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Abstract The energy dissipation from particulate systems
undergoing particle crushing is often assumed to scale solely
with the increase in surface area, irrespective of the strain
energy stored in the surrounding media. By analyzing ideal-
ized particulate systems undergoing a single particle crushing
event, this assumption is questioned and proven invalid. Two
analysis types are considered. One represents the particulate
system as an idealized assembly and then represents particle
contact forces as members belonging to a periodic lattice.
The other treats the particulate system as an elastic contin-
uum. Different sizes of two and three dimensional particulate
systems are considered, as well as isotropic and anisotropic
confining stress states. The overall dissipation is shown to
depend strongly on the dimensionality of the system, the
anisotropy of the confining stress state and the elastic prop-
erties of the system. The ratio between dissipation due to
stored elastic energy redistribution from surrounding media
and dissipation by fracture surface energy is calculated. The
ratio is found to diminish with the increasing dimensionality
of the system. It is also shown that this ratio is independent
of the fracture surface energy of the material. The most rel-
evant analysis of a three dimensional particulate system to
accurately estimate this ratio seems to be a one dimensional
analysis of the force chain containing the most heavily loaded
particles.
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1 Introduction

The energetics of crushing in particulate systems has been
studied for many decades. The earliest work includes that of
von Rittinger [1] who proposed that energy dissipation aris-
ing from crushing is directly proportional to the increased
surface area of the particles. More recently, dissipation has
been attributed to creation of new surface area as well as fric-
tion, for example by geophysicists in studies of particulate
fault gouge during earthquakes (e.g., [2,3]), and in geome-
chanics studies on work balance and stress-strain behaviour
of granular geomaterials exhibiting particle crushing [4,5].

The energy balance equation for idealized isothermal rate
independent processes is generally given by:

�W = �� +��, �� ≥ 0 (1)

where �� is the change of free energy and is attributed to
change of stored elastic energy in the system, �W is the
work added to the system and�� is the incremental internal
mechanical dissipation, which is always non-negative.

In geomechanics, using conventional p−q notations, this
can be rewritten as:

pdεv + qdεs = pdεe
v + qdεe

s + ��

V
(2)

in which�W/V = pdεv+qdεs is the external work put into
the geomaterial per volume and ��/V = pdεe

v + qdεe
s is

the amount of work input converted to stored elastic energy
per volume causing elastic deformation. p, q, dεv and dεs

are the mean effective stress, the shear stress, volumetric
strain increment and shear strain increment, respectively.
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300 A. R. Russell, I. Einav

A superscript e attached to the strain increment indicates the
elastic component. When particle crushing does not occur,
it is common to attribute ��/V entirely to dissipation due
to friction. When particle crushing does occur, an additional
dissipation mechanism is often lumped into��/V to reflect
dissipation via creation of surface (e.g., [4]). Accordingly,
McDowell et al. [4] proposed the following work balance
equation:

pdε p
v + qdε p

s = Mp
∣
∣dε p

s
∣
∣ + �∗dS (3)

Note that pdε p
v + qdε p

s on the left hand side of Eq. (3) is
the increment of plastic work put into the system per volume
and is equal to the total work put in less the part converted
to elastic stored energy ((�W −��) /V ). A superscript p
attached to the strain increment indicates the plastic compo-
nent. The right hand side of Eq. (3) includes two dissipation
types, one due to friction (��friction/V = Mp

∣
∣dε p

s
∣
∣), in

which M is a friction coefficient, and the other representing
fracture surface energy (��fracture/V = �∗dS), in which
dS is a surface area increment. For a geomaterial with a solid
volume Vs , and a void ratio e, the link between dissipation
and creation of new surface area is given by the ‘specific
fracture surface energy’, �∗ = �/(Vs(1 + e)), employing
a putative material constant, the ‘fracture surface energy’ �
(having units of N/m).

It is important to distinguish between fracture surface
energy and surface free energy. The surface free energy of an
ideal solid is the work needed to produce a unit of new sur-
face by a reversible process yielding an equilibrium surface
[6]. The surface free energy is indeed a material constant. But
with many granular materials and real loading environments,
especially granular soils being subjected to high stresses in
engineering applications, fracture of a particle occurs uncon-
trollably. When uncontrollable fracture occurs it is fracture
surface energy that is mostly considered.

In experiments fracture surface energy is derived by mea-
surements of the force needed to initiate extension of pre-
existing cracks or develop new cracks in a specimen of known
geometry under known loading conditions [7]. Therefore,
unlike the surface free energy, the fracture surface energy
is state dependent and not a material constant. Moreover,
uncontrolled fracture is associated with micro cracking and
difficult to measure surface roughness and area. There is also
an amount of energy dissipation at the newly created sur-
face when uncontrolled fracturing occurs, which is also very
difficult to measure. Crystallographic orientation along the
surface is also unknown and adds uncertainty. Furthermore,
the advancement of a crack is influenced by micro structural
inhomogeneities. For these reasons, fracture surface energy
is larger than the surface free energy by a factor of at least 2,
and often by a factor of 10 or more [7].

In view of this, fracture surface energy � (rather than
surface free energy) is linked directly to the particle crush-
ing event in this study and features in the energy balance
equations.

There is another and less often considered dissipation
mechanism when particle crushing occurs. It is due to the
redistribution of stored elastic energy in the particulate sys-
tem surrounding the crushed particle, which is separate
from the ��/V = pdεe

v + qdεe
s term defined above. The

concept is illustrated in Fig. 1 (after Einav and Nguyen
[8]). The idea that part of the stored elastic energy con-
tributes to plasticity and dissipation processes is not new.
For example, Collins [9] explains how part of the stored
elastic energy becomes frozen and unrecoverable in many
situations in which geomaterials deform, and as a conse-
quence plastic energy is stored and is recoverable. The pro-
portion of the stored elastic energy that is frozen depends on
the nature and magnitude of the plastic deformations which
occur.

particles 
reorganisation 

(a) (b) (c)

surface freeing & 
force redistributions 

onset of 
crushing 

Fig. 1 Three distinct dissipation modes follow the crushing of a single
particle (after Einav and Nguyen [8]): a a particle is about to crush, deliv-
ering a given network of contact forces represented by lines thickened in
proportion to their magnitude; b new surface area is suddenly liberated
that reduces the energy of the individual crushed particle (i.e., associ-
ated with the fracture surface energy by newly formed area); however,

the inability of that particle to carry loads is responsible for additional
redistribution of forces in the surrounding neighbourhood (i.e., dissipa-
tion from strain energy redistribution); c reorganisation of the fragments
and their neighbouring particles, leading to plastic volumetric dissipa-
tion associated with friction. This paper deals with the two modes of
dissipation associated with b
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Energy dissipation from particulate systems 301

To explore the significance of this type of redistribution
dissipation, Nguyen and Einav [10] developed a simple 1D
model of springs in series that was connected in parallel, in
its middle, with another ‘crushable’ spring-connector. Such
a simple model does not introduce plastic volumetric dis-
sipation due to friction. Nevertheless, it does demonstrate
that once the connector particle crushes the energy dissipated
from the system comes primarily from the force variations
along the neighboring springs in the series, and may be sig-
nificantly larger than the dissipation from the connector itself
associated with the fracture of the individual particle. The dis-
sipation from the crushed connector particle did not require
knowledge of the fracture surface energy �, as it could be
linked directly to the amount of energy stored in that con-
nector particle prior to its crushing.

Acknowledging this contribution of energy redistribution
to the overall dissipation budget, and maintaining the use of
the constant �, Russell [11] examined a slight modification
to the work equation hypothesis stated above:

pdε p
v + qdε p

s = Mp
∣
∣dε p

s
∣
∣ + �∗dS (1 + R) (4)

R was introduced as a non-dimensional factor to represent
the additional contribution of dissipation arising from the
energy redistribution (��redist = R��fracture = R�∗dS).
Notice that R = ��redist/��fracture is assumed to be inde-
pendent of � in Eq. (4). Also, Eq. (4) does not include the
rate of dissipation arising from plastic volumetric dissipa-
tion and friction associated with newly created fragments.
Subscripts ‘fracture’ and ‘redist’ distinguish between incre-
mental dissipations due to fracture surface energy and energy
redistribution in the surrounding media, respectively.

The 1D spring model by Nguyen and Einav [10] motivates
a factor R at the order of the number of particles involved in a
typical force chain (∼ 5−20). By analyzing published exper-
imental data for a quartz sand undergoing crushing in oedo-
metric compression using Eq. (4), Russell [11] confirmed
this order of magnitude of R once a limiting compression
behaviour had been reached (note that a subscript ‘surface’
was used to denote fracture surface energy in [11]).

Here we explore whether R, which is a non-dimensional
ratio between two energy dissipation types, could be state
sensitive. In other words, do different loading paths corre-
spond to different R values? Accordingly, should R depend
on S, confining stress anisotropy (through p and q) or any
other material variables? To answer this question the sim-
ple 1D model view of Nguyen and Einav [10] is built on
to analyze 2D and 3D systems. Two types of analyses are
conducted. The first represents particulate systems as ide-
alized assemblies of particles and then represents particle
contact forces as forces in members belonging to periodic lat-
tices. The second, referred to as continuum analyses, treats
the particulate systems as isotropic linear elastic materials
shaped like a cylinder (2D) or sphere (3D). Different sizes

of systems are considered, as are isotropic and anisotropic
(biaxial for 2D and triaxial for 3D) confining stress states.
In both analysis types stored and dissipated energy terms are
derived relevant to a single particle crushing event. It is noted
that lattice and continuum analyses may only be compared
to each other using the elastic constants relevant to the lattice
geometry. There are very few lattice geometries which have
isotropic structures (thus permit isotropic linear elasticity to
be used in continuum analyses) and which can be shaped so
that their outer boundary approximately resembles a cylinder
or sphere.

The analysis methods used are highly idealized, but use-
ful to study particle scale properties and loading conditions
influencing energy balance. For the uncrushed particles we
treat their energy entirely as elastic stored energy and we
assume negligible their changes to surface area resulting from
deformations due to load changes. In real particulate systems
the redistribution of stored elastic energy in the system sur-
rounding the crushed particle will depend very much on what
happens locally around the particle that crushes and whether
its fragments can carry load. So, to simplify the analyses, we
assume that the crushing event and the attainment of a new
quasi-static system takes place during an infinitesimal time
increment, fragments of the crushed particle are completely
unloaded and that the sum of the strain energies stored in the
fragments is zero. This way��fracture may be linked directly
to the loads acting on the particle causing it to crush and the
stored strain energy in the particle under those loads.

2 Energy considerations

What follows are detailed analyses of energy dissipation
mechanisms in an idealized particulate system accompany-
ing a single crushing event, which includes the crushing event
itself plus all of the associated changes in the surrounding
state immediately after crushing. The energy dissipation is
assumed to occur during a very short time increment�t and
that a new quasi-static steady state is reached while the exter-
nal boundaries of the system do not move.

Since the external boundaries do not move, the incremen-
tal work applied on the particulate system can be neglected,
leading to:

�W = �� +�� = 0 (5)

The incremental energy dissipation takes on its maximum
possible value (energy dissipation is maximized when the
system is closed). In real particulate systems, if crushing
occurs quickly with insufficient time for the system boundary
to move, then dissipation will also be maximized. However,
if the system boundary moves at the same time that crushing
occurs, smaller energy dissipations would be calculated.
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The maximized incremental energy dissipation during the
crushing event in an idealized particulate system is assumed
to be divided into two parts. Firstly, each particle in the sys-
tem before it crushes has a certain amount of elastic strain
energy, and when a particle crushes it breaks into many frag-
ments. Its strain energy is dissipated which is analogous to
the energy associated with the creation of surface area due
to uncontrolled fracture of that particle only, i.e. its frac-
ture surface energy. No other new surfaces are created in
the particulate system. Secondly, when a particle crushes,
a force redistribution (and associated internal displacement)
of the surrounding particulate system occurs. This is associ-
ated with strain energy dissipation in the system surrounding
the crushed particle. Although this strain energy dissipation
arises when a particle crushes, in the formulations below it
is treated separately to the dissipation of the stored elastic
energy in the crushed particle. Therefore:

�� = �2 −�1 �� = ��fracture +��redist (6)

where subscript ‘1’ denotes association with the state of the
original particulate system (before particle crushing); sub-
script ‘2’ denotes association with the state of the modified
particulate system after�t has passed and any residual inter-
nal kinetic energy has been converted to changes in the elastic
strain energy.

By considering both Eqs. (5) and (6):

��redist = �1 −�2 −��fracture (7)

It is assumed that the fragments of the crushed particle are
completely unloaded and that the sum of the strain energies
stored in the fragments is zero. ��fracture is then equal to
the elastic strain energy in the particle immediately before it
crushes. Therefore ��redist is calculated using strain ener-
gies in systems which are subtly different before and after
the crushing event. It is not correct to think of ��redist as
a change to strain energy as it also captures changes to the
particulate system geometry (the creation of an inner cavity)
and load carrying mass. Indeed the elastic changes to the par-
ticulate system geometry, the creation of an inner cavity and
the change to load carrying mass are the mechanisms which
cause��redist to exist, even when ’plastic’ rearrangement of
particles does not occur. This dissipation relates to a move
from an initial state, just prior to crushing, to a second quasi-
static state reached through damping relaxation [10]. The
source of this damping in [10] is external (e.g. heat transfer
through conduction and radiation to the surrounding fluid,
acoustic emission, friction with surrounding molecules), and
not because of inter-particle friction or inelastic collisions.
In that respect, here the rearrangement of particles is purely
elastic and not derived from non-affine sliding or collisions.

The ratio R = ��redist/��fracture is an important focus
in this study as it distinguishes Eqs. (3) and (4). It is empha-
sized that the dissipation assumed in Eq. (6) does not reflect

volumetric plastic rearrangements that may follow crushing.
This is reasonable for the idealized systems studied below,
and is not intended to represent the full complexity in natural
particulate materials.

It is noted that some time after the crushing event, when the
external boundary has had time to move, plastic rearrange-
ment will have occurred, that there will be further changes
to the elastic stored energy throughout the particulate sys-
tem, that there will be changes to external work put into the
system, and that energy will have been dissipated due to fric-
tion/sliding etc. But this study focuses just on the energy
balance immediately before and after the sudden crushing
of a particle, prior to these continuing processes, to highlight
there is more to dissipation than just energy required to create
surface or plastic particle rearrangements.

3 Evaluating energy dissipation in a particulate system
by treating it as a periodic lattice

In this section the energetics of a particle crushing event is
studied by treating a particulate system as a hexagonal pack-
ing of particles (cylinders) (Fig. 2a) of diameters D and unit
widths. The unit cell of the lattice is an equilateral triangle of
side length D. One lattice member contributes to a volume
of

√
3D2/6. Plane strain conditions are assumed.

Before particle crushing, the particles are packed so their
centres form a periodic lattice of equilateral triangles of side
length D. The force carried by a member of the lattice repre-
sents the contact force between two particles. It is assumed
that a member stiffness is linearly elastic, and therefore that
the stiffness between two contacting particles is also linearly
elastic. For simplicity it is assumed that all members of the
lattice are connected by pin joints. The lattice members have
a modulus Es , thickness ts and cross sectional area per unit
width As = 1ts . All energy terms W, � and � computed
therefore represent energies per unit width.

Initially in this section attention is given to the lattice with
a hexagonal external boundary with side lengths 3D, so the
distance between opposite corners of the external boundary
is 6D (Fig. 2b). Later other lattice sizes are considered.

Figure 2b represents the lattice before particle crushing.
The lattice is subjected to external punctual forces at the pin
joints on the external boundary so that each lattice member
carries an equal force. f denotes the member force per unit
width. Since the geometry of the lattice is isotropic, and the
member forces are equal, the loading action of the external
punctual forces is equivalent to the loading action of an exter-
nally applied isotropic confining stress σ . f is related to σ
by:

f =
√

3σD

3
(8)
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3D

σ

σ

f 

Ψ1 = 13.5σ 2D3/EsA 

Ψ2 = 11.98σ2D3/EsA 

ΔΦfracture = 0.5σ 2D3/EsA

Removal of six
half-members 

Fixed external boundary
(a) (c)

(b) (d)

Fig. 2 A lattice analogy to represent the energy mechanisms associ-
ated with particle crushing. Notice that ��fracture = 0.5σ 2 D3/Es A,
and��redist = �1 −�2 −��fracture = 1.02σ 2 D3/Es A. a Hexagonal
packing of cylindrical particles overlaid by a periodic lattice. The force
carried by a member of the lattice represents the contact force between
two particles. b An isotropic macroscopic stress of σ is applied to the
lattice so that the forces in each member are the same and equal to
f = √

3σD/3. c Once the member forces f = √
3σD/3 are imposed

throughout the lattice, displacement is prevented at the external bound-
ary and six-half members radiating from the central point are removed to
represent crushing of a single particle. d The six half-members removed
from the lattice have a strain energy representing the strain energy
belonging to one particle immediately before it crushes, and is dis-
sipated by the crushing event. This strain energy is associated with the
creation of surface area

f causes a member displacement x and member strain ε
given by:

x = f D

Es As
ε = f

Es As
(9)

The mechanical work input associated with the externally
applied load is W1. It is assumed that no energy dissipation
occurs due to this loading, so the mechanical work input is
converted to strain energy (stored energy), and W1 = �1.
The associated strain energy for a single lattice member is
found using the expression:

ψ =
x∫

0

f dx =
f∫

0

f D

Es As
d f =1

6

σ 2 D3

Es As
(10)

The total strain energy (total stored energy) of the original
lattice (�1) is the sum of the strain energies for the internal

members and half of the strain energies for the members
making up the external boundary. This is because the strain
energy of the triangular unit cell is the sum of half of the
strain energy in each of the three members used to form it.
In a lattice where unit cells adjoin, internal members belong
to two unit cells so their full amount of strain energy is used,
but external members belong to only one unit cell so half of
their strain energy is used. It follows that:

�1 =
∑

internal

ψ + 1

2

∑

boundary

ψ = 27

2

σ 2 D3

Es As
(11)

To simulate the crushing of a single particle six half-members
of the lattice radiating from the central pin joint are removed
(Fig. 2c). It is assumed that the external boundary of the
lattice is fixed (once the member forces of loading situa-
tion in Fig. 2b are imposed) to simplify the analogy as there

123
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will be no changes to the mechanical work applied, even
when changes to the stresses applied at the external bound-
ary occur. The modified lattice, with the fixed outer boundary
and parts of internal members removed, undergoes an internal
force and strain redistribution. The new strain energy is �2.
It and the two other energy terms which represent dissipative
processes will now be quantified.

To find �2 the new member forces in the modified lat-
tice were calculated (using a structural analysis) and then the
strain energies for each member were summed (taking only
half the energies for members on the external boundary) giv-
ing:

�2 = 1653

138

σ 2 D3

Es As
(12)

It follows that:

�� =
(

1653

138
− 27

2

)
σ 2 D3

Es As
= −35

23

σ 2 D3

Es As
(13)

The energy dissipation term��fracture represents the loss of
strain energy that was stored within the removed six half-
members (Fig. 2d). This strain energy is dissipated due to
the creation of surface area. ��fracture is simply six times
half the energy for a full length member:

��fracture = 6
ψ

2
= 1

2

σ 2 D3

Es As
(14)

The energy dissipation term ��redist represents dissipation
associated with the force and strain redistribution in the mod-
ified lattice. ��redist may be evaluated using Eq. (7) as
�1, �2 and ��fracture are already known.

��redist =
(

35

23
− 1

2

)
σ 2 D3

Es A
= 47

46

σ 2 D3

Es As
(15)

The ratio ��redist/��fracture is then:

��redist

��fracture
= 47

23
(16)

Energy terms for other lattice sizes, including a general term
for a lattice of size 2nD between opposite corners, are given
in Table 1. The values of �1, �2, ��redist, ��fracture and
−�� are plotted against lattice size in Fig. 3. The results
indicate that energy dissipation due to load redistribution in
surrounding particles may be (at least) of the same order
of magnitude as that due to the fracture surface energy of
the individual particle undergoing crushing and should be
included in an energy balance equation.

4 Evaluating energy dissipation in a two-dimensional
particulate system by treating it as an elastic
continuum

Now the particulate system is treated as a linear elastic con-
tinuum. For ease of analysis, and to maintain an approximate
similarity to the hexagonal geometry used in deriving the lat-
tice solutions, the continuum is assumed to have a cylindrical
outer boundary, and as well as a cylindrical inner boundary
which encloses a cavity created by a crushed particle (anal-
ogous to removing the six-half members in the lattice). In
the first case considered it is supposed that loads acting on
boundaries are uniformly distributed radial pressures (Fig. 4).
In the second case it is supposed that an anisotropic (biax-
ial) pressure distribution is present on an infinite boundary.
The relevant energy terms are evaluated using closed form
analytic functions as detailed below.

4.1 General expressions

The general term for strain energy in a continuum, per unit
of volume, is:

ψ (σ, ε) =
∫

ε

σi j dεi j (17)

The absolute strain energy for a volume V is then:

� =
∫

V

ψ (σ, ε) dV =
∫

V

∫

ε

σi j dεi j dV (18)

which can be simplified for isotropic, homogenous and linear
elastic materials:

� = 1

2

∫

V

σi jεi j dV (19)

To evaluate� the stresses and strains throughout the contin-
uum need to be defined.

4.2 Analysis to consider an isotropic confining stress state

For an isotropic confining stress state, at a radius r from
the centre of the continuum, the major and minor principal
stresses are the radial stress σr and tangential stress σθ . The
equilibrium equation is:

dσr

dr
+ σr − σθ

r
= 0 (20)

The radial strain εr and tangential strain εθ are given by:

εr = −du

dr
εθ = −u

r
(21)
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Table 1 Energies for (a) two dimensional hexagonal lattices and (b) elastic continua of different sizes. The tabulated energy values have to be
multiplied by σ 2 D3/Es As . A Poisson’s ratio of μ = 0.25 was used

Hexagonal lattice size
(distance between
opposite corners)

�1 �� f racture �2 �� ��redist ��redist/�� f racture

(a)

4D 6 1/2 23/5 −7/5 9/10 9/5

6D 27/2 1/2 1653/138 −35/23 47/46 47/23

8D 24 1/2 22.429 −1.571 1.071 2.142

10D 75/2 1/2 35.905 −1.596 1.096 2.192

: : : : : : :

2nD 3n2/2 1/2 - - - -

(b)

4D 6 1/2 33/7 −9/7 11/14 11/7

6D 27/2 1/2 351/29 −81/58 26/29 52/29

8D 24 1/2 564/25 −36/25 47/50 47/25

10D 75/2 1/2 2775/77 −225/154 74/77 148/77

: : : : : : :

2nD 3n2/2 1/2 3n2(3n2 − 1)/
2(3n2 + 2)

−9n2/

2(3n2 + 2)
(3n2 − 1)/
(3n2 + 2)

(6n2 − 2)/
(3n2 + 2)

where u is the radial displacement at r . εr and εθ may be
expressed in terms of σr and σθ :

εr = (1 + μ) (1 − μ)

E

[

σr − μ

1 − μ
σθ

]

εθ = (1 + μ) (1 − μ)

E

[

− μ

1 − μ
σr + σθ

]

(22)

where E and μ are the Young’s modulus and Poisson’s ratio
of the continuum.

The stresses within the continuum have the general form:

σr = A + B

r2 σθ = A − B

r2 (23)

where the constants A and B are evaluated by integration and
invoking boundary conditions. For the boundary condition
when a radial pressure pb is applied at the outer boundary of
radius b, and the inner boundary of radius a is not loaded,
the stresses are defined by Timoshenko and Goodier [12]:

σr = pb

(

1 − a2

r2

)

(

1 − a2

b2

) σθ = pb

(

1 + a2

r2

)

(

1 − a2

b2

) (24)

The expression for � in terms of a, b and pb is then:

�= 1

2

∫

V

(σrεr +σθεθ ) dV = π

b∫

a

(σrεr +σθεθ ) rdr

=
πp2

bb2
(

(1+μ) (1−2μ)+ a2

b2 (1+μ)
)

E
(

1− a2

b2

) (25)

�1 is the stored strain energy in the continuum prior to crush-
ing and is found by setting a = 0 and pb = σ in Eq. (25) to
give:

�1 = πσ 2b2 (1 + μ) (1 − 2μ)

E
(26)

�2 is the stored strain energy in the continuum after crush-
ing with an unloaded inner boundary and a fixed external
boundary. �2 is found by setting pb = [(1 − 2μ)

(

b2 − a2
)

/
(

a2 + (1 − 2μ) b2
)]σ (where pb was found by ensuring

εθ = 0 at b, meaning there is no displacement at the external
boundary due to the inner cavity being created, and pb has
reduced slightly from σ ). It follows that:

�2 =
πσ 2b2

(

1 − a2

b2

)

(1 + μ) (1 − 2μ)2

E
(

1 − 2μ+ a2

b2

) (27)

��fracture is the stored strain energy in a volume that would
neatly fill the inner cavity of radius a when subjected to a
confining stress σ and is:

��fracture = πσ 2a2 (1 + μ) (1 − 2μ)

E
(28)

��redist is then found using Eqs. (7), (26), (27) and (28):

��redist =
πσ 2a2

(

1 − a2

b2

)

(1 + μ) (1 − 2μ)

E
(

1 − 2μ+ a2

b2

) (29)

When the external boundary of the continuum is of infinite
extent ��redist can be found by letting b approach infinity
and is:
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Fig. 3 Energies �1, �2, ��redist, ��fracture and (−��) = ��

evaluated using the lattice analysis and elastic continuum analysis plot-
ted against lattice size. To get the full energy terms the values on the
vertical axes have to be multiplied by σ 2 D3/Es As . A Poisson’s ratio
of μ = 0.25 was used

b 

a 

Fig. 4 Inner and outer boundaries of the elastic continuum and their
similarity to a hexagonal lattice with internal half-members removed
from the central point

��redist,∞ = πσ 2a2 (1 + μ)

E
(30)

The energy ratios ��redist/��fracture and ��redist,∞/
��fracture are then:

��redist

��fracture
=

(

1 − a2

b2

)

(

1 − 2μ+ a2

b2

)

��redist,∞
��fracture

= 1

1 − 2μ

(31)

4.3 Comparisons with lattice analysis

Before the energy terms can be evaluated and compared with
those determined using the lattice analysis, equivalent elastic
properties for the continuum need to be established. Wang
and Mora [13] analyzed a number of periodic lattices. Using
their results for the 2D triangular periodic lattice and plane
strain, and setting the shear stiffness to be zero at the particle
contacts in their results, the macroscopic stresses and strains
are given by:

εr =
√

3

2Kn

[

σr − 1

3
σθ

]

εθ =
√

3

2Kn

[

−1

3
σr +σθ

]

(32)

where Kn = Es As/D is the stiffness of the lattice mem-
bers. It follows that the equivalent elastic properties of the
continuum for plane strain conditions (found by comparing
Eqs. (22) and (32)) are:

μ = 1

4
E = 5

√
3

8
Kn = 5

√
3

8

Es As

D
(33)

The input parameters to Eq. (25) which provide a relevant
solution for �1 of the original hexagonal lattice in Fig. 2b

are a = 0, b =
√

27
√

3/2πD and pb = σ (b defines the
radius of a cylinder having the same volume as the hexagonal
lattice) to give:

�1 = 27

2

σ 2 D3

Es As
(34)

which is exactly the same as that calculated earlier (Eq. (11)).

��fracture is found by setting a =
√√

3/2πD:

��fracture = 1

2

σ 2 D3

Es As
(35)

which is exactly the same as from the lattice analysis
(Eq. (14)). Note that a defines the radius of a cylindrical
cavity having the same volume as that lost by removing the
six half members.

For zero displacement at the outer boundary (Eq. (27)),

again using b =
√

27
√

3/2πD and a =
√√

3/2πD, �2 is:

�2 = 351

29

σ 2 D3

Es As
(36)
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The ��redist term can now be evaluated (Eq. (7)):

��redist = 26

29

σ 2 D3

Es As
(37)

and the ratio ��redist/��fracture is:

��redist

��fracture
= 52

29
(38)

The terms in Eqs. (37) and (38) are 13.96 % smaller than the
terms calculated above for the lattice (Eqs. (15) and (16)).
Modest differences are expected, as the forces in the removed
half-members of the lattice can not be represented exactly
by a uniform radial pressure acting on the cylindrical inner
boundary of the continuum.

Similar calculations were performed for different extents
of the outer boundary for comparisons with analyses of
lattices of different sizes. The results are presented in
Table 1. For an original lattice having a distance 4D between
opposite corners on the external boundary, ��redist =
9σ 2 D3/10Es As is given by the lattice analysis whereas
��redist = 11σ 2 D3/14Es As is given by the continuum
analysis, corresponding to a difference of 14.55 %. For
a lattice that has a distance 8D between opposite cor-
ners, the difference between the two analysis methods is
13.94 %, and for 10D the difference is 13.93 %. The values
of �1, �2, ��redist and −�� evaluated using the lattice
analysis and continuum analysis are plotted against size in
Fig. 3.

The �1 values are the same for both analysis methods.
The differences between �2 values obtained using the two
analysis methods are very small, being about 2.5 % for 4D
and reducing to 0.40 % for 10D. However, it is observed
that a small difference in �2 translates to a larger differ-
ence in��redist and therefore��redist/��fracture. It is also
observed that ��redist and ��redist/��fracture values for
the elastic continuum analysis stay around 14 % smaller than
corresponding values for the lattice analysis as the lattice
becomes increasingly large.

Increasing lattice size has little effect on reducing the dif-
ferences between��redist and��redist/��fracture values for
the two analysis types. This is because the stresses and strains
near the inner cylindrical boundary (or around where the half-
members were removed in the lattice) most significantly con-
tribute to calculations of��redist and��redist/��fracture for
all lattice sizes.

Evidently, ��redist and ��redist/��fracture due to the
removal of the six members from the lattice can be approx-
imated moderately well using the analysis of an elastic con-
tinuum with cylindrical boundaries.

pxb

pyb

b = 

a

θ

Infinite  

boundary 

Fig. 5 A cylindrical cavity of radius a in a continuum of infinite extent,
with principal stresses applied at the far field denoted pxb and pyb

4.4 Analysis to consider a far field biaxial confining stress
state

The influence of biaxial stresses far from the inner cylindrical
boundary of radius a is now considered for the linear elas-
tic material. The far field orthogonal principal stresses are
denoted as pxb and pyb (Fig. 5). The subscript b is adopted
here to represent an association with the far field to maintain
consistency with notations used earlier, even though the far
field is of infinite extent. The sudden emergence of the inner
cavity does not cause any displacements or stress changes at
an infinite external boundary. However, the problem when
the continuum is of finite extent is not considered, as diffi-
culties appear when attempting to fix the external boundary
once the inner cavity is created. Anisotropy of the far field
stress state exists when the ratio pyb/pxb is not equal to
unity.

An equivalent set of stresses at the far field boundary are
[12,14]:

σr |r=b = pxb + pyb

2
+ pxb − pyb

2
cos (2θ) (39a)

τrθ |r=b = − pxb − pyb

2
sin (2θ) (39b)

Supposing that the inner boundary of radius a is not loaded,
expressions for the stresses in the continuum surrounding the
inner surface that extends to infinity are given by the classical
Kirsch solution (e.g., see Jaeger and Cook [15]):
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σr = pxb + pyb

2

(

1 − a2

r2

)

+ pxb − pyb

2

(

1 + 3a4

r4 − 4a2

r2

)

cos (2θ) (40a)

σθ = pxb + pyb

2

(

1 + a2

r2

)

− pxb − pyb

2

(

1 + 3a4

r4

)

cos (2θ) (40b)

τrθ = − pxb − pyb

2

(

1 − 3a4

r4 + 2a2

r2

)

sin (2θ) (40c)

Due to the stress anisotropy σr and σθ are no longer principal
stresses.

Equation (22) may be applied to evaluate εr and εθ any-
where around the inner cavity. The shear strain is found using:

εrθ = (1 + μ)

E
τrθ (41)

Since the continuum is of infinite extent,�1 and�2 must be
equal to infinity. Even so, ��fracture and ��redist,∞ have
finite values, and expressions defining them were determined
using the procedure outlined below.

First, σ is used to denote the far field mean confining stress
applied to the system σ = (

pxb + pyb
)

/2, and dimension-
less parameters Kx and Ky (which always satisfy Kx +Ky =
2) represent ratios between the far field principal stresses and
the mean stress, respectively, Kx = pxb/σ, Ky = pyb/σ .

Within the particle immediately before it crushes the prin-
ciple stresses are everywhere pxb and pyb and the��fracture

term is found by evaluating:

��fracture = 1

2

∫

V

(

pxbεx + pybεy
)

dV (42)

to give:

��fracture =
πσ 2a2 (1+μ)

(

(1−μ)
(

K 2
x +K 2

y

)

−2μKx Ky

)

2E
(43)

Next � is defined as:

� = 1

2

∫

V

(σrεr + σθεθ + 2τrθ εrθ ) dV

= 1

2

b∫

a

2π∫

0

(σrεr + σθεθ + 2τrθ εrθ ) rdθdr (44)

in which the integration limit b = ∞ is not imposed just yet.
Expanding Eq. (44) gives the expression for�2 which is very
long so is not presented. Setting the integration limit a = 0
before expanding Eq. (44) gives the expression for �1:

�1 =
πσ 2b2 (1 + μ)

(

(1 − μ)
(

K 2
x + K 2

y

)

− 2μKx Ky

)

2E
(45)

Then, Eq. (7) is applied, and the limit b = ∞ imposed, to
give the expression for ��redist,∞:

��redist,∞

=
πσ 2a2 (1+μ)

(

(1−μ)
(

K 2
x +K 2

y

)

−(1−2μ) Kx Ky

)

E
(46)

The ratio ��redist,∞/��fracture is:

��redist,∞
��fracture

=
2

(

(1−μ)
(

K 2
x +K 2

y

)

−(1−2μ) Kx Ky

)

(1−μ)
(

K 2
x +K 2

y

)

−2μKx Ky

(47)

Both��redist,∞ and��fracture are affected by the anisotropic
confining stress state and, for a given μ, increase as the
stress state becomes more anisotropic, that is as Ky/Kx

(or Kx/Ky) increases (Fig. 6). Variations of the ratio
R = ��redist,∞/��surface with Ky/Kx (which is inter-
changeable with Kx/Ky) are shown in Fig. 7 for μ =
0.1, 0.2, 0.3 and 0.4. When Kx = Ky = 1 Eqs. (43), (46)
and (47) become the same as Eqs. (28), (30) and (31). When
μ = 0.25, R is equal to 2 (the same as would be obtained
using Eq. (31)) for all values of Kx and Ky so is unaffected
by the anisotropy. Also, when μ = 0.5, R becomes infi-
nitely large for all values of Kx and Ky , and when μ = 0, R
becomes equal to 1 for all values of Kx and Ky . For all
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Fig. 6 Normalized energy dissipations ��fracture E/πσ 2a2 and
��redist,∞ E/πσ 2a2 plotted against stress anisotropy Ky/Kx for two
Poisson’s ratios μ
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Fig. 7 Energy dissipation ratio��redist,∞/��fracture plotted against
Ky/Kx for a range of Poisson’s ratios μ

other values of μ, R is affected by Kx and Ky . In general, if
0.25 < μ < 0.5, then R decreases as the stress state becomes
more anisotropic, and if 0 < μ < 0.25, R increases as the
stress state becomes more anisotropic.

5 Evaluating energy dissipation in a three-dimensional
particulate system by treating it as an elastic
continuum

In this section the above elastic continuum analysis is
extended to a 3D system. It is supposed that the crushing
of a particle can be represented by the creation of a spherical
cavity (instead of a cylindrical cavity for the 2D problem).
In the first case considered it is supposed that loads acting
on boundaries are uniformly distributed radial pressures. In
the second case it is supposed that an anisotropic triaxial
pressure distribution acts on an infinite boundary. The rele-
vant energy terms can then be evaluated using closed form
analytic functions as detailed below.

5.1 Analysis to consider an isotropic stress state

For an isotropic confining stress state, the stress equilibrium
around the inner boundary can be written as:

dσr

dr
+ 2

(σr − σθ )

r
= 0 (48)

The radial stress σr is again the major principal stress and
the tangential stress σθ represents both the intermediate and
minor principal stress due to radial symmetry. The radial
strain εr and tangential strain εθ are given by:

εr = 1

E
[σr −2μσθ ] εθ = 1

E
[−μσr +(1−μ) σθ ] (49)

For the case when a radial pressure pb is applied at the outer
boundary of radius b, and the inner cavity of radius a is not
loaded, the stresses are defined by Timoshenko and Goodier
[12]:

σr = pb

(

1 − a3

r3

)

(

1 − a3

b3

) σθ = pb

2

(

2 + a3

r3

)

(

1 − a3

b3

) (50)

Noting that:

� = 1

2

∫

V

(σrεr + 2σθεθ ) dV

= 1

2

b∫

a

2π∫

0

π∫

0

(σrεr + 2σθεθ ) r2sinθdθdφdr (51)

�1 is found by setting a = 0 and pb = σ :

�1 = 2πσ 2b3 (1 − 2μ)

E
(52)

�2 is found by setting pb = [2(1 − 2μ)(b3 − a3)/

(a3(1 + μ)+ 2(1 − 2μ)b3)]σ (ensuring no displacement at
the external boundary):

�2 =
4πσ 2b3

(

1 − a3

b3

)

(1 − 2μ)2

E
(

2 (1 − 2μ)+ (1 + μ) a3

b3

) (53)

The ��fracture, ��redist and ��redist,∞ terms are then:

��fracture = 2πσ 2a3 (1 − 2μ)

E
(54)

and:

��redist =
2πσ 2a3

(

1 − a3

b3

)

(1 + μ) (1 − 2μ)

E
(

2 (1 − 2μ)+ (1 + μ) a3

b3

)

��redist,∞ = πσ 2a3 (1 + μ)

E
(55)

The energy ratios ��redist/��fracture and ��redist,∞/
��fracture are then:

��redist

��fracture
=

(

1 − a3

b3

)

(1 + μ)
(

2 (1 − 2μ)+ (1 + μ) a3

b3

)

��redist,∞
��fracture

= 1 + μ

2 (1 − 2μ)
(56)

5.2 Analysis to consider a far field triaxial confining stress
state

The influence of triaxial confining stresses far from the inner
spherical boundary of radius a is now considered. The far
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θ 

φ 

r 

i 

Fig. 8 Spherical coordinates used in the basic stress solution for a
uniaxial stress σi acting along the i axis at the infinite boundary
(Eq. (57))

field orthogonal triaxial principal stresses are denoted as
pxb, pyb and pzb. Again, the subscript b is adopted to repre-
sent an association with the far field, even though it is of infi-
nite extent. The problem with the continuum being of finite
extent is not considered for the reasons mentioned in the 2D
analysis. An anisotropy of the far field stress state exists when
either of the ratios pyb/pxb, pzb/pxb and pzb/pyb are not
equal to unity.

The full expressions for the stresses and strains through-
out an infinite continuum around a spherical cavity when a
triaxial stress state is applied in the far field are very long.
They are not presented here for brevity. They were found by
building on the basic solution given in Eq. (57) (Barber [16]),
which is for a single stress σi acting along the i axis (where
i can be either x, y or z) at the infinite boundary of the con-
tinuum containing the spherical cavity. a defines the radius
of the spherical cavity, and spherical coordinates r, φ and θ
are defined in Fig. 8. Minor typing errors in Barber’s equa-
tion (24.15) have been corrected in their representation here
in Eq. (57), and the corrected equation is in agreement with
that in Timoshenko and Goodier [12] written using different
notations. Equation (57) was derived following a very long
procedure which is fully outlined in Barber [16] (Section
24.1.2) so is not presented here for brevity.

σr

=σi

(

cos2θ+
(

6−25cos2θ+5μcos2θ
) ( a

r

)3+(−6+18cos2θ
) ( a

r

)5

7−5μ

)

(57a)
σθ

=σi

(

sin2θ+
(

4−5μ+5cos2θ−10μcos2θ
) ( a

r

)3+(

9−21cos2θ
) ( a

r

)5

2 (7−5μ)

)

(57b)

σφ=σi

(

3
(−2+5μ+5cos2θ−10μcos2θ

) ( a
r

)3+3
(

1−5cos2θ
) ( a

r

)5

2 (7−5μ)

)

(57c)

τrθ =σi

(

−1+ (−5−5μ)
( a

r

)3+12
( a

r

)5

(7−5μ)

)

cosθsinθ (57d)

τrφ=0 (57e)
τθφ=0 (57f)

For a triaxial stress state, the full expressions for σr , σθ , σϕ,

τrθ , τrϕ and τθϕ are found by applying Eq. (57) to the three
principal stresses acting on the infinite boundary. The result-
ing stress terms are transformed to a common reference coor-
dinate system and then superimposed. Corresponding strains
are found using the standard elastic stress-strain relationship.

Since the continuum is of infinite extent, �1 and �2

must be equal to infinity. However, as for the 2D problem,
��fracture and ��redist,∞ have finite values, and defining
expressions may be determined using the procedure outlined
below.

First, similar to the 2D problem, σ is used to denote
the far field mean confining stress applied to the system
σ = (

pxb + pyb + pzb
)

/3, and dimensionless parameters
Kx , Ky and Kz (which always satisfy Kx + Ky + Kz =
3) represent ratios between the far field principal stresses
and the mean stress, respectively, Kx = pxb/σ, Ky = pyb/σ,

Kz = pzb/σ .
Within the particle immediately before it crushes the prin-

ciple stresses are everywhere pxb, pyb and pzb and the
��fracture term is found by evaluating:

��fracture = 1

2

∫

V

(

pxbεx + pybεy + pzbεz
)

dV (58)

to give:

��fracture

=
2πσ 2a3

(

K 2
x +K 2

y +K 2
z −2μ

(

Kx Ky +Kx Kz +Ky Kz
))

3E
(59)

Next � is defined as:

� = 1

2

∫

V

(

σrεr + σθεθ + σφεφ

+2τrθ εrθ + 2τrφεrφ + 2τθφεθφ
)

dV

= 1

2

b∫

a

2π∫

0

π∫

0

(

σrεr + σθεθ + σφεφ

+2τrθ εrθ + 2τrφεrφ + 2τθφεθφ
)

r2sinθdθdφdr

(60)

in which the integration limit b = ∞ is not imposed just yet.
Expanding Eq. (60) gives the expression for�2 which is very
long so is not presented. Setting the integration limit a = 0
before expanding Eq. (60) gives the expression for �1:

�1 =
2πσ 2b3

(

K 2
x +K 2

y +K 2
z −2μ

(

Kx Ky +Kx Kz +Ky Kz
))

3E
(61)
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Then, Eq. (7) is applied, and the limit b = ∞ imposed, to
give the expression for ��redist,∞:

��redist,∞ = πσ 2a3 (1 + μ)

3 (7 − 5μ) E

×
(

(13 − 15μ)
(

K 2
x + K 2

y +K 2
z

)

+
(−6 + 10μ)

(

Kx Ky + Kx Kz + Ky Kz
)

)

(62)

The ratio ��redist,∞/��fracture is:

��redist,∞
��fracture

=
(1 + μ)

(

(13 − 15μ)
(

K 2
x + K 2

y + K 2
z

)

+
(−6 + 10μ)

(

Kx Ky + Kx Kz + Ky Kz
)

)

2 (7 − 5μ)
(

K 2
x + K 2

y + K 2
z − 2μ

(

Kx Ky + Kx Kz + Ky Kz
))

(63)

Again both ��redist,∞ and ��fracture are affected by
the anisotropic confining stress state. Equations (54), (55)

and (56) for the isotropic confining stress state are recovered
when Kx = Ky = Kz = 1.

Variations of normalized energy dissipations��fracture E/
πσ 2a3 and ��redist,∞E/πσ 2a3 with Ky/Kx and Kz/Kx

and two Poisson’s ratiosμ are presented in Fig. 9. In general,
both types of energy dissipation increase as the stress state
becomes more anisotropic. More specifically, for μ = 0.1,
and when Kx = 1, Ky = 5/3 and Kz = 1/3, the normalized
quantities of ��fracture E/πσ 2a3 and ��redist,∞E/πσ 2a3

are 2.25 and 1.80, respectively, compared to 1.60 and 1.10
for an isotropic stress state. For μ = 0.4, and when Kx =
1, Ky = 5/3 and Kz = 1/3, the normalized quantities of
��fracture E/πσ 2a3 and ��redist,∞E/πσ 2a3 are 1.39 and
2.19, respectively, compared to 0.4 and 1.40 for an isotropic
stress state.

Variations of the ratio��redist,∞/��fracture with Ky/Kx

and Kz/Kx for a range of Poisson’s ratios μ are presented
in Fig. 10. When μ = 0.2 the ratio R = ��redist,∞
/��fracture is equal to 1 for all values of Kx , Ky and Kz (the
same as would be obtained using Eq. (56)) so is unaffected

Fig. 9 Normalized energy
dissipations��fracture E/πσ 2a3

and ��redist,∞ E/πσ 2a3

plotted against Ky/Kx for a
range of Kz/Kx and two
Poisson’s
ratios μ
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Fig. 10 Energy dissipation
ratio ��redist,∞/��fracture
plotted against Ky/Kx for a
range of Kz/Kx and Poisson’s
ratios μ
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by the anisotropy. Also, when μ = 0.5 and Kx = Ky =
Kz = 1, R becomes infinitely large.

6 Discussion

For highly idealized particulate systems, expressions have
been derived for the energy dissipated by fracturing of a
single particle and by load redistribution in the surround-
ing particles. It has been shown that ratio R between the two
energy dissipations depends mainly on the elastic properties
of the particulate system and the anisotropy of the stress state
applied at the system boundary. To a lesser extent it depends
on the size of the system relative to the particle size.

Although the fracture surface energy � does not appear in
the calculations, the energy dissipated by crushing of a sin-
gle particle will be directly proportional to �. The amount of
work put into the system to generate sufficiently large contact
forces for the particle to crush must also be directly propor-
tional to �. The energy dissipated by load redistribution in
the surrounding particles must then also be directly propor-
tional to �. As a result, when one energy dissipation term is
divided by the other, the dependence on � is removed. R is
thus independent of �.

The analyses have also shown that R values were gener-
ally larger for the 2D plane strain case than the 3D case. For
μ = 0.2, R ranges between 1.67 and 2 for all stress states in
the 2D case, and R is equal to 1 for all stress states in the 3D
case. In the 2D and 3D systems ��redist and R depend on
the size of the particulate system only in a small way (there
is a slight influence of the size of b relative to a in Eqs. (31)
and (56) and diminishes as b becomes very large compared to
a). The load redistribution and associated internal deforma-
tion is suppressed by compressive loads developed in ‘arches’
around the created cavity. In the 1D case of Nguyen and Einav
[10], however, arching is not possible, and complete unload-
ing of the particulate system occurs after crushing meaning
R is quite large and linked heavily to the number of particles
in (or size of) the system. There seems to be a diminishment
of R with the increasing dimensionality of the system.

So what R value is most relevant to real particulate sys-
tems? To answer this question consider the work of Russell
[11] in which Eq. (4) was used to back calculate an R value
of about 16 in a quartz sand compressed to very high stresses
in an oedometer. Also, Russell et al. [17] found through a
study of individual particle stress fields that it is the largest
contact force which causes crushing. Since force chains in
real particulate systems typically act along a string of 5–20
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particles [18], the most relevant analysis to estimate R seems
to be an analysis of the force chain containing the most heav-
ily loaded particles. Such an analysis would be quite similar
to the 1D analysis of Nguyen and Einav [10]. It is noted,
however, that as a force chain collapses in a real particulate
system there may still be a small amount of arching and sup-
pression of load redistribution that can not be captured in a
1D analysis.

The authors hope that this study motivates others to focus
on crushing of particles in heavily loaded force chains. It
is well known that force chains are aligned closely with the
major principal compressive stress, and that as a soil is loaded
and deforms, or as particles crush, some force chains collapse
while others are formed (e.g., [18–20]). What is not known,
however, is how much of the significant energy stored in
heavily loaded force chains is dissipated and how much is
transferred to neighboring particles to form a new static equi-
librium and form new or strengthen existing force chains. The
challenge is to understand the energy balance during these
processes.

7 Conclusion

Two analyses of particulate systems that quantify the energy
redistribution and energy dissipation due to crushing of a
single particle are presented. Fixing the external boundary of
the system during the crushing event not only simplifies the
analyses but also ensures that the calculated energy dissipa-
tion is maximized.

In the first analysis type a 2D particulate system is ide-
alized in its assembly. Particle contact forces are repre-
sented as forces in members belonging to a periodic lattice.
It is found that the energy dissipation due to stored elas-
tic energy redistribution is generally as large as or a few
times larger than fracture surface energy representing the
dissipation from the crushed particle. The second analysis
type, when the particulate system is treated as a 2D elas-
tic continuum, produces similar results. Applying isotropic
and anisotropic stresses at the boundary of the elastic contin-
uum highlights that Poisson’s ratio and the stress anisotropy
significantly influence the ratio between dissipation due to
redistribution and dissipation due to fracture surface energy,
denoted R.

The elastic continuum analysis applied to a three dimen-
sional particulate system also highlights that Poisson’s ratio
and the amount of stress anisotropy significantly influence R.

The ratio R is of interest as it appears in a recently pro-
posed energy balance equation of particulate materials under-
going particle crushing.

The results of these and other analyses indicate that there
is a diminishment of R with the increasing dimensionality of
the system being analysed. For a typical Poisson’s ratio 0.2,

R is about 2 for all stress states in the 2D case, 1 for all stress
states in the 3D case, and ranges from 5 to 20 for a 1D case.
In view of this, and a back-calculated R = 16 for a quartz
sand experiencing crushing, the most relevant analysis of a
3D particulate system to accurately estimate R seems to be
a 1D analysis of the force chain containing the most heavily
loaded particles.
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