all unloading points in
the plastic regime is found to vary between 1.30 and 1.42. We
therefore use a constant value of n = 1.35 and observe that
this value fits the finite element solution data with reasonable
accuracy for all regimes and for a wide range of yield strength

Fig. 7 Residual displacement (αR) versus displacement at onset of
unloading (αmax). The displacements are normalized by displacement
at onset of yield (αy). All curves collapse on a single “master” curve
denoted by the solid curve

values. It should be noted that this value is slightly inferior
to the value n = 1.5 assumed in the Thornton model (5).

2.2.3 Verification and validation

The complete force–displacement law for the plastic loading
regime is thus

F = σy Ay (2.48 − 1.41 exp (−0.098 (α̃ − 1))) Ã, (14)

with Ã given by

Ã =
{

α̃1.14, if α̃ < 177.6,

(2.37α̃ − 59.96), otherwise
(15)

for the plastic loading regime and

F = Fmax

(
α − αR

αmax − αR

)1.35

(16)

for unloading and elastic reloading regimes, with the residual
displacement αR given by

αR = 0.95αmax − 25.94αy

+ 25.0αy exp
(−0.015

[
α̃max − 1

])
. (17)

Figure 8 shows the comparison of numerical results with
the model described by (14)–(17) for materials of yield
strength σy = 400, 500 and 800 MPa. The model matches
the finite element solution accurately for small and moder-
ate displacements, while for large displacements, the force
is slightly over-predicted. The maximum error in the model
compared to the finite element solutions is found to be about
6 %. The force predicted by the model starts to deviate from
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Fig. 8 Comparison between the numerically obtained force–
displacement data (symbols) with the model described by Eqs. (14),
(16) and (17)

the numerical solution for large displacements due to the
average contact pressure falling from the constant value, as
seen in Fig. 4, and this is attributed to the effect of change
in curvature at large deformations. Jackson et al. [12] report
similar trends, where the contact pressure reaches a peak
value before progressively decreasing.

Figure 9 shows a comparison of the data fitted model for
brass with σy = 550 MPa with experimental data for quasi-
static loading of two brass half-spheres [7]. There is some
disagreement between the experimental data and our model,
arising due to an uncertainty of ±50 MPa in the actual value
of yield strength σy used in experiments. The low slope of
the loading curve at small displacements for the experimen-
tal curve is attributed to the transition regime from elas-
tic to plastic behavior for brass, in contrast to the elastic-
perfectly plastic model assumed for finite element simula-
tions. The deviation of experimental data from the model in
the unloading part is attributed to the presence of hardening
in the brass spheres, which leads to a less steep unloading
response.

2.3 Contact law for spheres of different radii

Finite element simulations with contacting spheres of dif-
ferent sizes are also performed, with the radii ratio ranging
from 1.5 to 4. The problem schematic and the boundary con-
ditions are the same as in Fig. 1a. The same prescribed dis-
placement (shown in Fig. 1b) is applied to all systems, and
the force–displacement response is shown in Fig. 10. The
curves completely overlap for small to moderate displace-
ments. At large displacements, the loading curves for dissim-
ilar radii begin to deviate from those for identical spheres.
This is attributed to two phenomena: firstly, at higher dis-

Fig. 9 Comparison of model with experimental data [7]. The exper-
imental system comprises of brass beads (R = 4.76 mm, E =
115 GPa, ν = 0.30, σy = 550 MPa), and the loading and unloading
are done quasi-statically. There is some disagreement stemming from
the elastic-perfectly plastic model assumption in the simulation

Fig. 10 Force–displacement data extracted from finite element solu-
tions for contacting spheres of different radii. For small and moderate
displacements, the normalized curves overlap, for large displacements,
the entire smaller sphere yields, and the force–displacement curves
begin to deviate

placements, the entire smaller sphere becomes plastic and
this leads to the material becoming softer. Secondly, similar
to the effect of average contact pressure decreasing for iden-
tical spheres, there may be geometric softening causing the
loading curve to deviate from the model and from the identi-
cal spheres finite element solution for large relative displace-
ments. Thus the force–displacement model [Eqs. (14)–(17)]
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developed earlier for spheres of same radius can be directly
used for elastic-perfectly plastic spheres of distinct radii in
contact, after appropriate normalizations.

3 Wave propagation in elasto-plastic granular chains

3.1 Problem statement

The contact law developed in the previous section [Eqs. (14)–
(17)] is now used to study the response of a semi-infinite
chain of elastic-perfectly plastic spherical beads subjected to
a force impulse at one end. The chain is represented by a
series of point masses connected by nonlinear springs with
stiffness defined by the force–displacement contact law. The
equation of motion of the i th bead along the chain can be
written as

mi üi = Fi−1,i
(
αi−1,i

) − Fi,i+1
(
αi,i+1

)
. (18)

with Fi, j denoting the contact force between spheres i and j
and

αi−1,i :=
{

ui−1 − ui, if ui−1 > ui

0, otherwise.
(19)

For the first bead, the equation of motion is

m1ü1 = f (t) − F1,2
(
α1,2

)
, (20)

where f (t) denotes the applied impulse excitation load and
is given by

f (t)= f [P, T ] (t)=
⎧⎨
⎩

P sin

(
π t

T

)
, if 0≤ t ≤T

0, otherwise.
(21)

For a given amplitude P and time T of loading, the total
impulse imparted to the first bead is I = 2PT/π . A fourth-
order Runge Kutta solver is used to simulate the dynamic
response of the system with a time step of 5 × 10−9s. The
solutions are presented in a nondimensional fashion, with the
wave velocity v and impulse I being normalized as:

ṽ = vτ/R∗ (22)

Ĩ = I/E∗ R∗2
τ, (23)

where τ is the intrinsic time-scale associated with the elastic
sphere system,

τ =
√

πρR∗2

4E∗ . (24)

3.2 General characteristics of waves

The tests listed in Table 1 are performed on brass spheres
having density 8,500 kg/m3, Young’s modulus 115 GPa,
Poisson ratio 0.30, yield strength 550 MPa and diameter

4.763 mm (3/8′′). Dynamic simulations are performed on
both elastic and elasto-plastic chains, with elastic chains
modeled by the Hertz contact model for all forces, and the
time evolution of the peak force at each contact point is stud-
ied for both cases. Figure 11 shows the time history of the
force acting at a few contact points for P = 20 kN and
T = 10 µ s, while Fig. 12 shows the x- t plot of force at
the contact points over the entire simulation. To avoid over-
lap, the elastic response is plotted shifted from the origin
in Fig. 12, starting from the twentieth contact. In an elastic
chain, a solitary wave forms in the first few beads and prop-
agates unattenuated at a constant speed along the chain, with
a constant peak force and a wavelength approximately equal
to five sphere diameters.

In the elasto-plastic case, multiple waves pass through
each contact point as wave-trains form and waves interact.
The amplitude of the leading wave also decreases as the wave
progresses along the chain due to dissipation. Figure 11 also
shows that, in the plastic case, the maximum force at a contact
point does not always correspond to the first peak force expe-
rienced by the bead. The force amplitude and the speed of the
leading wave decrease rapidly, as the leading wave operates
in the plastic loading regime of the beads. As seen in Fig. 12, a
continuous stream of trailing secondary waves forms behind
the leading wave. These trailing waves primarily operate in

Table 1 Force and impulse applied to the granular chain

Amplitude, P (N) Impulse, I (Ns)

2 × 105 2 × 104 1 × 104 2 × 103 1.27 × 10−1

5 × 105 1 × 105 1 × 104 5 × 103 6.37 × 10−2

2 × 104 2 × 103 1.27 × 10−2

Fig. 11 Force history at two contacts along the elastic (dotted curves)
and elasto-plastic (solid curves) chains. In the elastic case, a single
solitary wave of constant amplitude propagates, while the plastic chain
is characterized by a wave train of rapidly decaying amplitude
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Fig. 12 x–t plot of compressive force at each contact point along an
elastic and elasto-plastic chain. The elastic response is plotted shifted
from the origin, and consists of a single solitary wave propagating at
a constant speed and amplitude. In contrast, wave trains form and the
wave-front speed and peak force decrease with distance in the elasto-
plastic case

the elastic loading regime as their peak contact force is lower
than the previously attained maximum contact force due to
the passage of the leading wave. At some contacts, the trail-
ing waves cause dissipation when their peak force exceeds
the maximum force attained by the leading wave. The wave
speed is proportional to the slope of the force–displacement
curve, and the elastic unloading part has a higher slope than
the plastic loading part at high forces. Thus, trailing waves
with a sufficient force amplitude travel faster than the lead-
ing wave and eventually merge with the leading wave at the
front. This wave merging leads to an increase in amplitude
of the wave and thus the peak force at contact points does not
vary monotonically with distance along the chain.

3.3 Force and velocity characterization

The peak force decays rapidly along the elasto-plastic chain
and Fig. 13 shows that the decay rate has two distinct regimes.
In the first regime, which comprises of the first few contacts,
the energy dissipation is due to a single decaying wave trav-
eling down the chain, and the decay rate of the amplitude
of this leading wave with distance along the chain is expo-
nential. The single leading wave travels some distance until
the faster moving trailing waves merge with it, and the sec-
ond regime starts. In the second regime, wave interaction
and merging occurs and the dissipation at a contact hap-
pens due to multiple waves. The peak force is observed to be
inversely proportional to the distance along the chain in this
regime. Also shown in the figure is the response of an elastic
chain subjected to an impulse I = 0.127 Ns and ampli-
tude P = 20 kN. We observe that, in the elastic case, the

Fig. 13 Force decay along the chain consisting of two regimes. In the
first regime, the force decay is exponential. The trailing waves catch
up soon, and the second regime having an inverse power law decay
rate starts. The inset shows the response of a longer chain on a log–log
scale. The elastic response denoted by diamond symbols is shown for
comparison

decay associated with the creation of a solitary wave is much
smaller than the plastic case and happens over a much smaller
distance from the point of impact. To characterize the decay
rate of the first leading wave in the plastic case, we consider
a loading case with a peak loading amplitude and loading
time of 2,000 N and 10µs, respectively. For this loading,
the first trailing wave merges with the leading wave at the
21st contact point. Using this solution, the following char-
acterization for the peak force decay of the leading wave is
obtained:

Fmax

E∗ R∗2 Ĩ
= a exp

(−bx/R∗), (25)

where a = 3.74 × 10−2 and b = 0.256. For the second
regime, the following relation is obtained for the peak force
variation along the chain:

Fmax

E∗ R∗2 Ĩ
= C

x/R∗ , (26)

where C = 0.268. Figure 13 shows the peak force variation
and the exponential and inverse law curves for three values
of the applied impulse.

We now study the response of a long chain subjected to
different loading amplitudes P and impulses I (listed in
Table 1) and characterize the peak force and wave veloc-
ity. The top curves in Fig. 14 show the peak force along
the chain for different loading amplitudes, but with the same
initial input impulse. When the loading time T is short, the
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Fig. 14 Peak force (top curves) and wave velocity (bottom curves)
variation along the chain for the same input impulse. The responses for
distinct loading amplitudes overlap, implying that both peak force and
wave velocity variations are functions of total impulse only

responses are observed to be almost identical for systems
subjected to the same initial impulse. Since waves merge
in the second regime, the location of the peak contact force
along the chain varies discontinuously with time. To charac-
terize the wave velocity of elasto-plastic waves, the notion
of a leading wave velocity is introduced as the time taken
for the leading front or disturbance to travel between two
adjacent contacts. The lower curves in Fig. 14 show the
leading wave velocity for chains subjected to different load-
ing amplitudes and a fixed impulse. Once again, the curves
overlap and the response is independent of loading ampli-
tude.

Figure 13 shows the peak force decay for systems sub-
jected to different impulses I , but with the same loading
amplitude P . When normalized by their corresponding input
impulses, the responses corresponding to distinct impulses
overlap in both the exponential and inverse decay regimes.
The inset in Fig. 13 shows that the responses continue to
overlap for even very long chains. Figure 15 shows the spa-
tial dependence of the wave velocity for systems subjected to
distinct impulses I with the same loading amplitude P . After
scaling the wave velocity by a power of the impulse Ĩ 1/6, the
curves overlap in the second regime in which the wave veloc-
ity is observed to scale with distance as x−1/5. Since the peak
force Fmax follows an inverse law in this region, it follows
that the leading wave velocity scales as F1/5

max along the chain.
This result is in contrast with the F1/6

max dependence of the soli-
tary wave speed in elastic granular chains [2]. Thus the peak
force and velocity responses scale with functions of impulse
Ĩ and Ĩ 1/6, respectively, and do not depend on the loading
amplitude.

Fig. 15 Wave velocity along the chain. When normalized by Ĩ 1/6, the
responses for distinct input impulses collapse to a single curve away
from the first few beads. The inset shows the variation on a log–log
scale and the two distinct propagation regimes. In the second regime,
the velocity variation follows a power law with exponent −1/5

3.4 Energy dissipation

The dissipation along the chain, both at an individual contact
level and for the entire chain, is characterized using the peak
force relations developed above. At a contact point attaining
a peak force Fmax, the dissipated energy Edis is equal to the
difference in areas under the loading and unloading force–
displacement curves for this value of Fmax. Equation (31)
in the appendix gives the energy dissipation expression as a
function of the maximum displacement αmax for the model
constructed in the previous section. To compute the energy
dissipation along the entire chain using the peak force decay
rates [Eqs. (25) and (26)], a simple approximation is con-
structed relating the energy dissipation and force at a con-
tact. Since the contact force varies linearly with displace-
ment for large displacements in the loading regime [Eqs. (14)
and (15)], the area under the loading curve can be approx-
imated by a quadratic function of the force. For unloading,
since the residual displacement αR varies linearly with the
displacement at the start of unloading αmax for large dis-
placements [Eq. (17)], the area under the unloading curve
also varies quadratically with force. Hence the energy dissi-
pation at a given contact can be approximated by a quadratic
function:

Ẽdis = Edis

Fyαy
= d0 + d1 F̃max + d2 F̃2

max, (27)

where F̃max = Fmax/Fy, d0 = 1.23 × 10−4, d1 = −3.63 ×
10−7 and d2 = 1.86×10−8 for the model described by (14)–
(17). This approximation is found to be in good agreement
with the exact expression given by (31).
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Using these relations, we can evaluate the energy dissi-
pated at a contact located distance x̃ = x/R∗ along the
chain, after all the waves have passed. In the first regime,
the exponential force decay rate (25) leads to

Ẽdis = d0 + d1a Ĩ exp (−bx̃) + d2

(
a Ĩ exp (−bx̃)

)2
, (28)

while in the second regime, the spatial variation of the energy
dissipation is given by

Ẽdis = d0 + d1
C Ĩ

x̃
+ d2

(
C Ĩ

x̃

)2

, (29)

using the inverse force decay rate (26). As apparent in Fig. 13,
the second regime starts from about the seventh contact point.
In the numerical simulations performed in this study, the
second regime is observed to start between the sixth and
tenth contact points. Therefore, to compute the dissipation
at any contact point along the chain, the transition between
the first and second regimes is fixed at an average value of
x̃t = xt/R∗ = 28, that is, the seventh contact point.

The total energy dissipated Etot along a chain is obtained
by summing the dissipation at each contact point as:

Etot =
N∑

i=1

Edis (xi ) ≈ 1

2R

xN∫

x1

Edisdx . (30)

The above integral is evaluated using Eqs. (28) and (29) and
is provided in the Appendix [Eq. (32)]. Figure 16 shows
the total energy dissipation along the chain for different
impulses, obtained from numerical simulations and the pre-
dicted energy dissipation using relation (30). For lower input

Fig. 16 Total dissipation versus distance. The simulation results are
compared with the predicted results, obtained from (32) and they are in
good agreement

impulses, the total energy dissipated along the chain is
described accurately by the above equations while, for higher
impulses, the error is less than 6 %. This error is due to the
model assuming the transition from exponential to inverse
decay regime for peak force to always happen at a fixed point
for all impulses. A large fraction of the energy is dissipated
in the first regime, where the forces are high and the decay
rate is exponential.

4 Conclusions

In the first part of this work, finite element analyses of con-
tacting elastic-perfectly plastic spheres of the same material,
with identical or distinct radii have been performed. Sim-
ulations for a wide range of material properties and for a
large displacement range have been conducted. Scaling rela-
tions and numerical fits have been extracted to develop a 9-
parameter model and describe the contact force displacement
relation for loading, unloading and reloading of elasto-plastic
spheres.

In the second part, Hertzian law and new elasto-plastic
contact model have been used to perform dynamic simu-
lations on semi-infinite elastic and elasto-plastic granular
chains, with a force impulse applied at one end. In an elas-
tic chain, a solitary wave propagates unchanged, while in
an elasto-plastic chain, the wave amplitude decreases due to
dissipation, and there is formation and interaction of wave-
trains. For small loading times, the peak force and wave
velocity along the chain depend only on the input impulse and
the scaling laws for these quantities have been determined.
The force decay has two distinct regimes, the first regime has
an exponential decay rate due to the dissipation associated
with the leading wave, and the second regime has an inverse
decay rate, during merging and interaction of multiple waves.
Finally, the dissipation in these elasto-plastic chains has been
characterized for different impulses.
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Appendix: Energy dissipation

The energy dissipation at a contact is given by the expression
(31), where α = αmax is the maximum relative displacement
attained at the contact. The total energy dissipated in the
system upto location xN , as described by Eqs. (28–30) is
given by (32), where x̃ = x/R∗ and Et = d0 (x̃t − x̃1) +
d1a Ĩ b

(
e−bx̃1 − e−bx̃t

) + 2d2

(
a Ĩ

)2
b

(
e−2bx̃1 − e−2bx̃t

)
is

the energy dissipated by the contact points in the first regime.

123



758 R. K. Pal et al.

Ẽdis = 1

Fyαy

α∫

0

(Fload −Funload) dα

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
3

1.6

)
c1

2

(
(c4α̃ + c5)

2 (c4α0+c5)
2
)

+
(

3

1.6

)
c2

c2
3

(−e−c3(α̃−1) (c3α̃+c4+c3c5)

+e−c3(α0−1) (c3α0+c4+c3c5)
)

+
(

3

1.6

)
c1σy

c6+1

(
α

c6+1
0 −1

)

+
(

3

1.6

)
c2ec3

cc6+1
3

(Γ (c6+1, c3)−Γ (c6+1, c3α0))

+2

5
− F̃ (α̃ − α̃R)

n
if α0 ≤ α̃

(
3

1.6

)
c1σy

c6+1

(
α̃c6+1−1

)

+
(

3

1.6

)
c2ec3

cc6+1
3

(Γ (c6 + 1, c3) − Γ (c6 + 1, c3α̃))

+2

5
− F̃ (α̃−α̃R)

n
if 1<α̃ < α0

0 otherwise,

(31)

where the constants ci are as defined in Sect. 2 and Γ (., .) is
the Gamma function. The total energy dissipation is

4Etot

Fyαy
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

d0 (x̃N − x̃1)+d1a Ĩ b
(
e−bx̃1 −e−bx̃N

)

+2d2

(
a Ĩ

)2
b

(
e−2bx̃1 −e−2bx̃N

)
, if ˜xN < x̃t

Et +d0(x̃N − x̃t )+d1C Ĩ ln

(
xN

xt

)

−d2

(
C Ĩ

)2
(

1

x̃N
− 1

x̃t

)
, otherwise.

(32)
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