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Abstract A granular contact dynamics formulation for
elastically deformable particles is detailed. The result-
ing scheme bears some similarity to traditional molecular
dynamics schemes in that the consideration of a finite elas-
tic contact stiffness implies the possibility for inter-particle
penetration. However, in contrast to traditional molecular
dynamics schemes, there are no algorithmic repercussions
from operating with a large or, in the extreme case infinite,
contact stiffness. Indeed, the algorithm used—a standard sec-
ond-order cone programming solver—is independent of the
particle scale model and is applicable to rigid as well as elas-
tically deformable particles.

Keywords Contact dynamics - Discrete element method -
DEM - Elasticity

1 Introduction

The motion and interaction of discrete particles can be sim-
ulated using one of two different methods. The most pop-
ular method is the discrete (or distinct) element method
(DEM) pioneered by Cundall [1]. In this method, which is
often referred to as a molecular dynamics (MD) method,
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the positions of the particles are advanced in a fully explicit
manner using sufficiently small time steps. Interaction
between grains is accounted for by relating the overlap that
may occur between particles to forces via an appropriate con-
stitutive relation. While the motivation for this approach to
some extent is algorithmic, the penetration that occurs at
particle contacts may be interpreted as the actual deforma-
tion associated with particles of finite rigidity [2] and the
microscopic elastic constants (normal and tangential spring
stiffnesses) can be related to the equivalent macroscopic
quantities (bulk and shear modulus) [3-5]. However, in many
cases involving the flow and deformation of granular mate-
rials, the macroscopic system stiffness is orders of magni-
tude lower than the microscopic inter-particle stiffness. As
such, the inter-particle stiffness is often chosen as a com-
promise between the physics (large enough to not affect
the response significantly) and the computational perfor-
mance (small enough to not require a prohibitively small time
step). A typical example of such a compromise is described
in [6].

The second approach to the modeling of granular assem-
blies is the so-called non-smooth contact dynamics (CD)
method originally developed by Moreau et al. [7-10]. In the
most basic version of this method, the particles are considered
perfectly rigid and the contact forces are determined as those
that exactly prevent inter-particle penetration. An implicit
time discretization is usually employed, thus allowing for
larger time steps, and implying that collisions are ‘smeared’
over a finite time interval. A key point often stressed in con-
nection with the CD method is that assemblies consisting of
perfectly rigid particles do not allow for the propagation of
waves at a finite speed. However, in many scenarios of prac-
tical interest, wave propagation is of little significance, as is
elastic particle deformation, and the two methods then lead
to practically identical results (subject to identical tolerances
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being specified). Examples of application of the CD method
to the simulation of granular materials include [11-29].

Though aimed at simulating essentially the same phys-
ics, the basic premises and the algorithmic implementations
of the MD and CD methods are so different that they are
often considered two distinct methods, each with a set of
inherent assumptions that cannot be easily circumvented. In
particular, while the concept of particle deformability is at
the heart of the MD method, it is sometimes held that the
assumption of perfectly rigid particles is fundamental to the
CD method. However, as discussed by a number of authors,
notably [30,31], the CD method is in fact quite general and in
principe capable of accommodating any particle scale behav-
iour. In this paper, the case of elastically deformable parti-
cles is considered in detail. As in MD, the assumption of
a finite elastic contact stiffness leads to a situation where
particles may penetrate each other. In contrast to MD, how-
ever, the consideration of particle deformability is motivated
solely by the physics rather than the numerics. Moreover, the
basic CD framework is maintained and algorithms originally
developed for the perfectly rigid case are applicable with little
modification. In the present paper, we demonstrate this fact
with respect to an optimization based solution scheme pre-
viously developed for the perfectly rigid case [32].

The paper is organized as follows. In Sect. 2, the govern-
ing equations for frictionless rigid particles are summarized.
In the interest of clarity, the methodology is developed with
respect to two-dimensional circular particles. However, the
basic principles are straightforward to generalize to three
dimensions. One possible extension is outlined in “Appen-
dix 1”. Following [32] we make extensive use of variational
concepts. This sets the scene for subsequent developments.
In Sect. 3 the framework is extended to elastically deform-
able particles and in Sect. 4 inter-particle friction is included.
Finally, in Sect. 5, the effects of a finite elastic inter-particle
stiffness are illustrated with respect to the common biaxial
test before conclusions are drawn in Sect. 6.

2 Frictionless rigid particles
2.1 Equations of motion

The equations of motion for a single frictionless rigid particle
are given by

mo(1) = fex ey

where v(7) = (v (1), vy ()T are the linear velocities, m is
the mass, and f o, = (fx, fy)-erxt are external forces.
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2.1.1 Time discretization

Relating position to velocity by x(¢) = v(¢), the equations
of motion can be written as

mb(t) = fext (2)
v(t) = x(t)
These equations are discretized in time by the 8-method:
v — g
At = fext
3
0o+ (1 —O)py = ——20
At

where 0 < 6 < 1 and x( and vg are the known position
and velocity at time #y while x and v are the corresponding
quantities at time 9 + At. We have here assumed that f
are constant, stemming, for example, from gravity. Straight-
forward manipulations lead to the following expressions for
the displacements and velocities at time fg + Af:

mAx = f
N EE P “)
v_5|:A_t_( - )v0:|
where
_ 1 - _
m= Wm, fo = foxt +mvoAt )

and Ax = x — x¢ are the displacements. The stability prop-
erties of the 6-method are well known [33]: for 6 = % the
an unconditionally stable and energy preserving scheme is
recovered, for 6 > % the scheme is unconditionally stable
and dissipative, and for 6 < % stability depends on the time
step. In the context of collisions, the algorithmic energy dis-
sipation that occurs for 6 > % can be related to the physical
dissipation associated with impact and thus to the restitution
coefficient. Indeed, as shown in [32], a value of 6§ = % cor-
responds to an elastic collision while & = 1 reproduces a
perfectly inelastic collision.

2.2 Non-penetration condition

Consider two circular particles as shown in Fig. 1. The posi-
tions of the particles at time #( are given by xf) and x(j). The
condition that the particles do not penetrate each other at time
to + At can be stated as

lx" —x/|| = r' 41/ (6)

This inequality constraint is non-convex for spatial dimen-
sions greater than one and thus problematic to deal with.
Consequently, throughout this paper, we consider the linear
approximation:
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are the initial normal and gap respectively (see Fig. 1). The
linearized non-penetration can also be derived by expanding
the exact expression (6) in time and then using the 6-method
with & = 0 to express the velocities in terms of the displace-
ments. As such, the linearized non-penetration condition
may be viewed as being imposed in a fully explicit manner.
In other words, it is assumed that the geometry does not
change over the time step. Although this could potentially
compromise the stability of the system, practical experience
shows that stability for all but obviously unreasonable time
steps always is maintained.

2.3 Governing equations

We now consider the problem of frictionless contact involv-
ing two particles, i and j. In this case the governing equations
comprise momentum balance for each particle (incorporat-
ing contact forces), the linearized non-penetration condition
and conditions ensuring that the contact forces are positive
only if the gap is closed and otherwise zero. These require-
ments can be stated in terms of the following time discrete
governing equations:

i Axt = fo —nif p
mlAxd = fé—i—né{p
NT :
(ni;’) (Ax' — Ax7) < go )
p=0
ij T i j
p (no) (Ax — Axi)y—go| =0

where p is the contact force. The above governing equations
may be viewed as the optimality conditions associated with
one of four different optimization problems, or variational
principles. This is discussed in detail in the following sec-
tions

2.4 Variational formulation
Before proceeding with a variational formulation of the gov-

erning equations (9), it is convenient to introduce the follow-
ing matrix quantities which cover general n-particle systems:

M = diag(m', m', ..., m", m")
x=G. %Y, v=0 ..., V) (10)
g=(gl""7gN)’ p=(p17"'9pN)

where n is the number of particles and N is the number of
contacts. Furthermore, collecting the normals associated with
potential contacts in a matrix N, the governing equations (9)
can be written as

MAx + Nop = f,

NlAx < g
0 0 (11
p=>0

P (NJAx — g9) =0

where P =diag(p) and subscripts 0 again refer to the
known state. These equations constitute the first-order
Karush—Kuhn-Tucker (KKT) optimality conditions associ-
ated with the following optimization problem (see “Appen-
dix 3” for details):

. 1A T TF
min max ~Ax' MAx — Ax
nin ma {3 fo}
+{Ax"Nop — gl p} (12)
subjectto p >0

The first term in the objective function is a time discrete
form of the action integral associated with a collection of
non-interacting particles while the second term accounts for
the effects of contact. This principle reproduces the govern-
ing equations (11) after which the velocities at time t = #; =
to + At are calculated from the second equation of (4) and
used to set up a new optimization problem to determine the
displacements at time #,, etc.

Alternatively, the governing equations are recovered as
the solution to the following problem:

min max — {%tTM_lt —AxT(t - fo)}
Ax t.p

+{AxTNop — g p} (13)
subjectto p >0
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Fig. 2 Potential contacts as given by Delaunay triangulation

where ¢ are to be interpreted as dynamics forces (one of
the optimality conditions associated with the above problem
gives the relation £ = M Ax).

2.4.1 Displacement based problem

Solving the max part of the problem (12) gives rise to the
following displacement based problem:

minimize %AxTZ\_/IAx —AxT £y

(14)
subject to NgAx —g0=<0

The contact forces are here recovered as part of the solu-
tion, namely as the Lagrange multipliers associated with the
inequality constraints.

2.4.2 Force based problem

Similarly, solving the min part of (13) gives rise to the fol-
lowing force based problem:

maximize —%tTM_lt - g-orp
t+Nop = [ (15)
p=0

subject to

The displacements are here recovered as the Lagrange mul-
tipliers associated with the equality constraints.

In summary, the governing equations (11) can be cast in
terms of four different but equivalent variational statements:
the mixed force-displacement problems (12) and (13), the
displacement based problem (14), and the force based prob-
lem (15). Each of these four problems have their merits in
terms of providing physical insights and forming the basis
for computations.

2.5 Potential contact specification
Following [32], potential contacts at 7o + At are defined by

a Delaunay triangulation on the basis of the positions at #.
An example is shown in Fig. 2.
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Fig. 3 Contact between perfectly rigid (a) and elastic (b) particles

3 Frictionless elastic particles

The above model is now extended to cover elastically deform-
able particles. Adopting an approach equivalent to that of
MD where the elastic contact forces are proportional to the
inter-particle penetration, the only modification required con-
cerns the measure of the gap go. Thus, instead of requiring
the non-penetration condition satisfied exactly, we allow for
a penetration equal to k~!p where k is a constant charac-
terizing the effective stiffness of the contact (see Fig. 3).
The governing equations (9) for a binary system are thus
given by

miAxt = fo—nif p

miAx] = fl+nlp

(nf)j)T (Ax! —AxI) <go+k7'p (16)
p=0

i\ T . .
p [(né{) (Ax — Ax/) — go — k—lp} =0
while, for a n-particle system, (11) generalizes to

MAX+NOP=}O

NgAx <gyg+Cp

(17
p=>0
P(NJAx —gy—Cp) =0
where C = diag(l/kl, R l/kN) contains the contact

spring compliances.

3.1 Variational formulation

The governing equations (17) may again be thought of as
constituting the optimality conditions associated with a num-
ber of different optimization problems. One possibility is to
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extend min-max problem (13) to account for a finite particle
stiffness. This gives rise to the following problem:

min max — {%tTA_/I_lt —AxT(t — fo)}
Ax Pt
+{Ax"Nop —glp— 1p"Cp} (18)

subjectto p >0

We note the similarity of this problem to the classical Hel-
linger—Reissner variational principle [34—37]. Similarly, the
extension of (12) to account for particle elasticity can be car-
ried out in two ways: either by introducing the elastic energy
term % p'Cp as above or by introducing the elastic energy
in terms of additional kinematic variables (see “Appendix 3”
for details).

3.1.1 Force based problem

The force based version of (18) follows by solving its min
part to arrive at

maximize —%tTM_lt — ggp - %pTCp

t+Nop=fo 19)
p=>0

subject to

where the only modification with respect to (15) is the addi-
tion of the quadratic term accounting for particle elasticity
to the objective function.

4 Frictional elastic particles

The most general case of frictional elastic particles is con-
sidered next. Following [32] this problem appears by adding
appropriate tangential forces and accounting for the moments
induced by these tangential forces. The frictionless problem
(19) thus generalizes to

min max — {%tTM_lt —AxT(t - ]o)}

Ax,Aq P-4
+{AxTNop —glp — 3p"Cnp}
—{%rT]_lr —Aa(r —ﬁzo)} (20)
+{AxTN0q — Aa"Rogq — %AqTCTAq}
subject to gl —up <0

where the third and fourth terms in the objective function
account for sliding and rolling due to tangential forces.
The tangential forces, aligned along fzg (see Fig. 4), are
given by ¢, while the angles of rotation are given by «.
Elastic deformations are now accounted for by two contri-
butions: one concerning normal deformations governed by
effective contact compliances C y = diag(1/kL, ..., l/kf\\f)

X

Fig. 4 Frictional contact geometry

and one concerning tangential deformations governed by
Cr = diag(l/k1 e, l/kITV). ‘We note that while the nor-
mal elastic deformation can be accounted for on the basis of
the known geometry at time 7, the tangential deformation
requires consideration of the shear forces both at time #y and
to + At.

Regarding the additional rotational terms implied by the pres-
ence of a shear force, the matrix J contains the scaled mass
moments of inertia:

_ 1 B _
sz.], mo = JwoAt 2D

with J = diag(J Lo Jm being the mass moments of iner-
tia. The vector m(, with wq being the rotational velocities, is
the rotational equivalent to the effective translational force
vector }0- In the above, the rotational terms have been dis-
cretized in time analogous to the translational terms and the
rotational velocities are thus calculated as

1 TA
0= [A—‘: —- G)wo] (22)

The matrix R( concerns the contribution of the total angular
momentum balance from the tangential forces and contains
entries R;; = ri, I € C' where C! is the set of potential
contacts associated with particle i.

Finally, the Coulomb criterion is imposed with x being the
inter-particle friction coefficient. For further details on the
above formulation (for perfectly rigid particles) we refer to
[32].

4.1 Optimality conditions

Following the procedure in “Appendix 3”, the KKT con-
ditions associated with (20) can be shown to comprise the
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following sets of governing equations pertaining to linear
momentum balance:

t—i-Nop—i-Noq:]o,

_ (23)
t=MAx
angular momentum balance:
r—Roqg=m

_0‘1 0 (24)
r = JAx
sliding friction conditions:

_ <0

gl —np = (25)

diagA)(lg| — up) =0, L =0,

and kinematics incorporating elastic deformation character-
istics:

NiAx +ur =gy +Cyp

. (26)
N{Ax — R Aa = C7Aq + Sgn(g)r.

where Sgn is the signum function. Regarding the kinemat-
ics, we note that the variational formulation adopted leads to
an apparent dilation proportional to . However, as argued
in [32] and following [27-29,38-40], this dilation may be
viewed as an artifact of the time discretization which, with the
exception of a few pathological cases, gradually is reduced
as the time step is reduced. Moreover, in [32] it was shown
that the dilation, even for rather large time steps, is negligible
over a range of common conditions including both instances
of highly dynamic and relatively unconfined flows as well as
confined quasi-static deformation processes.

4.2 Force based problem

Finally, it is possible to cast (20) in terms of the following
force based problem:

maximize —%tTA_/I’lt — %rT]*]r
—glp—3pTCyp — 1AqTCrAq

subjectto ¢+ Nop + Nog = f 27
r — Rog = myo
gl —up <0

This is the problem actually solved in numerical calcula-
tions. For this purpose, a general second-order cone program-
ming solver, SONIC, recently developed by the authors is
employed. This solver is based on much the same principles
as the popular codes MOSEK [41] and SeDuMi [42]. Though
originally designed with continuum plasticity applications in
mind [37], it is ideally suited for the kinds of programs gen-
erated by the present granular CD scheme.
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4.3 Static limit

Onmitting the dynamic forces ¢ and r from the problem (27)
gives rise to the following static problem which is valid in
the limit of Az tending to infinity:

maximize —gz)rp - %PTCNP - %A‘ITCTA‘I

subjectto  Nop 4+ Nog = fex (28)
Rog =0
lgl —up <0

It is worth noting the similarity of this problem to those that
appear from finite element discretizations in continuum plas-
ticity, in particular computational limit analysis [35-37,43].
The above principle is useful for quasi-static problems gov-
erned by an internal pseudo-time rather than physical time.
Examples include common soil mechanics laboratory tests
such as triaxial tests, quasi-static soil-structure interaction
problems such as cone penetration, and various applications
in the earth sciences where the time scales are such that the
deformations are of a quasi-static nature, e.g. [44,45].

The static problem (28) reveals a number of interesting
properties related to the indeterminacy of force networks in
granular media. It is well known that perfectly rigid particles
lead to a situation where the force network solution is non-
unique [46-49]. Setting Cy = C7r = 0 1in (28) leads to a
linear program where global optimality may be achieved by
more than one set of forces. Conversely, for finite values of
Cy and C7, the solution is unique, i.e. there is a unique set
of contact forces leading to the optimal value of the objective
function. This property that elasticity ‘regularizes’ the prob-
lem has an interesting analogy in continuum plasticity where
it is well known that the assumption of a rigid-plastic mate-
rial behaviour leads to a situation where the bearing capacity
of a structure comprised of such material can be realized via
more than a single statically admissible stress field (the clas-
sical example being the Hill and Prandtl solutions for the
rigid punch [50]), while the inclusion of elasticity eliminates
this non-uniqueness.

5 Numerical examples

In the following, the effects of particle elasticity are stud-
ied with reference to the common biaxial test shown in
Fig. 5. The initial dimensions of the sample are approx-
imately 16 x 32cm?. Two different initial packings were
considered, in the following referred to as loose (porosity
of 0.22) and dense (porosity of 0.16). Each sample con-
tains some 8,000 particles that are assumed weightless. The
samples were generated by depositing rigid particles under
gravity into an open rectangular container with a width of
16 cm. The density of the samples was varied by varying the
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Rigid movable
walls, p,, = tan15°

Weightless disks:
d=0.25cm = 0.1cm
u = tan35°

{—16,= 100kN/m
/]

Hy =32 .cm
a
j\)

Rigid base

‘ By=16cm ‘

Fig. 5 Setup of biaxial test (actual samples contain approximately
8,000 particles)

inter-particle friction coefficient from a low value to pro-
duce the dense sample to higher values to produce the loose
sample. Next, constraints specifying vertical and horizon-
tal resultant forces corresponding to a uniform pressure of
100kN/m were imposed for a number of time steps until
the displacement increments between subsequent steps were

sufficiently small. This typically required some 8-10 steps.
The actual test was then carried out by progressively shifting
the upper wall downwards while maintaining constant hor-
izontal reactions. The Lagrange multipliers associated with
these latter constraints are the displacements of the walls.
These were recorded in each time step, together with the
displacement of the upper wall, to eventually infer strains.

5.1 Effects of normal stiffness

We first consider the case where k7 = oo. From a numeri-
cal point of view, this case is particularly simple as the term
involving Aq in (28) vanishes. This in turn means that no
information about forces needs to be carried over from one
time step to the next. For each packing, three different values
of the normal spring constant are used: ky = 10, 50 MN/m,
and oo. In all cases, a total of 400 increments of equal mag-
nitude are used to induce an axial strain of ¢, = 0.2.

The results in terms of plots of deviatoric stress, o, — op,
versus axial strain, ¢, = 1 — H/Hp, and volumetric strain,
&y = 1 — BH/ByH), versus axial strain are shown in Fig. 6.
The tendency from these figures is—not surprisingly—that
the inclusion of particle elasticity has a larger effect on the
apparent macroscopic stiffness for the initially dense sample.
Indeed, for the dense sample, particle stiffness constitutes the
major part of the contribution to the apparent macroscopic

Loose Dense
™ 150 T ™ 400
©
I‘_ !
3 © 300
2 100 a
(0] [0]
= =
= = 200
0 50 1]
S S
[e] [e]
E E‘ 100
> >
[O] [0]
(m) 0 : : : a 0
0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2
Axial strain, e Axial strain, €,
-0.06 -0.06
> >
w w
< -0.04 < -0.04
®© [\
= =
o -0.02 »  -0.02
L2 Q
= =
[) 0 [} 0
1S S
=} =}
o 0.02 S 0.02
> >
0.04 0.04 : :
0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2
Axial strain, € Axial strain, €
ky=10MN/m —— ky=50MN/m ky= o

Fig. 6 Biaxial test results for k7 = co

@ Springer



614

K. Krabbenhoft et al.

250

200

150

100 1

50

Deviatoric stress, ¢ 1 04

0 0.05 0.1 0.15 0.2
Axial strain, g,

-0.04

\

-0.03

-0.02 1

-0.01 1

Volumetric strain, €

0.01 : * .
0 0.05 0.1 0.15 0.2
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Kkl ky= © 10 1 0.25
0.05 0.025 0.01

Fig. 7 Biaxial test results for ky = 25MN/m (dense sample)

stiffness. Conversely, for the loose sample, particle rear-
rangement governs the apparent macroscopic stiffness and
particle deformation plays an insignificant role. Regarding
strength properties, the results are also in qualitative agree-
ment with what would be expected. That is, the dense sample
displays an apparent peak shear stress before tending to the
residual level while the loose sample approaches the resid-
ual—or critical—state in a monotonically increasing man-
ner. The suppression of the peak by particle compliance is
not entirely unexpected either. As the particle stiffness, and
thereby the system stiffness, decreases the attainment of the
peak stress will be delayed. And when it does occur, par-
ticle rearrangements have brought the system into a state
that implies a smaller peak stress, if any at all. Finally, we
note that, for each of the samples, the macroscopic deviatoric
stress reaches a constant value that is independent of the elas-
tic properties while the rate of volumetric strain tends to zero,
in agreement with standard continuum plasticity theories.

5.2 Effects of tangent stiffness

Next, we focus on the effects of a finite tangential stiff-
ness. The dense sample is considered with a normal particle
stiffness of ky = 25 MN/m. The effects of varying the tan-
gential stiffness, k7, are illustrated in Fig. 7. Again, we
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Fig. 8 Dependence of initial tangent Young’s modulus on particle
stiffness ratio k7 /ky (dense sample)
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Fig. 9 Dependence of initial tangent Poisson’s ratio on particle
stiffness ratio k7 /ky (dense sample)

observe that an decrease in k7 leads to a more compliant
system and thereby a gradual suppression of the peak stress
as the stiffness ratio k7 / k decreases. The dependence of the
system stiffness on the particle stiffness ratio can be charac-
terized by the initial macroscopic tangent Poisson’s ratio,
vy, and tangent Young’s modulus, E;. Assuming plane strain
conditions, these are given by

by = de, — degy (29)
2de, — dey
and
do, — doy,
= m(l +v) (30)

The dependence of these parameters on k7 /ky is shown
in Figs. 8 and 9. As expected, the Young’s modulus increases
with increasing k7 /ky to ultimately reach an limiting value
corresponding to k7 = oo. The Poisson’s ratio appears to
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Fig. 10 Biaxial test results for ky = kr = 25 MNm at ¢, = 0.2 (dense sample): particles colored according to their original position (left),
particles colored according to relative magnitude of rotation rate (center), and distribution of porosity (right) (color figure online)
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Fig. 11 Evolution of shear bands as gauged by rotation rate for ky = kr = 25 MN/m (dense sample)

approach 0.5 (corresponding to the incompressible limit) for
kr / kn tending to zero while, at the other extreme, a value of
0 appears to be asymptotically approached as k7 / ky tends to
infinity. These findings are qualitatively identical to those in
[51]. Quantitatively, the present analyses reveals that both £
and v are approximately linear functions of log k7 / k over a
large range of realistic particle stiffness ratio, approximately
0.01 < k7 /ky < 1.Thisprovides a convenient means of cal-
ibration. For example, to calibrate the particle assembly con-
sidered in this example to a typical sand (0.1 < v < 0.35),
the relevant particle stiffness ratio would be approximately
in the range of 0.1 < k7 /ky < 1.

5.3 Shear banding

The load-displacement curves for the dense sample shown
in Fig. 6 are quite typical of dense granular media such as
sands [52,53]. That is, a characteristic peak in shear stress is
observed followed by a decrease until a steady state which
is independent of the initial density. In terms of deforma-
tions, the behaviour is characterized by an initial compac-
tion followed by a dilation that reaches its maximum extent
around the peak stress, after which the rate of volumetric

straining eventually tends to zero as the steady, or critical,
state is approached. This behaviour is again observed in
Fig. 7 although the peak, as already discussed, is suppressed
by decreasing the k7 /ky ratio.

In physical experiments, it is often observed that the
peak shear stress is accompanied by the formation of one
or more bands of localized deformation. These shear bands
may form quite abruptly [52] or gradually become more pro-
nounced as the deformation proceeds [53]. Figures 10 and
11, which are concerned with the dense sample and a par-
ticle stiffness ratio, kr/ky = 1, illustrate the latter type
of behaviour. Firstly, in Fig. 10, the state of deformation
at an axial strain of ¢, = 0.2 is shown together with the
rate of rolling and the local porosities in the sample. We
here observe a good correlation between the zones of intense
deformation and rate of particle rolling. Moreover, the local
porosities are also rather indicative of the location of these
zones, with the porosity increasing quite substantially inside
the shear bands. Assuming a correlation between density
and shear strength, it is not difficult to appreciate that the
decrease in shear strength after the peak and the increase
in porosity inside the shear bands are consequences of each
other.

@ Springer



616

K. Krabbenhoft et al.

Finally, in Fig. 11, the rate of rolling is shown at difference
stages of the loading. From a relatively homogeneous distri-
bution prior to the peak, the zones of particle rolling gradually
localize after the peak to eventually define two quite distinct
bands at the critical state.

6 Conclusions

A granular CD formulation for elastically deformable par-
ticles has been detailed. The resulting scheme bears some
similarity to traditional MD schemes in that the consider-
ation of a finite contact stiffness implies the possibility for an
elastically reversible inter-particle penetration. We show that
the inclusion of particle elasticity reproduces the more basic
case of rigid particles in the limit of the inter-particle stiffness
tending to infinity. Moreover, in contrast to MD, there are no
algorithmic repercussions from operating with a large or, in
the extreme case infinite, stiffness. Indeed, the same algo-
rithm is used regardless of the contact stiffness, with perfect
rigidity being a limiting case that allows for certain simpli-
fications. In the present paper we have only considered the
case of linear elasticity but extension to nonlinear elasticity
is entirely possible as is the consideration of more complex
contact models incorporating hardening, viscous effects, etc.

Appendix 1: Three-dimensional formulation

The two-dimensional formulation discussed in the main part
of the paper may be extended to three dimensions in a number
of ways. In the following, one possibility is outlined.
Compared to the two-dimensional case, the main com-
plication is that the direction of the shear force is unknown
a priori, the only requirement being that it is orthogonal to
the normal contact direction. The basic idea of the follow-
ing three-dimensional formulation, sketched in Fig. 12, is to
consider a normal force directed along the particle normal as
in the two-dimensional case. The shear forces are accounted

Fig. 12 Frictional contact geometry in three dimensions

@ Springer

for by separate force vector ¢’ = (g1, ¢, q!) which must
satisfy

-

(n) o' =0 (31)
This condition is imposed explicitly in the final optimization
problem.

With the above definition of forces, linear momentum bal-
ance is given by

e+ pld +q’ = 7,

= Ard 1.1 I _ 7J (32)
m!Ax) — p'ny —q" = f
while the angular momentum balance equations read:
JiAa! —ri x ¢! = m!

0 x4 =" (33)

J7 Aot/ —i—ré X ql =ﬁzé

Similarly to the two-dimensional case, the frictional sliding
condition is given by

gl — up’ <0 (34)

Furthermore, for each contact, the quadratic term in the
objective function of (20), now reads

Len(p')? + 1craghTag! (35)

where Aqg = q — q, with g being the known shear force
at the beginning of the time step as in the two-dimensional
case. In summary, the three-dimensional formulation follows
the two-dimensional formulation closely, the only essen-
tial modification being that the direction of the shear force
is unknown a priori, necessitating the orthogonality condi-
tion (31). Finally, the optimization problems generated by
the above three-dimensional formulation can be solved using
the same second-order cone programming algorithm as in the
two-dimensional case.

Appendix 2: KKT optimality conditions

We consider the saddle-point problem representing the fric-
tionless contact problem:

min max {%AxTMAx — AfoO}
Ax P

+ {AxTNop — ggp} (36)
subjectto p >0

The first-order KKT optimality conditions associated with
this problem can be derived using the following procedure
[35,54-56]. The inequality constraints are first converted into
equality constraints by subtraction of positively restricted
slack variables s. The objective function is then augmented
by alogarithmic barrier function which eliminates the need to
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make explicit reference to the fact that s > 0. The modified, such that we have

equality constramed,_problem is given by AmxlI; mla,lx % ArT M Ax + % T De Afo_o

rginrr;?sx {%AxTMAx—AfoO} +PT (N‘(I)'Ax —go—e) 41
+{Ax"Nop — glp} + B> jccIns’ 37 subjectto  p >0

subjectto p—s=20

where 8 > 0 is an arbitrarily small constant and C is the
set of potential contacts. The standard Lagrange multiplier
technique then applies, i.e. the solution to (37) is found by
requiring stationarity of the Lagrangian

L = %AxTZ\_/IAx +AxT(Nop — fo) - gz)rp

(38)
+B2 1ec Ins’ +AT(p —s)

where A are Lagrange multipliers. The stationary conditions
are given by

oL - -
— =MAx — fo+Nop=0
ox

dL
a—:NgAx—go+x=0

p (39)
aL

_— = —_ :0

o P8

9L

F:%—M:O:s’k’:ﬁ,lec

S S

By letting B tend to zero while bearing in mind that s > 0,
the KKT conditions (11) are recovered.

Appendix 3: Alternative variational principles
for frictionless elastic particles

The governing equations (17) may be cast in a number of dif-
ferent ways besides (18) and (19). The perhaps most direct
way is to include a quadratic term in the contact forces into
(12). We thus have

min max {%AxTA_/IAx - AfoO}
Ax P

+{Ax"Nop—glp— 3p"Cp} (40)
subjectto p >0

While this problem reproduces the governing equations (17)
directly, solving for the min part first does not produce a pure
force based problem. Similarly, solving first with respect to
the max part does not result in a pure displacement based
problem.

To arrive at a pure displacement based problem, (12) is
instead extended by introducing a new set of variables, e,

where D = C~!. The new variables e here represent the total
elastic normal deformation (see Fig. 3). We note the similar-
ity of this problem to the Hu—Washizu variational principle
[34]. Finally, a problem containing only kinematic variables
as unknowns follows by solving the max part of the above
problem:
minimize $AxTMAx + le"De — AxT f, @)
subject to NgAx <gp+e

We note that the objective function is here the time discrete
action integral associated with a collection of linear elasti-
cally deformable particles. The KKT conditions are given
by

MAx + Nop = [

NgAx <gote

p = De (43)
p=0

P(NJAx —gy—e) =0

which are equivalent to those of (17).
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