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Abstract This study presents the density dependent behav-
ior of granular materials for varying intermediate principal
stress (σ2) in general triaxial loading using the discrete ele-
ment method (DEM). The variation of intermediate princi-
pal stress is represented by a non-dimensional parameter
b[= (σ2 − σ3)/(σ1 − σ3)], where σ1 and σ3 are the major
and minor principal stresses, respectively. Isotropically com-
pressed dense and loose samples were prepared numerically
using the periodic boundaries. The numerical dense and loose
samples were subjected to shear deformation under strain
controlled condition for different b values ranging from 0
to 1. The simulated macro results depict that the friction angle
increases with b until it reaches a peak value and beyond the
peak, the friction angle decreases with b regardless of the
density of sample. A unique relationship between dilatancy
index and equivalent deviatoric strain exists at small strain
level for different b values when dense sample is considered.
By contrast, the same relationship for loose sample does not
show uniqueness. The relationships among the major, inter-
mediate and minor principal strains depict non-linear behav-
ior. The non-linearity is dominant for loose sample. The fluc-
tuation in the evolution of strain increment vector direction
is dominant in loose sample than dense sample. The evolu-
tion of different micro results is presented as well. It is noted
that a unique relationship exists between the stress ratio and
the fabric measure regardless of b and the density of sample
when strong contacts are considered.
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1 Introduction

The term b represents the relative magnitude of the interme-
diate principal stress with respect to the major and minor prin-
cipal stresses and is expressed as b = (σ2 − σ3)/(σ1 − σ3),
where σ1, σ2 and σ3 represent the major, intermediate and
minor principal stresses, respectively. Habib [1] was proba-
bly the first to introduce the term b rather than σ2 and subse-
quently, numerous experimental studies have been devoted
to investigate the effect of b under different conditions
(e.g., [2–7]). The experimental studies depict that the fric-
tion angle φ = sin−1[(σ1 − σ3)/(σ1 + σ3)] increases from
b = 0 (axisymmetric triaxial compression) to a certain b
value and beyond the peak, φ either decreases or increases or
even remains constant as b increases. These ambiguities may
be because of the type of soil, testing conditions, boundary
conditions and instrumental limitations. They may also be
partly due to the variation of the initial fabric of the tested
samples in experimental based studies, because it is impos-
sible to prepare exactly the same sample having the same
initial fabric for each experimental test. Besides, there may
have uncertainty in the reliability of the experimental data
when complex stress paths are considered.

These experimental limitations, noted above, can be
avoided in the numerical experiments by DEM [8], because
it enables one to prepare exactly the same sample in each
numerical experiment for a certain b value without any bias
in the initial fabric. In spite of the fact, limited DEM based
studies were reported in the literature that considered b. For
example, Thornton [9] considered the effect of σ2 in DEM
based studies and indicated that the simulated data support
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the failure criterion proposed by Lade and Duncan [10]. His
simulated results also depicted that the average ratio of slid-
ing contact and the critical mechanical average coordina-
tion number are independent of b. Ng [11] reported that the
models by Ogawa et al. [12] and Lade [13,14] are better
than those by Satake [15] and Matsuoka and Nakai [16] for
constant b-tests using DEM. In a separate study, Ng [17]
indicated that the tendency of the φ-b relationship is not
affected by the density of sample for different stress paths. In
a recent study, Thornton [18] reported the stress and fabric
response envelops for different deviatoric strain amplitudes
using DEM.

Despite of several studies, many important experimen-
tal observations including the evolution of principal devia-
toric strains and strain increment vectors under more gen-
eral stress conditions defined by the parameter b have not
been clarified in earlier DEM based studies. Recently, Saz-
zad et al. [19] reported the evolution of principal deviatoric
strains and strain increment vectors for different b values
under stress controlled condition in a dense sample using
DEM. Nevertheless, these behaviors for a loose sample were
not studied and the simulations were presented for stress con-
trolled condition. Consideration of stress controlled constant
mean stress b-test provides the opportunity to observe the
simulated behavior upto peak stress state only and the post
peak behavior remains unexplored. Accordingly, the current
study considers the strain controlled constant mean stress
b-test instead of the stress controlled constant mean stress
b-test for both dense and loose samples to examine different
macro features such as the evolution of principal deviatoric
strains, strain increment vectors, their behavior on the nor-
malized π -plane, etc. and different micro features such as the
evolution of micro structure and fabric under more general
stress conditions defined by the parameter b. To simulate
the strain controlled constant mean stress b-test, the exist-
ing computer code OVAL [20] has been modified. Twelve
constant mean stress true triaxial tests have been simulated
in drained condition considering both the dense and loose
samples by varying the b values from 0 to 1. The digital
data have been analyzed and the numerical results have been
reported.

2 Numerical simulations

In the current study, DEM [8] is used to carry out the numer-
ical simulations. In DEM, Newton’s second law of motion
is used to calculate the motion of a particle resulting from
the forces acting on the particle, while the force displace-
ment law is used to compute the contact force from the dis-
placement. A Coulomb type friction law is incorporated for
the relative slippage between particles. For details of DEM,
readers are referred to Cundall and Strack [8]. To investigate

Table 1 Characteristics of the isotropically compressed samples

Sample
designation

Void ratio Coordination
number

Length of the cubical
sample (meter)

Dense 0.57 5.94 0.071

Loose 0.72 4.09 0.073

the macro- and micro-behavior of granular materials under
different b values, two types of sample were prepared: (1)
dense sample and (2) loose sample. To designate a sample
to be dense or loose, the procedure reported by Thornton [9]
were used, in which a sample density was controlled by vary-
ing the interparticle friction coefficient during the preparation
of the isotropically compressed samples. To prepare the cube
shaped dense and loose samples, 8,000 spheres of 16 differ-
ent sizes (the diameters vary from 3 to 4.5 mm) were used.
Although spheres do not strictly represent the soil particles in
nature, the use of spheres as particles reduces the computa-
tional cost of simulation, in particular, when a large number
of particles are considered. Preparation of a granular sample
by compression method usually requires two phases: sample
generation and isotropic compression. In the first phase, the
spheres were placed in the grid points of known coordinates
in a cubic frame, where the diameters of spheres were chosen
randomly.

In the second phase, the isotropically compressed sample
was prepared by compressing the generated sample using
the periodic boundaries. To prepare an isotropically com-
pressed dense sample, the interparticle friction coefficient μ

was assigned zero, while μ was assigned 0.5 to prepare an
isotropically compressed loose sample. It should be noted
that the same value of μ (i.e., μ= 0.5) was used in all the
subsequent shear deformations. Both the samples were com-
pressed isotropically to 100 kPa. The characteristics of two
samples are presented in Table 1, where the coordination
number is defined as twice the total number of contacts
divided by the total number of particles. A cube with principal
stress directions is depicted in Fig. 1a, while the configura-
tion of the isotropically compressed dense sample is depicted
in Fig. 1b, for example.

Twelve mean stress controlled true triaxial tests were
carried out using the dense and loose numerical samples
in drained condition for different b values ranging from 0
(axisymmetric triaxial compression) to 1 (axisymmetric tri-
axial extension). The isotropically compressed dense and
loose samples (Table 1) were subjected to strain controlled
triaxial shear deformation according to the given value of
b by keeping the mean stress constant (100 kPa). In the
strain controlled constant mean stress b-test simulation, the
sample height was reduced slowly downward with a very
small and constant strain increment of 2.0 × 10−5 % in each
time step, while the lateral stresses are continuously adjusted
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Density dependent macro-micro behavior of granular materials 585

Fig. 1 a A cubic element with
principal stress directions and
reference axes. b Configuration
of the isotropically compressed
dense sample

Table 2 Simulation parameters
and conditions Simulation parameters and conditions Value

Normal contact stiffness (N/m) 1 × 106

Tangential contact stiffness (N/m) 1 × 106

Mass density (kg/m3) 2,650

Increment of time step (s) 1 × 10−6

Interparticle friction coefficient (μ) 0.5

Dimensionless coefficient of viscosity for translational
and rotational body damping

0.05

Method of simulation Strain controlled

Fig. 2 Evolution of Iu f with
ε1. a For dense sample. b For
loose sample

by regulating the lateral system dimensions to maintain the
given mean stress and b value throughout the simulation.
The vertical stress (σ1) is measured and via σ1, other stresses
(σ2 and σ3) are computed such that the mean of the stresses
(σ1, σ2 and σ3) remains constant and given b is maintained.
The same DEM parameters (Table 2) were used for all the
simulations. To examine the quasi-static condition, the evo-
lution of index Iu f is recorded and plotted against the major
principal strain ε1 and depicted in Fig. 2. The index Iu f is
defined as follows [21]:

Iu f =

√
√
√
√
√
√
√
√

Np∑

1
(unbalanced forces)2/Np

Nc∑

1
(contact forces)2/Nc

× 100 (%), (1)

where Np represents the number of particles and Nc repre-
sents the number of contacts. The unbalanced force in Eq. (1)
is defined as the resultant force acting through the centroid of
a particle. A small value of Iu f is desirable, because it is asso-
ciated with the higher simulation accuracy [20,21]. As seen
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Fig. 3 Stress-strain
relationship for different b
values. a For dense sample.
b For loose sample

in Fig. 2, Iu f remains very small throughout the simulation
regardless of b and the density of sample.

3 Numerical results

3.1 Stress-strain-dilative response

Figure 3 depicts the simulated stress-strain behavior of gran-
ular materials for different b values (0, 0.2, 0.4, 0.6, 0.8,

Fig. 4 φ-b relationship for dense and loose samples

and 1) using both the dense and loose samples. The stress
ratio q/p attains an earlier peak followed by strain softening
for dense sample, while the same for loose sample gradu-
ally increases until it reaches the peak value regardless of b.
Here, the mean stress p is defined as p = (σ1 + σ2 + σ3)/3
and the equivalent deviatoric stress q is defined as q =
√

3{(σ1 − p)2 + (σ2 − p)2 + (σ3 − p)2}/2. The evolution

of q/p is strongly influenced by the variations of b regard-
less of the density of sample. The relationship between the
friction angle φ at peak stress ratio and b for dense and loose
samples is depicted in Fig. 4. It is clear that φ increases up
to a certain value of b regardless of the density of sample
and beyond the peak value, φ decreases when b approaches
unity. This tendency agrees qualitatively with the experi-
mental observation for dense sample (e.g., [2,6,22]) and
for loose sample (e.g., [4]). The same tendency was also
reported in a very recent DEM based study by Sazzad et
al. [19] for dense sample under stress controlled simulation
condition.

Figure 5 depicts the relationship between the stress ratio
and volumetric strain for different b values and sample den-
sities. The volumetric strain in Fig. 5 is defined as εV =
ε1 + ε2 + ε3, where ε1, ε2 and ε3 are the major, interme-
diate and minor principal strains, respectively. A positive
value of εV indicates compression, while a negative value

Fig. 5 Relationship between
stress ratio and volumetric strain
for different b values. a For
dense sample. b For loose
sample
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Density dependent macro-micro behavior of granular materials 587

Fig. 6 Relationship between
dilatancy index and equivalent
deviatoric strain for different b
values. a For dense sample.
b For loose sample

Fig. 7 Evolution of minor and
intermediate principal strains
with major principal strain
under different b values. a ε3
versus ε1 for dense sample. b ε2
versus ε1 for dense sample. c ε3
versus ε1 for loose sample. d ε2
versus ε1 for loose sample

indicates dilation. Note that dilation prevails in dense sam-
ple, while compression prevails in loose sample. The DEM
results, presented in Fig. 5, are qualitatively comparable with
the experimental results reported by Suzuki and Yanagi-
sawa [23]. The evolution of dilatancy index with the equiv-
alent deviatoric strain εd is depicted in Fig. 6. The equiv-
alent deviatoric strain and the dilatancy index are defined
as εd = √

2{(ε1 − ε2)
2 + (ε2 − ε3)

2 + (ε3 − ε1)
2}/3 and

DI = −dεV/dεd , where dεV is the change in volumetric
strain and dεd is the change in equivalent deviatoric strain.
The relationship between dilatancy index and εd depicts a

unique behavior for small strain level regardless of b for
dense sample, while the same for loose sample is not unique.
Figure 7 depicts the evolution of ε3 and ε2 with ε1 for dense
and loose samples, while Fig. 8 depicts the evolution of e3
and e2 with e1 for dense and loose samples, where e1, e2
and e3 are the major, intermediate and minor principal devi-
atoric strains, respectively. The principal deviatoric strains
are given by e1 = ε1 − εm, e2 = ε2 − εm and e3 = ε3 − εm ,
where εm = (ε1 + ε2 + ε3)/3. The relationships among prin-
cipal strains are non-linear and this is more obvious in loose
sample than dense sample.
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Fig. 8 Evolution of minor and
intermediate principal deviatoric
strains with the major principal
deviatoric strain under different
b values. a e3 versus e1 for
dense sample. b e2 versus e1 for
dense sample. c e3 versus e1 for
loose sample. d e2 versus e1 for
loose sample

Fig. 9 Evolution of strain
increment vector direction with
ε1 under different b values.
a For dense sample. b For loose
sample

3.2 Strain increment vector

The evolution of strain increment vector direction for differ-
ent b values with ε1 is depicted in Fig. 9. The angle between
the principal strain increment vector and the maximum strain
increment axis can be expressed as follows [23]:

θdε = tan−1

[ √
3bdε

2 − bdε

]

, (2)

where bdε = dε2 − dε3

dε1 − dε3
(3)

It is noted in Fig. 9 that θdε diverts from its initial value
as ε1 increases. Dominant change in θdε is noticed for the
intermediate values of b. It should also be noted that the
change in θdε is more irregular for loose sample compared
to dense sample.
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Fig. 10 Unit vector of strain increment superimposed on the normal-
ized π -plane at the peak stress ratio of the stress-strain curve

3.3 Failure surface

Figure 10 depicts the failure surface on the normalized π -
plane (normalized by the mean stress p) at the peak stress
ratio for dense and loose samples. The strain increment vec-
tors are superimposed on the failure surface to investigate
their evolution for different values of b. Note that θdε has
nearly the same direction to that of stress vector θσ for b=
0 and 1, while a divergence is noticed for the intermediate
values of b regardless of the density of sample. The stress
vector direction θσ , which is the angle between the principal
stress vector and the maximum principal stress axis, can be
related to b by the following expression:

θσ = tan−1

[ √
3b

2 − b

]

(4)

Note also that the strain increment vector directions are
not normal to the failure surfaces on the normalized π -plane
for some values of b.

A comparison of the simulated results by DEM with the
failure criteria proposed by Lade and Duncan [10] and Mat-
suoka and Nakai [24] is depicted in Fig. 11. The failure cri-
teria by Lade and Duncan [10] and Matsuoka and Nakai [24]
are given in Eqs. (5) and (6), respectively.

I 3
1

I3

= k1, (5)

I1 I2

I3

= 8 tan2 φp + 9 = k2, (6)

where I1, I2 and I3 are the first, second and third stress invari-
ants of the stress tensor, respectively and k1 is the material
parameter for Lade and Duncan’s [10] failure criterion, φp

is the peak friction angle in triaxial compression and k2 =
8 tan2 φp +9 for Matsuoka and Nakai’s [24] failure criterion.
For Lade and Duncan’s [10] model, k1 is first calculated for
b = 0 with the known values of σ1, σ2, σ3 at the peak stress
ratio using Eq. (5) and later, the same value of k1 is used
to determine σ1, σ2, σ3 for other values of b using Eq. (5).
A similar procedure is used for Matsuoka and Nakai’s [24]
model. k2 = 8 tan2 φp+9 is determined for b= 0 and the same
value of k2 is used in Eq. (6) to obtain σ1, σ2, σ3 for other
values of b. Note that Lade and Duncan’s [10] failure model
approximates the DEM based failure surface better than that
of Matsuoka and Nakai’s [24] for dense sample. This ten-
dency has also been reported in the earlier DEM based studies
[17–19,31] for dense sample. In the current study, we notice
that both the models approximate the DEM based failure
surface reasonably well when loose samples are considered.

As noticed in Fig. 10, a deviation between θdε and θσ

remains for the intermediate values of b. This deviation angle
can be expressed as α = θdε − θσ . The relationship between

Fig. 11 Comparison of the
DEM data against Lade and
Duncan’s [10] and Matsuoka
and Nakai’s [24] failure criteria
for dense and loose samples
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Fig. 12 Relationship between deviation angle α and b value at the peak
stress level for dense and loose samples

α and b is depicted in Fig. 12 for dense and loose samples.
Note that α is not zero for both b = 0 and b = 1 though
axisymmetry entails α to be zero for both b = 0 and b = 1.
Any departure from these values is due to disorder (a finite
sample does not exactly abide by the axial symmetry). In
Fig. 12, it is clear that α is dependent on the intermediate
values of b. α is maximum for b = 0.4 in case of dense sam-
ple, while α is maximum for b = 0.2 in case of loose sample.

It is observed from the numerical simulation (see Fig. 7) that
the near plane strain condition is obtained for b = 0.4 in
case of dense sample, while the near plane stain condition is
obtained for b = 0.2 in case of loose sample. This reveals
that α is maximum near the plane strain condition of the
simulation.

3.4 Micro scale variables

Figure 13a depicts the relationship between the coordina-
tion number and b, while Fig. 13b depicts the relationship
between the sliding contact fraction in percentage and b at
the peak stress state for dense and loose samples. To study
the sensitivity of the measured values of coordination num-
ber and sliding contact fraction to strain increment, we have
simulated additional twenty four constant mean stress b-
tests for other two strain increments of 1.0 × 10−5 % and
4.0 × 10−5 % in each time step for both the dense and loose
samples and the measured values are depicted in the same
Figs. (i.e., Fig. 13a, b). Sliding contact fraction is defined
here as the total number of sliding contacts divided by the
total number of contacts at a given state of simulation. The
evolution of coordination number and sliding contact fraction
with the variation of b has also been reported in the earlier

Fig. 13 a Relationship between
coordination number and b for
dens e and loose sample at peak
stress ratio. b Relationship
between sliding contact fraction
and b for dense and loose
sample at peak stress ratio

Fig. 14 Relationship between
Hd/Hm and ε1 for different b
considering all contacts. a For
dense sample. b For loose
sample
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DEM based studies (e.g., [9,19]) for a certain value of strain
or stress increment. These studies depicted that coordination
number is independent of the stress path for dense sample
defined by the parameter b. In the current study, it is noted
that the evolution of coordination number is little suscepti-
ble to the variation of b at the peak stress state regardless
of the density of sample and increment of strain. However,
the evolution of sliding contact fraction is found to have a
bit susceptibility to the density of sample and increment of
strain for the variation of b at the peak stress state.

3.5 Macro-micro relationship

One of the goals of the researchers in DEM based stud-
ies is to relate the micro quantities with the macro quan-
tities [19,25–27,29,30,32–36,38] among others]. Several
approaches have been noticed in the literature to relate the
stress ratios quantitatively with fabric and force distribu-
tion anisotropies. For example, in several studies, the stress
ratio was related to the anisotropies developed from con-
tact normal vector, normal contact force and tangential con-
tact force (e.g., [25,30,32,36]). In contrast to the previous
approach, several studies related the stress ratio to a single
parameter computed from the contact normal vectors (e.g.,
[17,27,33,34]). The studies, referred above, were carried out
in 2D for biaxial compression (e.g., [25,30,27]) and 3D for
axisymmetric triaxial compression (i.e, for b = 0) (e.g., [32–
34,36]). Nevertheless, these relationships for other values of
b are limited in the literature. Among these limited stud-
ies, Ng [26] and Sazzad et al. [19] correlated the macro and
micro quantities for different values of b. Ng [26] indicated
that obliquity relates better with the microscopic parameter
related to the contact normal force than with the unit normal
vector for different stress paths. By contrast, Sazzad et al.
[19] reported that a unique macro-micro relationship exists
between the stress ratio and the deviatoric fabric related to the
unit normal vector of strong contacts for different b values
under stress controlled simulation condition in a dense sam-
ple. Although these studies considered different values of b,
loose samples were not considered. In the current study, an
attempt has also been made similar to the approaches taken in
[33,34] to establish a linkage between the macro and micro
quantities under strain controlled simulation condition for
various values of b ranging from 0 to 1 considering both the
dense and loose samples. With this view, a fabric tensor is
defined considering all contacts in the simulation as follows
[28]:

Hi j = 1

Nc

Nc∑

c=1

nc
i nc

j , (7)

where nc
i is the i-th component of the unit normal vector at

c-th contact; Nc is the total number of contacts in the assem-

bly. The total contact can be further divided into strong con-
tact and weak contact. The distinction of “strong” force net-
works and it relation to stress anisotropy was introduced in
[30]. In the current study, a fabric tensor for strong contacts
is defined as follows:

Hs
i j = 1

Nc

Ns∑

s=1

ns
i ns

j , (8)

where ns
i is the i-th component of the unit normal vector at

the s-th strong contact, Ns is the number of strong contacts.
A contact is said to be strong if it carries a normal contact
force greater than the average normal contact force. The aver-
age normal contact force is defined here as follows:

f n
ave = 1

Nc

Nc∑

i=1

f n
i , (9)

where f n
i is the i-th normal contact force.

Figure 14 depicts the evolution of fabric measure Hd/Hm

with ε1 for dense and loose samples considering all contacts.
We have defined Hd and Hm similar to q and p as follows:

Hd =
√

3{(H11−Hm)2+(H22−Hm)2 + (H33 − Hm)2}/2

and Hm = (H11 + H22 + H33)/3. Although the shape of
Hd/Hm versus ε1 curve has little similarity with q/p versus
ε1 curve, the tendency is different. For example, the stress
ratio q/p is minimum when b is 1, while the fabric measure
Hd/Hm is maximum when b is 1. Instead, the evolution of
fabric considering the strong contacts can be considered. The
evolution of fabric measure Hs

d /Hs
m considering the strong

contacts with ε1 for dense and loose samples is depicted in
Fig. 15, where Hs

d and Hs
m are defined as follows: Hs

d =
√

3{(Hs
11

− Hs
m)2 + (Hs

22
− Hs

m)2 + (Hs
33

− Hs
m)2}/2 and

Hs
m = (Hs

11
+ Hs

22
+ Hs

33
)/3. Note that Hs

d /Hs
m versus ε1

curve has nice similarity with q/p versus ε1 curve for dif-
ferent values of b ranging from 0 to 1. Antony and Kuhn
[34] also observed the similarity between the deviatoric to
mean stress ratio and axial strain for axisymmetric triaxial
compression (b = 0) in a dense sample considering strong
contacts in the simulation. The current study depicts that the
similarity is also available for general stress paths (i.e., for
other values of b) considering only the strong contacts.

The relationship of (Hs
d /Hs

m)peak versus b and (q/p)peak

versus b is depicted in Fig. 16 for dense and loose samples.
The relationship between (Hs

d /Hs
m)peak and b has an excel-

lent similarity with the relationship between (q/p)peak and
b. This similarity suggests that the difference of the peak
stress ratio for different b values is the consequence of the
difference in the fabric anisotropy developed due to strong
contacts during shear deformation. The relationship between
the stress ratio q/p and fabric measure Hs

d /Hs
m is depicted in

Fig. 17 for different b values and sample densities. A unique
relationship between q/p and Hs

d /Hs
m is noted regardless of
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Fig. 15 Relationship between
Hs

d /Hs
m and ε1 for different b

considering strong contacts.
a For dense sample. b For loose
sample

Fig. 16 a Relationship between
(H S

d /H S
m)peak and b for dense

and loose samples.
b Relationship between
(q/p)peak and b for dense and
loose samples

Fig. 17 Relationship between q/p and Hs
d /Hs

m for different densities
and b values

b and sample densities when strong contacts are considered.
Following the similar approach of the current study (i.e., con-
sidering only the fabric related to the contact normal), Antony
et al. [37] depicts that the ratio of the stress ratio to the square
root of fabric ratio contributed by the strong contacts is ≈ 1/2
in a 2D biaxial simulation for oval particles. In our study, we
depicts that the ratio of q/p to Hs

d /Hs
m is ≈ 1 regardless of

b and sample densities.

4 Conclusions

A detailed numerical study for the comparison of differ-
ent macro and micro quantities for different densities of the
numerical samples and b values is presented in this paper. A
series of strain controlled constant mean stress b-test were
carried out without any bias in the initial fabric of the numer-
ical dense and loose samples. The simulated stress-strain-
dilative responses for different b values under dense and loose
conditions of the numerical samples were in good agreement
with the experimental tendencies qualitatively. Some of the
points of the numerical study can be summarized as follows:

1. A unique relationship between dilatancy index and equiv-
alent deviatoric strain is noticed for small strain level
regardless of b value for dense sample, while the same
for loose sample is not unique.

2. The change in strain increment vector direction is more
irregular for loose sample than dense sample.

3. The Lade and Duncan’s [10] failure model approximates
the DEM based failure surface better than Matsuoka and
Nakai’s failure model [24] for dense sample, while for
loose sample, both the models approximate the DEM
based failure surface reasonably well.
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Density dependent macro-micro behavior of granular materials 593

4. The evolution of coordination number is little susceptible
to the variation of b at the peak state regardless of the
density of sample and increment of strain.

5. A linkage between stress ratio and fabric measure is
depicted. A unique relation between the stress ratio and
fabric measure related to the strong contacts is noticed
regardless of b value and the density of sample.
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